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1. Introduction, notation, and statement of results. This paper
generalizes a 1977 result of J.-P. Serre and H. M. Stark [3] in which a set
of theta functions was proved to be a basis for the space of modular forms
of weight 1/2 over Q, which will be referred to as the rational case. Their
result has been generalized to forms over totally real fields, and, using rep-
resentation theory, to arbitrary fields ([1]). Here we show that the original
constructive proof can be generalized at least to weight 1/2 forms over the
nine imaginary quadratic class number 1 fields. This method will generalize
to arbitrary number fields contingent upon the working out of the p-adic
theta multiplier.

Many of the necessary lemmas and theorems are the same as in the
original paper. They are all stated again here, although a corresponding
proof will not be included unless it is very short or has a part that is different
from [3]. The main difference is that in [3] many of the needed results on
the coefficients of modular forms are proved by considering the Dirichlet
series associated with the form in question. This trick does not work with
modular forms over a number field since more than one coefficient of a form
corresponds to each term of the associated Dirichlet series. The method of
working directly with the Fourier series used herein would, of course, also
work in the rational case. The operators used here are similar to those in [3]
but normalized in order to preserve the quaternionic “upper half plane.” An
added bonus is that this gives them all determinant 1.

Following Stark [5], modular forms of half-integral weight over an arbi-
trary number field K can be defined in terms of a variable z, which comes
from a product of upper half planes. In our case, we have

z ∈ H = {x+ ky | x ∈ C , y ∈ R+} ,
the quaternionic “upper half plane”. This space is preserved by SL2(C),
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with the following action. If A =
(
a b
c d

)
∈ SL2(C) then

A ◦ z = (az + b)(cz + d)−1 .

The order of the action must be specified because of the non-abelian nature
of quaternionic multiplication.

Let OK be the integers of the field K and χ a numerical character (de-
fined on numbers rather than ideals) modulo N , which is divisible by 4.
Then the associated theta function is

θχ(z) =
∑
b∈OK

χ(b)q(b2) ,

where
q(b) = q(b, z) = exp{2πi tr(t0xb+ ky|t0b|)} ,

with
tr(x+ ky) = x+ x+ 2iy

and t0 is a fixed generator of the inverse different D−1 of K.
If Γ0(N) = {A =

(
a b
c d

)
∈ SL2(OK) | c ≡ 0 (mod N)}, then for any

A ∈ Γ0(N)
θχ(A ◦ z) = χ(d)j(A, z)θχ(z) ,

where

j(A, z) =
{
ε−1
d χc(d)N(cz + d)1/2 if c 6= 0,

1 if c = 0,
with the following additional definitions. N(z)1/2 =

√
zz = |z| with z =

x − ky. χc(d) is the Kronecker symbol associated with the field extension
K(
√
c)/K. εd is periodic modulo 4 and if d is a first degree prime, then

εd =
(
t0d

d

)
εdd̄

where

εdd̄ =
{

1 if dd ≡ 1 (mod 4),
i if dd ≡ 3 (mod 4)

is from the rational case. The other factor is a Legendre symbol. By Dirich-
let’s theorem on primes in an arithmetic progression, this definition is suf-
ficient to define εd for all d relatively prime to 4, which is in any case a
necessary condition for A to be in Γ0(N). The periodicity of εd also allows
us to say that εd makes sense for non-integral d which have numerator and
denominator relatively prime to 2.

We will consider the functions f defined on H that satisfy

f(A ◦ z) = χ(d)j(A, z)f(z)

for all A in Γ0(N). As
(

1 b
0 1

)
∈ Γ0(N) every such f has f(z + b) = f(z)

and hence has a Fourier expansion
∑
b∈OK

a(b)q(b). If there exists a D
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such that Da(b) is an integer for all b then we say f is a modular form
in M0(N, 1

2 , χ). In other words, the space of modular forms M0(N, 1
2 , χ)

that we are considering has a basis of forms with Fourier coefficients from
a number field with a bounded denominator. That this D always exists in
the rational case is proven in [3] by reducing to the analogous situation for
the integer weight case, which is proven in [4].

The set of f ∈ M0(N, 1
2 , χ) that are zero as z approaches x+∞k or the

other cusps x + 0k with x in our number field K will be called cusp forms
and denoted by S0(N, 1

2 , χ).
Let r(ψ) be the conductor, or minimum period, of a character ψ. The

conductor is only unique up to multiplication by a unit. This slight ambigu-
ity will not be consequential. ψ is primitive if r(ψ) is the same as ψ’s period
of definition. Also, ψ is even if ψ(−1) = 1 and odd otherwise. A modular
form associated with an odd character is identically zero, so we need only
consider even characters.

Let Ω(N,χ) be the set of ordered pairs (ψ, t) with ψ an even primitive
character, t ∈ OK with only a single t allowed from among the set t, ut, and
u′t for each ψ, where u and u′ are square units in the field K, and

(i) 4r2(ψ)t |N ,
(ii) χ(b) = ψ(b)χt(b) for all b prime to N .

Condition (ii) can be looked at in two ways. First, it says that ψ is the
primitive character associated with χχt. Second, it says that χ is determined
by ψ and t. Note that the extra conditions on t only apply if K = Q(

√
−1)

or Q(
√
−3), the fields which have extra units in their integer rings.

If ψ has conductor r, ψ can be uniquely factored

ψ =
∏
π | r

ψπ

where the conductor of ψπ is the highest power of π that divides r. ψ is
called totally even if all the ψπ’s are even. A totally even character is always
the square of another character with period r or 2r, depending on if r is an
odd or an even number respectively.

Define Ωe(N,χ) to be the pairs (ψ, t) in Ω(N,χ) with ψ totally even and
Ωc(N,χ) to be the rest of Ω(N,χ).

The shifted theta functions are defined for t ∈ OK as

θψ,t =
∑
b∈OK

χ(b)q(tb2) .

We are now ready to state the generalized Serre–Stark theorems.

Theorem A. M0(N, 1
2 , χ) has the following basis:

{θψ,t | (ψ, t) ∈ Ω(N,χ)} .
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Theorem B. S0(N, 1
2 , χ) has the following basis:

{θψ,t | (ψ, t) ∈ Ωc(N,χ)} .

