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1. To motivate the following investigation let us assume that we wish
to have examples, as elementary as possible, of arc-length integrals for a
calculus course. “As elementary as possible” might mean that f and g =∫ √

1 + f ′2 both should be rational functions. Putting g−f =: u, g+f =: v
turns the original g′2 = 1+f ′2 into u′v′ = 1, u and v both rational. Phrasing
it differently again, we ask for the w for which

(1) all residues of w and w−1 vanish .

Definition 1. A (rational) function w with the property (1) will be
called special . Extending this notion in a natural way we may call w super-
special if all residues of all wn, n ∈ Z, vanish.

Obviously, if w(x) is special then so is c1w(c2(x − x0)) for c1c2 6= 0.
Trivial examples are all

(2) w = c(x− x0)n with n ∈ Z, n 6= ±1, c 6= 0 .

For a rational function

(3) w = c

∏k
i=1(x− ai)µi∏l
j=1(x− bj)νj

,

where µi, νj ∈ N, ai 6= aj , bi 6= bj for i 6= j and ai 6= bj , to be special it is
necessary that all µi, νj ≥ 2.

Definition 2. Those (rational) functions which, in the representation
(3), have all µi and νj = 2 will be called simple.

As a shorthand for without residue we write w.res. Thus “w is special”
means “w and w−1 are w.res.”.
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If w, written as in (3), is w.res. then it has a primary function

f =
polynomial∏l

j=1(x− bj)νj−1
,

whose order at infinity,
∑

µi −
∑

νj + 1, is at least −
∑

(νj − 1). Hence

l ≤ 1 + deg(numerator) if w is w.res.

In particular, the c(x−x0)n quoted above are the only special polynomials.
G. Szekeres was the first to find a nontrivial special function. In essence

his example is

w =
(

x3 + 1
x

)2

= x4 + 2x +
1
x2

,

1
w

=
x2

(x3 + 1)2
=
−1
3

(
1

x3 + 1

)′
.

Similar are

w =
(xm + 1)n

xm−1
with m ≥ 3, n ≥ 2

and with a little calculation one can see that

(4) w =
(xm + 1)n

xk
, where k,m, n ∈ N ,

is special exactly if

(5) m ≥ 3, n ≥ 2 and k ∈ {m− 1, 2m− 1, . . . , (n− 1)m− 1} .

2.1. It seems to be very difficult to find all special functions, but we
can give rather satisfactory results about the simple special functions and
a somewhat wider class, to be defined later, that we call semisimple special
functions. There are special rational functions that are not semisimple.
Examples are all instances of (4), (5), with odd n or k, since semisimple
special functions are squares. In 3.3.2 we also give an example of a special
function that is a square but not semisimple.

Concerning superspecial functions the situation is easier. As a meromor-
phic solution we have tan2, but the only rational ones are given by (2) (see
Theorem 11). The proof is independent of the rest of the paper and will,
therefore, be postponed to the end.

Our first observation on special functions is that among the simple w =
(q/p)2 the special ones can be characterized (Theorem 1) by the bilinear
differential equation

(6) B(p, q) := p′′q − 2p′q′ + pq′′ = 0 .

There is, to my knowledge, no theory of polynomial solutions of bilinear
differential equations. Therefore Theorem 1 does not solve our problem,
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but it provides an entry to its solution. A first consequence of (6) is that
necessarily deg p, deg q are

(
n
2

)
,
(
n+1

2

)
with some n ∈ Z and that, therefore,

deg(pq) is a square number (see Theorem 2). More important is the obser-
vation that the second solution of the differential equation in y : B(y, q) = 0,
linearly independent of p,

(7) r := p
∫ (

q

p

)2

happens to be a polynomial. Thus from w = (q/p)2 another special function
(r/q)2 is derived. With care concerning the condition of simplicity we may
iterate this procedure and obtain infinite sequences of polynomials

(8) p0 := p, p1 := q, pn+1 := pn−1

∫ (
pn

pn−1

)2

for n ≥ 1 ,

for which all (pi+1/pi)2 are special (Theorem 4 and Corollary 4.1).
At this point it becomes necessary to specify that in all of this paper K

is assumed to be a field with char K = 0, and that the words “polynomials”,
“rational functions” refer to elements of K[x], K(x) respectively. This as-
sumption guarantees that every rational function w.res. can be integrated
within the field K(x). In this respect it is irrelevant whether the poles of
the function lie in K or in some extension of K.