2. Operators. The main tool in the proofs of Theorems A and B is the
use of linear operators that act on the spaces of modular forms. To define
these operators we first extend the group SL2(C) to a group G whose action
resembles that of a multiplier system:

G = {M,φ(z) |M ∈ SL2(C), φ(z) : H → C}
and the group action is

{M,φ(z)}{N,ψ(z)} = {MN,φ(N ◦ z)ψ(z)} .
If A ∈ Γ0(N), let A∗ = {A, j(A, z)} ∈ G.

For {M,φ(z)} ∈ G, define the slash operator

f |{M,φ(z)} = φ−1(z)f(M ◦ z) .
Thus, if f ∈ M0(N, 1

2 , χ) and A ∈ Γ0(N), then

f |A∗ = χ(d)f .

Almost all of the operators we will need are either elements of G or linear
combinations of them. Elements of G acting by the slash operator can be
combined in the following manner:

f
∣∣∣ ∑

ci{Mi, φi(z)} =
∑

cif |{Mi, φi} .

The most important operators are the Hecke operators, defined below
for any first degree prime π:

T (π2) = |π|−3

[ ∑
j∈O/(π2)

{ (
π−1 jπ−1

0 π

)
, |π|

}

+ χ(π)
∑

j∈O/(π)
j 6≡0

{ (
1 jπ−1

0 1

)
, ε−1
π χ−j(π)

}

+ χ(π2)
{ (

π 0
0 π−1

)
, |π|−1

}]
if π -N

and

T (π2) = |π|−3
∑

j∈O/(π2)

{ (
π−1 jπ−1

0 π

)
, |π|

}
if π |N .

Finally, if 4π |N , then

T (π) = |π|−3/2
∑

j (mod π)

{ (
π−1/2 jπ−1/2

0 π1/2

)
, |π|1/2

}
.
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These are well-defined as exchanging j′ for j, with j ≡ j′ (mod π2), or
(mod)π, in any sum would merely be changing the matrix by a translation,
i.e. multiplying on the left by

(
1 l
0 1

)
for some integer l.

Theorem 1. For f ∈ M0(N, 1
2 , χ), f |T (π2) ∈ M0(N, 1

2 , χ) and if 4π |N
then f |T (π) ∈ M0(N, 1

2 , χχπ). If f(z) =
∑
b∈OK

a(b)q(b), then f |T (π2) =∑
b∈OK

c(b)q(b) where

c(b) =

 a(bπ2) + |π|−2χ(π)
(
b

π

)
a(b) + |π|−2χ(π2)a(b/π2) if π -N ,

a(bπ2) if π |N .

If 4π |N then f |T (π) =
∑
b∈OK

c(b)q(b) where c(b) = a(bπ). Furthermore,
any two of these operators commute.

The proof is a several pages long exercise. We provide the following
outline. Let A =

(
a b
c d

)
∈ Γ0(N). First, we need f |T (π2)|A∗ = χ(d)f |T (π2).

For any T ∈ G that is part of the Hecke operator, there exists T ′ part of
the same operator and an R ∈ Γ0(N) such that TA∗ = γR∗T ′, where γ is
a root of unity that exactly compensates for the cases when T and T ′ come
from different summations of the Hecke operator. We may assume that d
is a first degree prime, since after it is proven in that case, the general case
follows by multiplying by a translation matrix. In addition to the fact that
whenever Legendre, Jacobi, and Kronecker symbols coincide they are equal,
the following two lemmas are useful for verifying this theorem.

Lemma 1. For (π, d) = (π, 4) = (d, 4) = 1,

επd
επεd

=
(
d

π

)(
π

d

)
.

P r o o f. Take

A =
(

a b
πN d

)
, B =

(
e f
dN π

)
.

The lemma follows from the fact that θ|A∗|B∗ = θ|(AB)∗.

By the quadratic reciprocity law, ( dπ )(πd ) equals a quadratic character
depending on π evaluated at d (or vice versa) of period 4. Call this χ4π(d).
By letting d = π − 4, we see that

1 =
(

4
π − 4

)
=

(
π

π − 4

)
= χ4π(π − 4)

(
π − 4
π

)
= χ4π(π)

(
−1
π

)
.

And thus we have as a corollary that χ4π(π) = (−1
π ), so that we can also

say
επd
επεd

= χ4π(πd)
(
−1
π

)
.
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Lemma 2. If K 6= Q(
√
−1) then επ 6= −1.

P r o o f. We may assume π is a first degree prime. Suppose π lies over
a rational prime p. If p ≡ 3 (mod 4) then eπ = ±i, by the definition of επ.
Thus p ≡ 1 (mod 4), and επ = ( t0ππ ).

Let K = Q(
√
d) and d ≡ 1 (mod 4) and π = (a + b

√
d)/2 with a ≡ b

(mod 2). Choose t0 = 1/
√
d (the sign of t0 is irrelevant). Now

επ =
( (a−b

√
d

2 ) 1√
d

a+b
√
d

2

)
=

(
b

p

)
= 1 .

The case of K = Q(
√
−2) has only a minor variation.

If K = Q(
√
−1) and we make the further restriction that π = a+ bi lies

over p ≡ 1 (mod 8), then in a similar manner, επ = 1. For more details, see
the appendix.

These two lemmas combine to give an evaluation of εd that is particularly
useful. We specialize the values in the first lemma to get

εdπ−1εdπ
εd2

= χ4dπ(d2)
(
−1
dπ

)
=

(
−1
dπ

)
.

And the second lemma tells us that εd2 = 1 since d2 always lies over a
number congruent to 1 (mod 8). Thus

εdπ−1 = ε−1
dπ

(
−1
dπ

)
= εdπ.

We now return to the outline of the proof of Theorem 1. To find the
Fourier coefficients, recall that

f(z) =
∑
b∈OK

a(b)q(b)

where

q(b) = exp{2πi tr(t0xb+ k|t0yb|)} := e{t0xb+ k|t0yb|} .

Now for π -N we have

|π|3f |T (π2) =
∑

j (mod π2)

|π|−1f((π−1z + jπ−1)π−1) (= Σ1)

+ χ(π)
∑

j (mod π)
j 6≡0

επχ−j(π)f(z + jπ−1) (= Σ2)

+ χ(π2)|π|f(πzπ) .
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We simplify each summation in turn:

Σ1 =
∑

j (mod π2)

|π|−1
∑
b∈OK

a(b)e
{
t0

(
x+ j

π2

)
b+ k

∣∣∣∣ t0ybπ2

∣∣∣∣}

= |π|−1
∑
b∈OK

a(b)e
{
t0xb

π2
+ k

∣∣∣∣ t0ybπ2

∣∣∣∣} ∑
j

e

{
t0jb

π2

}
.