Next we should mention a forward-backward symmetry in (8). In fact,
(7) with any constant of integration is equivalent to

p = −r
∫ (

q

r

)2

with a suitable constant of integration, since both relations express in dif-
ferent ways that

(9) r′p− rp′ = q2 .

Consequently, sequences like (8) can also be extended to negative indices n.
It should further be observed that putting vn := pn+1/pn from (8) a

binary recursion is derived:

vn+1 =
1
vn

∫
v2

n .

Definition 3. An operation of the type that we met here,

u = c
1
v

∫
v2, c = const 6= 0 ,

will be called a squid (SQUare, Integrate, Divide).

The constant c will usually and without loss of generality be ±1, but
because of the constant of integration there is still a whole family of squids.
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The above forward-backward symmetry reappears as

(10) u =
1
v

∫
v2 ⇔ 1

v
= −u

∫ 1
u2

.

Since every step in (8) generates a further constant of integration one
should think of a tree rather than a sequence. The condition of simplicity
cannot simply be dropped from Theorem 4. Unfortunately, it has the effect
to prune seemingly sound branches off the tree. This is particularly irritating
as it applies similarly to operations in the backward direction and becomes
an obstacle to the quest for a simple “root” of our tree.

2.2. A much more harmonious picture appears after extending the set
of simple special to what will be called semisimple special , in short sss-
functions (see 4.1 and Definition 7). This is an astonishing set of func-
tions v2:

All v2 are special, the set is closed under all squids and under inversion
and it contains all those v for which v2 is simple and special (Theorem 7).

In fact, the sss-functions form the closure of the constant 1 under all these
operations (Theorem 9). As a consequence we can construct a parametric
solution (Theorem 10) Vn(Γ1, . . . , Γn, x) with indeterminates Γ1, Γ2, . . . ,

V0 = 1, Vn+1 =
1
Vn

∫
V 2

n ,

such that any sss-function v or its inverse v−1 is obtained by substituting
field elements γi for the Γi. In particular, n = 1 corresponds to (2) and
n = 2 to Szekeres’s example. The next step gives, with a bit of cosmetics,
the special functions w = (q/p)2, where

p = x3 + γ, q = x6 + 5γx3 − 5γ2 + δx, γ, δ ∈ K .

If p, q have a common zero ω 6= 0 then γ = −ω3, δ = 9ω5. Since ω is a
simple zero of p Theorem 2(i) implies that ω is a triple zero of q; in fact,

q = (x3 + 3ωx2 + 6ω2x + 5ω3)(x− ω)3 .

Thus for any ω ∈ K

w =
(x3 + 3ωx2 + 6ω2x + 5ω3)2(x− ω)4

(x2 + ωx + ω2)2

is special but not simple.
The concept of sss-functions is basically a local one. Thus, on the one

hand, the proper setting for the proof of Theorem 7 is the field K[[x]] of
formal power series rather than that of rational functions. On the other
hand, these ideas equally apply to meromorphic functions. Specific for ra-
tional functions is mainly the statement (Theorem 9) that all sss-functions
are generated by squids from the constants. In this proof again it will be
important that v has a representation v = q/p with (6).
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We use the occasion to introduce the following notion:

Definition 4. Let us say that v has a B-representation if there are p, q
such that

v =
q

p
and B(p, q) = 0 .

Depending on the context v, p, q are understood to be in K(x), K[[x]] or
in Mer(D), the set of functions meromorphic on a region D.

3.1. A constantly repeated pattern of notation will be

w = v2, v = q/p ,

or
wn = v2

n, vn = pn+1/pn .

To phrase some statements conveniently we further need

Definition 5. A pair (a, b) of integers will be called magic if

(a− b)2 = a + b .

The magic pairs are easily parametrized: if i := a − b then a =
(
i+1
2

)
,

b =
(

i
2

)
.

3.2. Global considerations in K(x)

Theorem 1. Suppose that p, q ∈ K[x] are coprime. Then(
q

p

)2

is special and simple if and only if B(p, q) = 0 .

The proof depends on

Lemma 1. Suppose p, f ∈ K[x], (p, p′) = 1. Then

f/p2 is w.res. if and only if f ′p′ ≡ fp′′ mod p.

P r o o f. Let ω be any zero of p. By assumption p′(ω) 6= 0. Therefore

f

p2
(ω + x) =

f(ω) + xf ′(ω) + . . .

(xp′(ω) + 1
2x2p′′(ω) + . . .)2

=
1

p′2(ω)
· 1
x2

(f(ω) + xf ′(ω) + . . .)
(

1− x

2
· p′′

p′
(ω) + . . .

)2

=
f(ω)

p′2(ω)x2
+

1
p′3(ω)

(f ′(ω)p′(ω)− f(ω)p′′(w))
1
x

+ . . .

The residue at ω vanishes if and only if (f ′p′ − fp′′)|ω = 0, and this
condition for all zeros of p means p | (f ′p′ − fp′′).

P r o o f o f T h e o r e m 1. Suppose first that w = (q/p)2 is special and
simple. Then it is w.res. and (p, p′) = 1. Apply Lemma 1 with f = q2 and
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note that q may be cancelled since (p, q) = 1. Hence

2p′q′ ≡ qp′′ mod p .

Symmetrically
2p′q′ ≡ pq′′ mod q .

Since (p, q) = 1 the two congruences can be combined into

p′′q − 2p′q′ + pq′′ ≡ 0 mod (pq) ,

in other words
pq |B(p, q) .

Since deg(B(p, q)) < deg(pq) we have B(p, q) = 0. Now assume B(p, q) = 0.
If q, say, had a zero ω of order k ≥ 2 then 2p′q′ − p′′q would vanish with
order ≥ k − 1 but q′′ only with order k − 2. Then

pq′′ = 2p′q′ − p′′q

implies p(ω) = 0, contradicting (p, q) = 1. (This is actually a special case
of Theorem 2(i) below.) Thus q and similarly p are squarefree, and w is
simple. We can now apply Lemma 1 the other way and find that (q/p)2 and
(p/q)2 are w.res.

Theorem 2. Let p, q ∈ K(x) and B(p, q) = 0. Then
(i) for every place x0 ∈ K the pair (ordx0 p, ordx0 q) is magic,
(ii) p, q are polynomials,
(iii) (deg p, deg q) is magic.

In particular , polynomials p, q with B(p, q) = 0 are coprime if and only
if they are both squarefree.

P r o o f. Concerning (i) we take, without loss of generality, x0 = 0. Write

p =
∑
κ≥k

aκxκ, ak 6= 0 (k = ord p), q =
∑
λ≥l

bλxλ, bl 6= 0 (l = ord q).

Comparing coefficients translates B(p, q) = 0 into∑
κ+λ=n

(κ(κ− 1)− 2κλ + λ(λ− 1))aκbλ = 0

for all n. For n = k + l this sum contains only one nonzero term:

(k(k − 1)− 2kl + l(l − 1))akbl = 0 ,

hence
(k − l)2 − k − l = 0 ,

so (k, l) is magic, k, l≥0, and as this holds for all x0, p and q are polynomials.
For (iii) one argues as for (i), expanding at ∞ this time. The concluding

statement follows from (i).
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An obvious consequence is

Corollary 2.1. If v ∈ K(x) has a B-representation q/p then p and q
are polynomials.