The sum on j is zero unless π2 | b. After relabeling, we have

Σ1 = |π|3
∑
b∈OK

a(bπ2)q(b) .

The next sum is

Σ2 = χ(π)εp
∑
b∈OK

a(b)q(b)
∑

j (mod π)
j 6≡0

e

{
bt0j

π

}(
−j
π

)
.

The inner sum is a Gauss sum that is zero if π | b and otherwise is equal to
εp(

−bt0π
π )|π|, where p is the rational prime under π and ε is the ε from the

rational case (i.e. 1 if p ≡ 1 (mod 4) and i if p ≡ 3 (mod 4)). Thus

Σ2 = |π|χ(π)
∑
b∈OK

(
b

π

)
a(b)q(b) .

Lastly,

χ(π2)|π|f(πzπ) = |π|χ(π2)
∑
b∈OK

a(b)e{t0π2xb+ k|t0π2yb|}

= |π|χ(π2)
∑
b∈OK

a(b/π2)q(b) ,

where a( b
π2 ) = 0 if π2 - b. Putting the above components together gives the

result for c(b). If π |N , then we just use Σ1 to get the desired result. For
T (π), the argument is the same as for T (π2) when π |N .

The commutativity results follow from an examination of the Fourier
coefficients.

The T (π2) operator preserves M0(N, 1
2 , χ). We also need some operators

that send one space of modular forms to another. Let f(z)=
∑
b∈OK

a(b)q(b).
The shift operator

V (m) = |m|−1/2

{ (
m1/2 0

0 m−1/2

)
, |m|−1/2

}
acts by

f |V (m)(z) = f(m1/2zm1/2) =
∑
b∈OK

a(b)q(mb) .
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The symmetry operator

W (N) =
{ (

0 −N−1/2

N1/2 0

)
, |N1/2z|

}
acts by

f |W (N)(z) = |N1/2z|−1f(−N−1/2(N1/2z)−1)

= |N1/2z|−1
∑
b∈OK

a(b)q(bN−1,−z−1)

and f |W (N)|W (N) = f .
The conjugation operator H is defined by

f |H(z) =
∑
b∈OK

a(b)q(b) .

Theorem 2. The operators V (m), W (N), and H send M0(N, 1
2 , χ) to

M0(Nm, 1
2 , χχm), M0(N, 1

2 , χχN ), and M0(N, 1
2 , χ) respectively. If f ∈

M0(N, 1
2 , χ), then

f |V (m)|T (π2) = f |T (π2)|V (m) when π -m,

f |W (N)|T (π2) = χ(π2)f |T (π2)|W (N) when π -N ,

f |H|T (π2) = f |T (π2)|H .

P r o o f. Let A =
(
a b
c d

)
∈ Γ0(Nm) and note

f |V (m)A∗ = f

∣∣∣∣{ (
a mb

cm−1 d

)
, χm(d)j(A, z)

}
V (m) = χχm(d)f |V (m) .

For A =
(
a b
c d

)
∈ Γ0(N),

f |W (N)|A∗ = f

∣∣∣∣{ (
d −N−1c

−Nb a

)
, χN (a)j(A, z)

}
W (N)

= χχN (d)f |W (N)

since

ε−1
d

(
c

d

)
= χN (a)ε−1

a

(
−Nb
d

)
= ε−1

a

(
(1− ad)/c

a

)
= ε−1

a

(
c

a

)
.

And f |H|A∗ = χ(d)f |H is clear.
The first and third commutativity results follow from an examination of

their Fourier coefficients. The second commutativity result requires com-
paring the elements of G on each side modulo Γ0(N). They can be paired
up in such a way that each part of T (π2)W (N) agrees with some part of
W (N)T (π2) up to multiplication on the left by an A∗ for some A ∈ Γ0(N).
A can be found explicitly, and in each case the lower right entry makes the
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coefficients come out correctly, as long as it is remembered that the char-
acter in the Hecke operator depends on the space to which the operator is
being applied.

We will also need an operator to lower the level. First, we define one
that only lowers the level. Then, using this operator, we define another one
that “undoes” the shift operator.

If 4π0 |N , write Γ0(N/π0) as a disjoint union of cosets modulo Γ0(N):

Γ0(N/π0) =
µ⋃
j=1

Γ0(N)Aj

where µ = [Γ0(N/π0) : Γ0(N)]. S′(χ) = S′(χ,N, π0) is the trace operator
defined on M0(N, 1

2 , χ) by

S′(χ) =
µ∑
j=1

χ(aj)A∗j =
µ∑
j=1

χ(dj)A∗j

where aj and dj are the diagonal entries of Aj .
That S′(χ) is well-defined, takes M0(N, 1

2 , χ) to M0(N/π0,
1
2 , χ) when-

ever χ is definable (mod N/π0), and commutes with T (π2) has the same
proof as in [3]. Clearly, if f ∈ M0(N/π0,

1
2 , χ) then

f |S′(χ) =
µ∑
j=1

χ(dj)χ(dj)f = µf .

The trace operator S(χ)

S(χ) =
1
µ
|π0|1/2W (N)S′(χχN )W (N/π0)

“undoes” the shift operator in the following sense.

Lemma 3. Let π0 be a prime such that 4π0 |N and χχπ0 is definable
(mod N/π0). Then:

(a) The operator S(χ,N, π0) maps M0(N, 1
2 , χ) into M0(N/π0,

1
2 , χχπ0).

(b) If f belongs to M0(N, 1
2 , χ), and (π0,m) = 1 then

f |S(χ,N, π0) = f |S(χ,Nm, π0) .

(c) S(χ) commutes with all T (π2) for π -N .
(d) If g ∈ M0(N/π0,

1
2 , χχπ0), then g|V (π0) ∈ M0(N, 1

2 , χ) and

g|V (π0)|S(χ,N, π0) = g .

(e) Let π be a prime such that 4π |N , π 6= π0, and χχπ is definable
(mod N/π). If g ∈ M0(N/π, 1

2 , χχπ), we have

g|V (π)|S(χ,N, π0) = g|S(χχπ, N/π, π0)|V (π) .
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P r o o f. (a) Theorem 2 and the above show that S(χ) sends M0(N, 1
2 , χ)

to M0(N/π0,
1
2 , (χχN )χN/π0) and part (a) follows since

χχNχN/π0 = χχNχNχπ0 = χχπ0 .