Parts of Theorems 1 and 2 have an interesting generalization.

Theorem 3. Let q =
∏

(x− xi)ai , p =
∏

(x− xi)bi , xi ∈ K, ai, bi ∈ N0,
(ai, bi) 6= (0, 0). Then B(p, q) = 0 if and only if

(i) all (ai, bi) are magic
and

(ii) for all i (
q

p

)2/(bi−ai)

is w.res. at xi.

The proof can be given along the lines of the above theorems, or more
conveniently by using Theorem 8 below. We shall not need Theorem 3 in
the following and therefore omit the proof, but want to mention an identity
that is helpful with such questions.

Lemma 2. For p, q 6= 0

B(p, q)
pq

=
(

p′

p
− q′

q

)2

+
(

p′

p
+

q′

q

)′
.

Theorem 4. Let p0, p1 ∈ K[x], 6= 0, B(p0, p1) = 0 and (p0, p1) = 1.
Then with every choice of the constant of integration

p2 := p0

∫ (
p1

p0

)2

is a polynomial , linearly independent of p0 and such that B(p1, p2) = 0.
Except for at most deg p1 values of the constant of integration we have
(p1, p2) = 1.

P r o o f. The expression for p2 is just what the standard methods (varia-
tion of constant, Wroński determinant) produce for the other linearly inde-
pendent solution of B(y, p1) = 0. This can, of course, easily be verified. By
Theorem 1, (p1/p0)2 is w.res. Its poles, being all of order two, give simple
poles for the integral, which are cancelled upon multiplying with p0. Thus
p2 ∈ K[x].

If p̃2 is any particular solution then all are of the form p2 = p̃2 + γp0,
γ ∈ K. If furthermore ω is a zero of p1 then p0(ω) 6= 0 since (p0, p1) = 1.
Therefore p2(ω) = 0 only for

γ = γω := − p̃2(ω)
p0(ω)

.
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If γ 6= γω for all zeros of p1 then (p1, p2) = 1.

Corollary 4.1. Let w0 = v2
0 = (p1/p0)2 be special and simple, (p0, p1)

= 1. If in each step finitely many exceptions, as described in Theorem 4,
are avoided then the squid iteration

(11) vn+1 =
1
vn

∫
v2

n

continues indefinitely and all v2
n are special and simple. (Remember that

the field K is infinite.)

P r o o f. By Theorem 1, B(p0, p1) = 0. For p2 as in Theorem 4 and
v1 = p2/p1 we have (11). Apart from the γ = γω we have (p1, p2) = 1 and
B(p1, p2) = 0, so by Theorem 1, v1 is special and simple and the iteration
continues.

For an exceptional value γ = γω there actually is a common zero ω of
p1 and p2 which by Theorem 2(i) is a triple zero of p2. So v1 definitely is
not simple. But what about specialty? Intuitively, we should expect the
residue of v2

1 to depend continuously on the parameter γ, that is, to vanish
for all γ. Since v−2

1 = (p1/p2)2 = −(p0/p2)′ is w.res. anyway this means
v2
1 should always be special. It is in fact easy to give a rigorous argument

concerning v1 but v2, v3, . . . are more difficult. Our next theorem solves this
problem in the case deg p0 ≤ deg p1. Instead of continuity we use the simpler
mechanism of specializing indeterminates.

Theorem 5. Let w0 = (p1/p0)2 be special and simple, (p0, p1) = 1,
deg p0 ≤ deg p1. Let Γ1, Γ2, . . . be independent indeterminates over K. Then
there are Pi ∈ K[Γ1, . . . , Γi−1, x] for i ≥ 2 such that with P0 = p0, P1 = p1

(12) P ′
i+1Pi−1 − Pi+1P

′
i−1 = P 2

i for all i ∈ N .

All Wi = (Pi+1/Pi)2 are special and simple functions of x.

P r o o f. Specialty is, of course, an immediate consequence of (12):(
Pi

Pi+1

)2

= −
(

Pi−1

Pi+1

)2

,

(
Pi

Pi−1

)2

=
(

Pi+1

Pi−1

)′
.

The (inductive) proof depends on two further properties of the Pi. For all
i ∈ N

(Pi, Pi−1) = 1
and the main coefficients mi of Pi (with respect to x) are in K.

In the first instance we are content to locate the Pi in K(Γ1, . . . , Γi−1)[x].
For this purpose we need only apply Corollary 4.1. Some

(13) P̃i+1 = Pi−1

∫ (
Pi

Pi−1

)2
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can be found in K(Γ1, . . . , Γi−1)[x]. If then

(14) Pi+1 := P̃i+1 + ΓiPi−1

is set, Pi and Pi+1 are coprime. A hypothetic common zero ω of Pi and Pi+1

would give Pi−1(ω) 6= 0 and would, by (14), create an algebraic dependence
of Γ1, . . . , Γi. So the exceptions, mentioned in the corollary, cannot occur.
Another simple induction shows

deg P0 ≤ deg P1 < deg P2 < . . .

Therefore, by (14), mi+1 is the main coefficient of P̃i+1, which from (13) is
seen to be constant, since mi and mi−1 are.

Suppose now that actually the coefficients of Pi and Pi−1 are polynomials
in Γ1, . . . , Γi−1, and let

deg Pi =: di, deg Pi−1 =: di−1 ,

Pi = mix
di

(
1 +

a1

x
+

a2

x2
+ . . .

)
,

Pi−1 = mi−1x
di−1

(
1 +

b1

x
+

b2

x2
+ . . .

)
.

Then (
Pi

Pi−1

)2

=
(

mi

mi−1

)2

x2(di−di−1)

(
1 +

c1

x
+

c2

x2
+ . . .

)
,

where all cr ∈ K[Γ1, . . . , Γi−1]. A term 1/x does not occur since a function
that is w.res. (at all x0 ∈ K) is also w.res. at ∞. If this expansion is
integrated formally (no constant added yet) and multiplied with Pi−1 the
coefficients of P̃i+1 are seen to be in K[Γ1, . . . , Γi−1], as claimed. It is not
visible from this construction that P̃i+1 is a polynomial with respect to x,
but this information is already part of Theorem 4.

Corollary 5.1. Suppose that w0 is special and simple, w0 = v2
0 , v0 =

p1/p0, where p0, p1 ∈ K[x], (p0, p1) = 1 and deg p0 ≤ deg p1. Then with
every choice of the constants of integration we may indefinitely iterate in
K(x)

vn+1 =
1
vn

∫
v2

n, pn+1 = vnpn .

All v2
n are special rational functions, all pn polynomials over K, and

B(pn−1, pn) = 0 for all n ∈ N.

P r o o f. Differentiation in K[Γ1, . . . , Γn][x] and K[x] commutes with the
homomorphism over K that takes Γi into γi ∈ K. We put

pn(x) := Pn(γ1, . . . , γn−1, x) ,

p̃n+1(x) := P̃n+1(γ1, . . . , γn−1, x) .
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Since (12) implies

(15) p̃ ′n+1pn−1 − p̃n+1p
′
n−1 = p2

n, p′n+1pn−1 − pn+1p
′
n−1 = p2

n ,

p̃n+1 is one of the integrals pn−1

∫
(pn/pn−1)2 and all are given as pn+1 =

p̃n+1 + γnpn−1 = Pn+1(γ1, . . . , γn, x) with suitable γn ∈ K. As before (15)
implies that all v2

n = (pn+1/pn)2 are special.
Since (Pn−1, Pn) = 1 for all n, Theorem 4 adds to Theorem 5 the remark

that B(Pn−1, Pn) = 0, and this relation specializes to

B(pn−1, pn) = 0 .