(b) If
(
a b
c d

)
∈ Γ0(Nm/π0), with (m,π0) = 1, then

W (Nm)A∗W (Nm/π0) = W (N)
(

a bm
c/m d

)∗
W (N/π0)

implies (b).
(c) This statement follows from previous commutativity results.
(d) We have

g|V (π0)|W (N) = |π|−1/2g|W (N/π0)

which is in M0(N, 1
2 , χχN ) and is thus invariant under 1

µS
′(χχN ) and is

sent to |π0|−1/2g by W (N/π0) which proves (d).
(e) We have 4ππ0 |N and χχπ0χπ is definable (mod N/ππ0). Now

g|V (π)|S(χ,N, π0) =
1
µ
|π0|1/2g|V (π)|W (N)S′(χχN )W (N/π0)

=
1
µ
|π0π|1/2g|W (N/π)S′(χχN )W (N/π0)

=
1
µ
|π0|1/2g|W (N/π)S′(χχN )| |π|1/2W (N/ππ0)V (π)

= g|S(χχπ, N/π, π0)|V (π) .

If π is an arbitrary prime we define

K(π) = 1− T (π,Nπ)V (π) ,

where T (π,Nπ) is the Hecke operator applied to the level Nπ. We imme-
diately have:

Lemma 4. If f =
∑
b∈OK

a(b)q(b) ∈ M0(N, 1
2 , χ) then f |K(π) ∈

M0(Nπ2, 1
2 , χ) and is equal to

∑
(b,π)=1 a(b)q(b). If π′ -Nπ, then T (π′2)

and K(π) commute.

Note that all the above operators take cusp forms to cusp forms, as can
be seen from their Fourier expansions.

3. Newforms. Let f be an eigenform of all but finitely many T (π2). f
is an oldform if there exists a prime π dividing N/4 such that either χ is de-
finable (mod N/π) and f ∈ M0(N/π, 1

2 , χ) or χχπ is definable (mod N/π)
and f = g|V (π) for some g ∈ M0(N/π, 1

2 , χχπ). The oldforms span a sub-
space of M0(N, 1

2 , χ) denoted by Mold
0 (N, 1

2 , χ). If f is an eigenform of all
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but finitely many T (π2) and f 6∈ Mold
0 (N, 1

2 , χ) we say that f is a newform
of level N .

Lemma 5. The symmetry operator W (N) and the conjugation operator H
take oldforms to oldforms and newforms to newforms.

P r o o f. Same as in [3].

Lemma 6. Let h ∈ Mold
0 (N, 1

2 , χ) be a non-zero eigenform of all but
finitely many T (π2). Then there is a divisor N1 of N with |N1| < |N |, a
character ψ definable (mod N1) and a newform g in M0(N1,

1
2 , ψ) such

that g and h have the same eigenvalues for all but finitely many T (π2).

P r o o f. Same as in [3], except we use induction on |N |.
Lemma 7. Let π be a prime and f =

∑
b∈OK

a(b)q(b) be a non-zero
element of M0(N, 1

2 , χ) such that a(b) = 0 whenever π - b. Then π |N/4,
χχπ is definable (mod N/π) and f = g|V (π) with g ∈ M0(N/π, 1

2 , χχπ).

P r o o f. Same as in [3] except, due to non-commutativity, put

g(z) = f(π−1/2zπ−1/2) =
∑
b∈OK

a(πb)q(b)

= |π|1/2f
∣∣∣∣{ (

π−1/2 0
0 π1/2

)
, |π|1/2

}
and similarly normalize the other operators.

Theorem 3. Let m 6= 0 ∈ OK , and f =
∑
b∈OK

a(b)q(b) ∈ M0(N, 1
2 , χ)

such that a(b) = 0 whenever (b,m) = 1. Then

f =
∑
π

fπ|V (π) with fπ ∈ M0(N/π, 1
2 , χχπ)

with π running through the set of primes such that π |m, 4π |N , and χχπ
is definable (mod N/π).

Furthermore, if f is a cusp form, the fπ can also be chosen to be cusp
forms. If f is an eigenform of all but finitely many T (π′2), then the fπ can
also be chosen to be eigenforms of all but finitely many T (π′2) and have the
same eigenvalues as f .

P r o o f. Also the same as in [3].

Corollary. If the function f of Theorem 3 is an eigenform of all but
finitely many T (π′2), then f ∈ Mold

0 (N, 1
2 , χ).

Lemma 8. Let f =
∑
b∈OK

a(b)q(b) be a non-zero element of M0(N, 1
2 , χ)

and let π be a prime with π -N . Assume that f |T (π2) = cπf with cπ ∈ C.
Let b 6= 0 and π2 - b. Then:

(a) a(bπ2n) = a(b)χ(π)n( bπ )n for all n > 0.
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(b) If a(b) 6= 0, then π - b and cπ = χ(π)( bπ )(1 + |π|−2).

P r o o f. Set

A(T ) =
∞∑
n=0

a(bπ2n)Tn .

To put this in closed form, examine what happens after applying T (π2) to f .
One obtains

A(T ) = a(b)
1− |π|−2χ(π)( bπ )T

1− cπT + |π|−2χ(π)2T 2
.

Use π-adic analysis in the same way as in [3], Lemma 9.

Theorem 4. Let f be as in Lemma 8 and let N ′ be a multiple of N . If
f |T (π2) = cπf for all π -N ′, then there exists a square-free integer t, unique
up to multiplication by a square unit , such that a(b) = 0 if b/t is not a
square. Moreover , we have:

(a) t |N ′.
(b) cπ = χ(π)( tπ )(1 + |π|−2) if π -N ′.
(c) a(bu2) = a(b)χ(u)( tu ) if (u,N ′) = 1, where (∗∗ ) is the Jacobi symbol.

P r o o f. Let b and b′ be two integers such that neither a(b) nor a(b′) is
zero. Let P be the set of primes π with π -N ′bb′. If π ∈ P , Lemma 8 shows
that

χ(π)
(
b

π

)
(1 + |π|−2) = cπ = χ(π)

(
b′

π

)
(1 + |π|−2)

hence (
b

π

)
=

(
b′

π

)
and thus b/b′ is a square. We may write b = tv2, b′ = tv′2 with t square-free,
and we have proven the existence of t. Write v as πnu with (π, u) = 1 for
any π -N ′. Since t is square-free, we have π2 - t and we can apply Lemma 8.
This tells us that

a(b) = a(tu2π2n) = a(tu2)χ(π)n
(
tu2

π

)n
= a(tu2)χ(π)n

(
t

π

)n
.