3.3. Some remarks

3.3.1. Actually Corollary 5.1 is valid for deg p0 > deg p1 as well (see
Theorem 9), but the proof of Theorem 5 fails at the point mi ∈ K. We could
obtain only Pi ∈ K(Γ1, . . . , Γi−1)[x] and would not be able to specialize at
will. A proof along similar lines can be given, but it is quite complicated.
We formulate only its central lemma which may be of some interest itself.

Lemma 3. Let Γ1, . . . , Γj be independent indeterminates over K and let
R,S be x-polynomials over K[Γ1, . . . , Γj ]. Assume that the differential equa-
tion

(16) y′R− yR′ = S

has a polynomial solution y0(x) over K(Γ1, . . . , Γj). If the coefficients of R
(i.e. of the x-powers) generate the 1-ideal , that is, K[Γ1, . . . , Γj ], then (16)
possesses a polynomial solution y1(x) over K[Γ1, . . . , Γj ].

Lemma 3, incidentally, can also be used in the proof of Theorem 5. It
replaces the part in which Pi−1, Pi are expanded at ∞.

3.3.2. There is one peculiar feature about Corollary 5.1 that definitely
prompts questioning: Though w0 is required to be simple (and special, of
course) it is claimed that the squid iteration continues indefinitely whether
the further wi are simple or not, and we know that they will in general not
stay simple. The most drastic counterexample is the sequence

wn = c2
nx2n with cn = (1 · 3 · . . . · (2n− 1))−1 .

Could it be then, that we may drop the assumption that w0 be simple? Or
replace it by asking for a B-representation of v0? Neither is correct as can
be seen from the example (actually an instance of (4),(5))

(17) w0 =
(

x3 − 1
x

)8

, where p0 = x10(x3 − 1)6, q0 = x6(x3 − 1)10 .

The computation is not as laborious as it may seem. First of all B(p0, q0) = 0
is a convenient application of Lemma 2 or, what can be derived from it easily,
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Lemma 4. If (a, b) is magic then

B(paqb, pbqa) = (a + b)(pq)a+b−1B(p, q) .

Secondly, to check the residues of v2
i , it suffices to determine the Taylor

expansions with modest accuracy. At zero we have

v2
0 = x−8(1− 8x3 + 28x6 + O(x8)) ,

v2
1 = c1x

−6(1− 20x3 + O(x6)) ,

v2
2 = c2x

−4(1− 80x3 + O(x4)) .

As one sees, the squid iteration is terminated by the nonzero residue of v2
2

(if not earlier by some residue of v2
1 at another place) despite the specialty

of w0 and B(p0, q0) = 0.

3.3.3. Apart from the peculiar values connected with this particular
example the above calculation reminds us that the residue of v2

n at some
place, say zero, can be determined if sufficiently many derivatives of v0

are known there together with the constants of integration, which in our
example went into the remainders. If a local version of Corollary 5.1 could
be proved, that is, a theorem in which the vn are formal power series, then
not only the global version should follow trivially, but also the distinction
deg p0 ≤ or > deg p1 would become immaterial.

Unfortunately, neither the proof of Theorem 5 given above nor the one
just mentioned in 3.3.1 can be localized. Both of them depend strongly
on properties of polynomials. A formal power series at x = 0 cannot be
re-expanded at x = ∞ and Lemma 3 turns false if the words “polynomial
solution” are replaced by “power series solution”. A counterexample here is
R = (x− Γ )2, S = 1, where all solutions are given by

y = γ(Γ 2 − 2Γx + x2) +
1

4Γ

(
1 +

x

Γ
+

x2

Γ 2
+ . . .

)
.