Hence, π - tu2, which implies that π - t. Thus, π -N ′ implies π - t. What we
need is just the contrapositive of this statement, i.e. π | t implies π |N ′.
Since t is square-free, this shows that t |N ′. Lastly,

cπ = χ(π)
(
tu2

π

)
(1 + |π|−2) = χ(π)

(
t

π

)
(1 + |π|−2) .

Part (c) follows by factoring u and applying Lemma 8.
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4. Proof of results. Let f =
∑
b∈OK

a(b)q(b) be a newform of level N
belonging to M0(N, 1

2 , χ).

Lemma 9. The t of Theorem 4 is a unit and a(t) 6= 0.

P r o o f. Suppose a(u) = 0 for all units u of the field K. By Theorem 4,
a(ub2) = a(u)χ(b)( tb ) = 0 for all b such that (b,N ′) = 1. Theorem 3 then
shows that f must be an oldform, and we have our contradiction.

Before we can prove the next lemma, we must say something about the
two cases when we have extra units. If K = Q(

√
−1), then

f |V (−1) = f

∣∣∣∣{ (
−i 0
0 i

)
, 1

}
= f(−x+ yk) =

∑
b∈OK

a(−b)q(b) = χ(i)f .

Thus, a(b) = χ(i)a(−b). But 1 = χ(−1) = χ(i2) = χ(i)2, and we have
χ(i) = ±1, so that a(b) = ±a(−b). Similarly, if k = Q(

√
−3) and % =

(−1 +
√
−3)/2, then a(%b) = a(b) or %a(b) or %2a(b). In either field, the

important thing is that a(b) and a(ub) are related in the same way for every
form in a given space for any given unit u.

Lemma 10. If g ∈ M0(N, 1
2 , χ) is an eigenform of all but finitely many

T (π2) with the same eigenvalues as f , then g is a multiple of f .

P r o o f. Call the unit of Lemma 9 u and normalize f so that a(u) = 1.
Let w be any non-square unit in K. The coefficient of q(uw) in g must be
zero, since otherwise f + g ∈ M0(N, 1

2 , χ), which would have non-zero coef-
ficients on both the q(u) and q(uw) terms, which contradicts the conditions
we have on u from Theorem 4. Let c be the coefficient of q(u) in g and let
h = g − cf . In h, the coefficient of q(v) is zero for all units v ∈ k since the
coefficients of q(v) have the same relationships in g as in f . Assume h 6= 0.
h is obviously an eigenform with the same eigenvalues as f . By Lemma 9,
h is not a newform. Therefore, h ∈ Mold

0 (N, 1
2 , χ). By Lemma 6, there exist

a divisor N1 of N with |N1| < |N |, a character ψ defined (mod N1), and a
newform h1 ∈ M0(N, 1

2 , ψ) with the same eigenvalues as h for all but finitely
many T (π2). The eigenvalue cπ is

χ(π)
(
u

π

)
(1 + |π|−2) = ψ(π)

(
u1

π

)
(1 + |π|−2)

which implies

χ(π) = ψ(π)
(
uu1

π

)
,

where u1 is the unit of h1 given by Lemma 9.
If (uπ ) = (u1

π ), then χ = ψ and we have h1 ∈ Mold
0 (N, 1

2 , χ). Otherwise,
let h2 = h1|V (uu1) ∈ M0(N1,

1
2 , ψχuu1). Therefore, h2 ∈ Mold

0 (N, 1
2 , χ).

Let d be the coefficient of q(u) in hi (i = 1 or 2—whichever one is in
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Mold
0 (N, 1

2 , χ)). d 6= 0 since h1 is a newform. As before, f − 1
dhi is an

oldform. But

f =
1
d
hi +

(
f − 1

d
hi

)
is a sum of two forms in Mold

0 (N, 1
2 , χ). But f is a newform. Therefore our

assumption that h 6= 0 must be false and g = cf .

Lemma 11. f is an eigenform of every T (π2). If 4π |N , then f |T (π2)
= 0.

P r o o f. Let g = f |T (π2) for any π. Theorem 1 gives us that g|T (π′2) =
f |T (π′2)|T (π2) = cπ′g for all but finitely many π′. Therefore, by Lemma 10,
g is a multiple of f , i.e. f is an eigenform of T (π2) for all π. If 4π |N , we
again use Theorem 1.

f |T (π) =
∑
b∈OK

a(bπ)q(b) ∈ M0(N, 1
2 , χχπ)

but a(bπ) 6= 0 only if b is of the form b = uc2π. Now

f |T (π) =
∑
b∈OK

a(uc2π2)q(uc2π)

= f |T (π2)|V (π) = cπf |V (π) .

If cπ 6= 0, Lemma 7 shows that χ is definable (mod N/π) and f |T (π) =
g|V (π) for some g ∈ M0(N/π, 1

2 , χ). Thus

cπf |V (π) = g|V (π)

and by applying the trace operator we have cπf = g. Therefore, f ∈
M0(N/π, 1

2 , χ), which is impossible since f is a newform. Thus cπ = 0.

Note that this implies a(b2) = 0 if (b,N) 6= 1.

Lemma 12. The level N of the newform f is a square times a unit.

P r o o f. If π -N , we have f |T (π2) = cπf with cπ = χ(π)(uπ )(1 + |π|−2).
By Theorem 2,

f |W (N)|T (π2) = χ(π)2cπf |W (N) = cπf |W (N)

and
f |H|T (π2) = (cπf)|H = cπ(f |H)

since H is anti-linear.
Lemma 5 tells us that f |W (N) and f |H are both newforms of level N

and characters χχN and χ respectively. Furthermore, they have the same
eigenvalues corresponding to T (π2) for π -N . By Theorem 4 the eigenvalues
determine the character up to χu(π) for some unit u. Thus χN = χu, whence
N is a square times a unit.
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Theorem 5. If f =
∑
b∈OK

a(b)q(b) ∈ M0(N, 1
2 , χ) is a newform with

a(1) = 1 and r is the conductor of χ, then N = 4r2 and f = θχ.

P r o o f. Let N1 and r1 be the products of all the prime divisors of N
and r to the first power. We have

f(z) =
∑

(b,N1)=1

χ(b)q(b2) and θχ(z) =
∑

(b,r1)=1

χ(b)q(b2) .

Since r |N , we see that (b,N1) = 1 implies (b, r1) = 1, and the difference
between these two functions is

f(z) = θχ −
∑

(b,r1)=1
(b,N1/r1) 6=1

χ(b)q(b2) .

This function is in M0(N ′, 1
2 , χ), where N ′ is the least common multiple of

N and 4r2. Let ci represent a product of i primes, all of which divide N1/r1.
Using the inclusion-exclusion principle, we obtain

f(z) = θχ(z) +
l∑
i=1

(−1)i
∑
ci

χ(ci)θχ(cizci) ,

where l is the number of prime factors of N1/r1. We know that f |W (N) ∈
M0(N, 1

2 , χχN ) must have an integral q-expansion

f |W (N) = |N1/2z|−1
[
θχ(−(N1/2zN1/2)−1)

+
j∑
i=1

(−1)i
∑
ci

χ(ci)θχ(−(c−1
i N1/2zN1/2c−1

i )−1)
]

and using the theta inversion formula from [5], this is∑
(b,r1)=1

[
C(χ, b)q

(
b2N

4r2

)
+

∑
ci

C(χ, b, ci)q
(
b2N

4r2c2i

)]
where the C’s are constants that only depend on the arguments in the
parentheses. Since the argument of q must be integral, 4r2c2i divides b2N .
In particular, by the conditions on b, we have 4r2 |N . Thus, N ′ = N and
θχ−f is of level N . But what is important is that this says that f is a linear
combination of theta and shifted theta functions of a lower level, and thus
is an oldform. The only resolution of this contradiction is for N to equal
4r2. Thus f = θχ.

Conversely, we have

Theorem 6. If χ is an even primitive character of conductor r, then θχ
is a newform in M0(4r2, 1

2 , χ).
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P r o o f. Let N=4r2. From [5] we have θχ∈M0(N, 1
2 , χ), and by plugg-

ing into Theorem 1, we see that θχ is an eigenform of T (π2) with eigenvalue

cπ = (1 + |π|−2)χ(π) if π -N .

Now assume θχ is not a newform. Lemma 6 shows that we can find an N1,
with |N1| < |N | and N1 |N , and a character ψ definable (mod N1), and a
newform f ∈ M0(N1,

1
2 , ψ) such that f and θχ have the same eigenvalues

for all but finitely T (π2), i.e.

(1 + |π|−2)ψ(π) = (1 + |π|−2)χ(π) for almost all π .

This shows that ψ = χ. Theorem 5 now shows that N1 = 4r2, which is a
contradiction. Thus θχ is a newform.

Theorem A. The theta functions θψ,t with (ψ, t) ∈ Ω(N,χ) form a basis
for M0(N, 1

2 , χ).

P r o o f. First, we show that this set is linearly independent.
χ and t determine ψ. Therefore, each t only appears in a single pair of

Ω(N,χ). Suppose that

λ1θψ1,t1 + . . .+ λmθψm,tm = 0 , λi 6= 0 for all i ,

with |ti| ≤ |ti+1|, equality holding only if ti = uti+1 for some non-square
unit u. In any case, the coefficient of q(t1) in θψ1,t1 is non-zero and cannot
be cancelled out by any of the other θ-functions since none of them has a
q(t1)-term. Thus λ1 = 0, a contradiction.

To show that the proposed basis generates M0(N, 1
2 , χ), we first prove

Lemma 13. There is a basis of M0(N, 1
2 , χ) containing only eigenforms

for the T (π2), for π -N .

P r o o f. Equivalently, we prove that the matrix representations of the
T (π2) operators are simultaneously diagonalizable. Assume there is some
T (π2) that is not diagonalizable. By putting it in its Jordan form, we can
see that there is some element g ∈ M0(N, 1

2 , χ) such that

g|U 6= 0 and g|U2 = 0 where U = T (π2)− cπ

for some eigenvalue cπ of T (π2). If g =
∑
b∈OK

d(b)q(b) we can assume that
the d(b)’s are algebraic with bounded denominator. Assume b -π and apply
Theorem 1 to put

D(T ) =
∞∑
m=0

d(bπ2m)Tm

into closed form (basically the same technique as in Lemma 8 but in this
case a couple pages longer since we have U2 instead of just U). We obtain

D(T )[1−2cπT+(c2π+3χ(π2)|π|−2)T 2−2cπχ(π2)|π|−2T 3+χ(π4)|π|−4T 4]
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= d(b)
[
1− 2cπT − 2cπ

(
b

π

)
χ(π)|π|−2T 2 − χ(π3)

(
b

π

)
|π|−4T 3

]
+d(bπ2)[T − χ(π)|π|−2T 2] .

Now take A(T ) from Lemma 8, i.e.

A(T ) =
∞∑
m=0

a(bπ2m)Tm =
a(b)

1− χ(π)( bπ )T
,

so that a(b) = d(b). We know that D(T ) and A(T ) converge in the unit
π-adic disc U. By Lemma 8, the coefficients a(bπ2m) satisfy a recurrence
relation that comes from our operator U . Hence, they also satisfy the same
recursion relation as the d(bπ2m) since these come from U2. Thus, since
a(b) = d(b), D(T )−A(T ) is

(d(bπ2)− a(bπ2))(T − χ(π)( bπ )T 2)
1− 2cπT + (c2π + 3χ(π2)|π|−2)T 2 − 2cπχ(π2)|π|−2T 3 + χ(π4)|π|−4T 4

,

which must be zero, since otherwise there would be poles in U. Thus,
D(T ) = A(T ), from which g|U = 0. Hence, T (π2) must be diagonalizable.
Since the T (π2) commute, we have the lemma.

Now we can prove that the functions θψ,t span M0(N, 1
2 , χ). By Lemma

13, it suffices to show that any eigenform f of all the T (π2), with π -N , is a
linear combination of θψ,t with (ψ, t) ∈ Ω(N,χ). We use induction on |N |. If
f is a newform, then Theorem 5 shows that f is θψ,t, with (ψ, t) ∈ Ω(N,χ).
If f is an oldform, then we have two cases. Either f is an oldform of the
first type and χ is definable (mod N/π) and f ∈ M0(N/π, 1

2 , χ), in which
case, by induction, f is a linear combination of θψ,t with (ψ, t) ∈ Ω(N/π, χ),
which is a subset of Ω(N,χ). Or else, f is an oldform of the second type and
χχπ is definable (mod N/π) and f = g|V (π) with g ∈ M0(N/π, 1

2 , χχπ).
In this case, g is a linear combination of θψ,t, with (ψ, t) ∈ Ω(N/π, χχπ),
which says that f is a linear combination of θψ,tπ with (ψ, tπ) ∈ Ω(N,χ).