3.4. Local considerations

3.4.1. We consider formal power series

w =
∑
n≥N

anxn, N ∈ Z ,

over our field K with charK = 0. These series form themselves a field K[[x]]
with a valuation ordw = minan 6=0 n. A series w is called entire if ord w ≥ 0.
Localizing our former notation we call w w.res. if a−1 = 0, special if w and
w−1 are w.res., simple if ordw ∈ {−2, 0,+2}. Adjoining square roots to
K as needed we may say that all simple series are squares, w = v2. We
use the notations O(xk),∼ cxk in the obvious way, like thinking of limx→0.
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Differentiation
w′ :=

∑
nanxn−1

and integration ∫
w :=

∑ 1
n + 1

anxn+1 + const

(for w w.res.) have the well-known properties. In the case of entire w we
write

∫ x

0
w for the particular integral

x∫
0

w =
∑
n≥0

1
n + 1

anxn+1 .

3.4.2. Theorem 6. If v ∈ K[[x]], and v2 is special and simple then any
number of squids may be applied to v. More explicitly , with every choice of
the constants of integration the recursion v0 := v,

(18) vn+1 :=
1
vn

∫
v2

n

can be continued in K[[x]] indefinitely producing special though not neces-
sarily simple v2

n all the way.

Theorem 6 is contained in Theorem 7 below. We give an independent
proof because it shows another aspect of our structure.

P r o o f. We have to show that always again v2
n+1 is w.res. Specialty

then follows easily since (18) implies

(vnvn+1)′ = v2
n ,(

1
vnvn+1

)′
= − v2

n

v2
nv2

n+1

= − 1
v2

n+1

,(19)

hence the v−2
n+1 are w.res. as well. In fact, (19) shows how to invert (18):

1
vn

= −vn+1

∫ 1
v2

n+1

,

as was mentioned in the introduction.
We distinguish three cases depending on ord v = −1, 0 or +1. We treat

ord v = 0 first. For convenience take v0 = v ∼ 1. Integrability is trivial as
long as

vn+1 =
1
vn

x∫
0

v2
n .

Let k be the first index (if there is any) for which a nonzero constant of
integration is chosen:

vk+1 =
1
vk

( x∫
0

v2
k + α

)
, α 6= 0 .
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Then

vn ∼ cnxn, cn = (1 · 3 · . . . · (2n− 1))−1 for 0 ≤ n ≤ k ,(20)

vk+1 =
α

vk
+ O(xk+1) .

The latter is the first instance (i = 0) of the relation

(21) vk+i+1 = (−1)i α

vk−i
+ O(xk−i+1) for 0 ≤ i ≤ k ,

which we shall prove now by induction.
Let 0 ≤ i ≤ k − 1. Then (21) and (20) imply

v2
k+i+1 =

α2

v2
k−i

+ O(x) .

Here O(x) is trivially integrable and v−2
k−i so because of (19),∫

v2
k+i+1 =

−α2

vk−i−1vk−i
+ O(x2) + const =

−α2

vk−i−1vk−i
+ O(1) .

Thus

(22) vk+i+2 =
−α2

vk−i−1vk−ivk+i+1
+ O

(
1

vk+i+1

)
.

From (21) and again (20) we get

vk+i+1 ∼
±α

ck−ixk−i

and

vk−ivk+i+1 = (−1)iα + O(x2k−2i+1) .

Inserting both into (22) yields

vk+i+2 =
−α2

vk−i−1((−1)iα + O(x2k−2i+1))
+ O(xk−i)

= (−1)i+1 α

vk−i−1
+ O

(
x2k−2i+1

vk−i−1

)
+ O(xk−i)

= (−1)i+1 α

vk−i−1
+ O(xk−i) ,

which is the next instance of (21).
In particular,

v2k+1 = ± α

v0
+ O(x), ord v2k+1 = 0 ,

whence the iteration can start anew.



164 E. Wirsing

Next take ord v = −1. We prefer to write v = v−1 here and may assume
v−1 ∼ −1/x. Then, since v2

−1 is w.res.,

v2
−1 =

1
x2

+ O(1) ,

v0 =
1

v−1

∫
v2
−1 =

(
− 1

x
+ . . .

)−1(
− 1

x
+ . . .