From [5], we know that θψ,t is a cusp form if and only if (ψ, t) ∈ Ωc(N,χ).
Now, we investigate whether or not linear combinations of θψ,t with the ψ’s
all totally even can add up to a cusp form. First, we consider the case of a
single fixed totally even ψ.

Lemma 14. If ψ is a totally even character , T is a finite set of integers,
and

f =
∑
t∈T

λtθψ,t

is a cusp form, then f is identically zero.

P r o o f. Suppose f 6= 0. Note that θψ,t1 and θψ,t2 are in different spaces
unless the quotient of t1 and t2 is a square. The common non-square factor
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is irrelevant, and we may assume all the t’s are squares. Thus, we relabel,
and say

f =
∑
t∈T

λtθψ,t2 .

We wish to study f at an arbitrary cusp a/c. The transformation formula
given in [5] for θ tells us that if D is the different of K and µ = (c)D−1 then

f(z + a/c) =
∑
t∈T

λtθψ,t2(z + a/c)

=
∑
t∈T

λt
∑

n (mod µ)

ψ(n) exp{2πi tr(t2n2a/c)}θ1(tzt, n, µ)

where
θ1(z, n, µ) =

∑
l∈µ

e{(l + n)2x+ iy|l + n|2} .

By the inversion formula also developed in [5],

f(−z−1 + a/c) =
∑
t∈T

λt
∑

n (mod µ)

ψ(n) exp{2πi tr(t2n2a/c)}

×N(2Dµ2)|tzt|θ′1(tzt, n, (2Dµ)−1)

where
θ′1(z, n, (2Dµ)−1) =

∑
l∈(2Dµ)−1

e{l2x+ iy|l|2 − 2ln} .

We can take the limit as z goes to x+ k∞ and obtain the value of f at a/c,
which must be zero since f is a cusp form. Thus∑

t∈T
|t|2λt

∑
n (mod µ)

ψ(n) exp{2πi tr(t2n2a/c)} = 0 .

Since we are only interested in reaching a contradiction, we will not have
to evaluate this Gaussian sum explicitly. Toward this end, we introduce a
periodic function α(n) (mod ν) and its finite Fourier transform

α̂(m) =
1

N(ν)

∑
n (mod ν)

α(n) exp{2πi tr(−mn/νD)} .

The inverse transform is

α(n) =
∑

m (mod ν)

α̂(m) exp{2πi tr(mn/νD)} .

Let ν be divisible by 2µ and all t ∈ T and multiply α̂(a) by what we already
have about f , which still holds if we change the modulus to ν:

α̂(a)
∑
t∈T

|t|2λt
∑

n (mod ν)

ψ(n) exp{2πi tr(t2n2a/c)} = 0 .
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Since this is true for all a we can also write∑
a (mod ν)

α̂(a)
∑
t∈T

|t|2λt
∑

n (mod ν)

ψ(n) exp{2πi tr(t2n2a/c)} = 0 .

Rearranging the terms gives∑
t∈T

|t|2λt
∑

n (mod ν)

ψ(n)
∑

a (mod ν)

α̂(a) exp{2πi tr(t2n2a/c)} = 0 .

By the inverse Fourier transformation formula, this is∑
t∈T

|t|2λt
∑

n (mod ν)

ψ(n)α(t2n2) = 0 .

This is true for any function α defined modulo ν. We now define a specific
α that simplifies our expression.

Since 2r(ψ) | ν and ψ is totally even, there exists a character ϕ definable
(mod ν) such that ϕ2 = ψ (actually definable (mod 2r(ψ)) would suffice).
Pick t0 such that |t0| < |t| for all t such that λt 6= 0. Define

α(n) =
{
ϕ(n/t0) if t0 |n and (n/t0, ν) = 1,
0 otherwise.

Thus,

α(t0n2) =
{
ψ(n) if (n, ν) = 1,
0 otherwise

and in particular, if t 6= t0

α(tn2) = 0 .
Thus, the above summation becomes∑

n (mod ν)

ψ(n)α(t20n
2) =

∑
n (mod ν)

ψ(n)ψ(n) ,

which is greater than zero. Thus f(z) = 0.

Now we consider the case where ψ is not fixed, and we have our final
result.

Theorem B. The theta functions θψ,t with (ψ, t) ∈ Ωc(N,χ) form a
basis for the space of cusp forms S0(N, 1

2 , χ).

P r o o f. In view of what we now know about the space M0(N, 1
2 , χ),

this theorem is equivalent to the statement that no linear combination of
θψ,t with (ψ, t) ∈ Ωe(N,χ) is a cusp form. Suppose f =

∑
λψ,tθψ,t is a

cusp form. Let V be the set of all linear combinations of f |T (π2) for all π.
V is a vector space that is invariant under the action T (π2). If V is non-
zero, then there is a form g that is an eigenform of all the T (π2). Suppose
g(z) =

∑
λ′ψ,tθψ,t. But the eigenvalue of θψ,t is (1 + |π|−2ψ(π)), i.e. it
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changes with ψ. Thus λ′ψ,t is non-zero only for a fixed ψ. But then the
previous lemma says that g is identically zero. Hence V is zero, so f is zero
and we are done.

5. Appendix: Determination of the quadratic theta multiplier.
The theta-multiplier defined by Stark in [5] simplifies in the real or imaginary
quadratic case to

j(A, z) =
{
ε−1
d χc(d)N(cz + d)1/2 if c 6= 0,

1 if c = 0
with the same notation as in the introduction of this paper.

All the components of j(A, z) are well understood except for the εd.
The purpose of this appendix is to calculate εd and to build a table of val-
ues that can be used when working with these functions. In particular,
these values are needed in order to verify some of the theorems in Sec-
tion 2.

Recall from Section 1 that it is sufficient to consider (totally real) d that
generate first degree prime ideals. Thus we make a slight change of notation
from the rest of the paper. Let K = Q(

√
d), d ∈ Z square-free, π ∈ OK

generates a first degree prime ideal over an odd rational prime p. With
the new notation, we are trying to calculate επ, whose definition we now
repeat:

επ =
(
tπ

π

)
εp

where t is a fixed generator of the inverse different of K and

εp =
{

1 if p ≡ 1 (mod 4),
i if p ≡ 3 (mod 4)

is from the rational case, where there are only two congruence classes rela-
tively prime to 4, and, by the above definition, each class takes a different
value. In the quadratic case there are 4, 8, or 12 classes relatively prime
to 4 depending on the field. From its definition one might expect that the
values of εd are equally distributed among ±1 or ±i. We will show that this
is not the case.

The first observation is that if d ≡ 3 (mod 4) then for some a, b ∈ Z,
p = a2 − db2 ≡ a2 + b2 6≡ 3 (mod 4), which implies επ 6= ±i. The most
useful result is

Theorem 1. If d < 0, d 6≡ 3 (mod 4), then επ 6= −1.

P r o o f. We must show (πtπ ) = 1 for all π lying over p ≡ 1 (mod 4). If
we make the additional assumption that d 6= −3, then there are only two
possibilities for t which differ by sign, the choice of which does not affect
the Legendre symbol.
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If d ≡ 1 (mod 4), then(
t

π

)
=

(
t−1

π

)
=

(√
d

π

)
.

Setting π = (a+ b
√
d)/2, we have(
πt

π

)
=

(
π
√
d− π

√
d

π

)
=

(
−bd
π

)
.

Since there is only one real character on a group of N(π) = p elements, this
is the same as (−bdp ). Letting b = 2lb′ with (2, b′) = 1, we have(

πt

π

)
=

(
2l

p

)(
b′d

p

)
=

(
2l

p

)(
p

b′d

)
=

(
2l

p

)(
a2

b′d

)
=

(
2l

p

)
.

If l = 0 or 2 this is clearly 1. If l > 2 then p ≡ a2/4 ≡ 1 (mod 8), so (2l

p ) = 1.
Finally, if l = 1, then p ≡ a2/4− db′2 ≡ 3 (mod 4), which contradicts p ≡ 1
(mod 4).

If d ≡ 2 (mod 4), we let π = a+ b
√
d, p = a2 − db2, and note that(

t

π

)
=

(
2
√
d

π

)
.

A similar computation gives(
πt

π

)
=

(
2l+1

p

)
,

where again l is the highest power of 2 dividing b. If l = 0, then p ≡ 3
(mod 4), the same contradiction as before. Thus, l > 0 and p ≡ a2 ≡ 1
(mod 8), so that we are done with this case.

Finally, if d = −3, the extra roots of unity give four additional possibil-
ities for t. It suffices to show that ( (±1±

√
−3)/2
π ) = 1 for any π lying over a

rational prime congruent to 1 (mod 4). We do this by noting that(
(1 +

√
−3)/2

(7 +
√
−3)/2

)
=

(
−3
13

)
= 1

and that the other units are powers of this one so they are also squares
modulo this prime. But the six associates of this prime cover all six residue
classes (mod 4) that have norm congruent to 1 (mod 4). Thus the theorem
is proved.

Theorem 2. With the notation as in Theorem 1, if d ≡ 1 or 2 (mod 4),
then for π in half of the equivalence classes επ = 1 and for the remaining
classes επ is equally often i and −i. If d ≡ 3 (mod 4), then six of the eight
values are 1 and two are −1.
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P r o o f. Theorem 1 took care of the first claim. Consider d ≡ 1 or 2
and p ≡ 3 (mod 4). In calculating (πtπ ), the only difference now is that the
choice of t determines the sign. So, with the same notation as before,(

πt

π

)
= ±

(
bd

p

)
;

the sign depending only on which value of t is chosen.
If d ≡ 1 (mod 4), this becomes

±
(

2l

p

)(
b′d

p

)
=


±

(
2l

p

)
if b′ ≡ 1 (mod 4),

∓
(

2l

p

)
if b′ ≡ 3 (mod 4).

But since p ≡ 3 (mod 4) we must have l = 0 or 1. Specializing further, if
d ≡ 1 (mod 8), then l = 1 and π is congruent to either

√
d or 2 +

√
d. In

the first case, b′ ≡ 1 (mod 4) if and only if p ≡ 7 (mod 8). In the second
case, b′ ≡ 3 (mod 4) if and only if p ≡ 3 (mod 8). Thus we have επ = i
and −i respectively.

If d ≡ 5 (mod 8), we still have the above cases. There are four additional
congruence classes for π to consider, all of which have l = 0. Two of these
have b′ ≡ 1 and two have b′ ≡ 3 (mod 4).

If d ≡ 2 (mod 4), then, similarly, we consider ( 2l+1

p ) if b′d′ ≡ 1 (mod 4)

and −( 2l+1

p ) if b′d′ ≡ 3 (mod 4), where d = 2d′. Since p ≡ 3 (mod 4), we
have l = 0. As above, in each case there is a correlation between p (mod 8)
and b′d′ (mod 4) that finishes this case.

Table 1. Values of επ for d ≡ 1 (mod 4) and ( tπ ) = (
√
d
π )

Congruence class
d ≡ 1 (mod 8) d ≡ 5 (mod 16) d ≡ 13 (mod 16)

of π (mod 4)

1 1 1 1

3 1 1 1
1+
√
d

2 ∗ i 1
3+
√
d

2 ∗ 1 i
5+
√
d

2 ∗ i 1
7+
√
d

2 ∗ 1 i√
d i i i

2 +
√

d −i −i −i
1+3

√
d

2 ∗ −i 1
3+3

√
d

2 ∗ 1 i
5+3

√
d

2 ∗ −i 1
7+3

√
d

2 ∗ 1 −i

∗ represents congruence classes that are not relatively prime to 4.
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If d ≡ 3 (mod 4), then επ = (2l

p ). Half of the classes have l even and are
thus 1. When l is odd, half of the classes have p ≡ 1 (mod 8) and half have
p ≡ 5 (mod 8). Verifying this is mechanical.

The results of this appendix are best summarized in Tables 1 and 2. In
the tables the value of t is specified. A different choice of t could change
some of the Legendre symbol factors.

Table 2. Values of επ for d ≡ 2, 3 (mod 4)

and ( tπ ) = ( 2
√
d

π )

Congruence class
d ≡ 2 (mod 4) d ≡ 3 (mod 4)

of π (mod 4)

1 1 1

3 1 1√
d ∗ 1

1 +
√

d i ∗
2 +

√
d ∗ 1

3 +
√

d i ∗
1 + 2

√
d 1 −1

3 + 2
√

d 1 −1

3
√

d ∗ 1

1 + 3
√

d −i ∗
2 + 3

√
d ∗ 1

3 + 3
√

d −i ∗
∗ represents congruence classes that are not

relatively prime to 4.
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