)
∼ 1 ,

and we are back to the former case.
Last, let ord v = 1. We write v = v1 and assume v1 ∼ x. Since v−2

1 is
w.res. we can set

v0 := −
(
v1

∫
v−2
1

)−1

.

Then v0 ∼ 1 and

v1 =
1
v0

∫
v2
0 ,

according to (10). So v1 is embedded into the sequence starting with v0.
This ends the proof.

3.4.3. Rephrasing Theorem 6 we may say that any sequence of squids
can be applied to any

v−1 =
c

x
+ O(x) or v0 ∼ c or v1 = cx + O(x3)

(where always c 6= 0), for these representations are obviously equivalent to
asking the residues of v2

−1 and v−2
1 to vanish. But what are the possible

v2, v3 etc. in the sequence (18)? The following definition and theorem will
give the answer.

Definition 6. Let us write Ev for any polynomial f of x2 such that
f(0) = 0; thus

a2x
2 + a4x

4 + . . . + a2nx2n = Ev .

For any k ∈ Z let Hk be the set of v ∈ K[[x]] of the form

v = xk(c + Ev + O(x2|k|+1)), c ∈ K, c 6= 0 ,

and write

H :=
⋃
k∈Z

Hk, E := H−1 ∪H0 ∪H1 .

Note that H0 = {v : ord v = 0} and that the simple special series w are
exactly the w = v2, v ∈ E .

Theorem 7. Any sequence of squid operations may be applied to a series
v if and only if v ∈ H.
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P r o o f. If v ∈ H then v2 is w.res., so all squids may be applied to v. H
is closed under all squids. In detail:

v ∈ Hk, k ∈ N0 ⇒ 1
v

x∫
0

v2 ∈ Hk+1 ,(23)

v ∈ Hk, k ∈ N0 ⇒ 1
v

( x∫
0

v2 + γ
)
∈ Hk if γ 6= 0 ,(24)

v ∈ H−k, k ∈ N ⇒ 1
v

∫
v2 ∈ H−k+1 .(25)

The interesting case is (23). Here (without loss of generality c = 1)

v = xk(1 + Ev + ax2k+1 + O(x2k+3)) ,

v2 = x2k(1 + Ev + 2ax2k+1 + O(x2k+3)) ,
x∫

0

v2 = x2k+1

(
1

2k + 1
+ Ev +

2a

4k + 2
x2k+1 + O(x2k+3)

)
,

1
v

x∫
0

v2 =
xk+1

2k + 1
(1 + Ev + ax2k+1 + O(x2k+3))

× (1 + Ev + ax2k+1 + O(x2k+3))−1

=
xk+1

2k + 1
(1 + Ev + O(x2k+3)) ∈ Hk+1 .

With respect to (24) note that γv−1 ∈ H−k and

1
v

x∫
0

v2 = O(xk+1) = x−kO(x2k+1) .

While with any step (23) we gain two powers of x in the error term, at (25)
the constant of integration brings it down again.

v2 = x−2k(1 + Ev + O(x2k+1)) ,∫
v2 = x−2k+1

(
−1

2k − 1
+ Ev + O(x2k+1)

)
+ const

= − 1
2k − 1

x−2k+1(1 + Ev + O(x2k−1)) ,

1
v

∫
v2 ∈ H−k+1 .

Now consider any u ∈ K[[x]] such that any sequence of squids may be
applied to it. If ordu = 0 then u ∈ H. If ordu = −k ∈ N, then applying k
arbitrary squids yields

u0 = u, u1, . . . , uk, ordui = −k + i ,
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in particular uk ∈ H0. Here v0 := u−1
k ∈ H. Now we apply the proper

inverse squids and find 1/u = ±vk ∈ H, hence also u ∈ H. If ord u = k ∈ N
then

u1 :=
1
u

( x∫
0

u2 + 1
)

has ordu1 = −k, so the same procedure works with k + 1 steps.

Corollary 7.1. H is the closure of H0, and a fortiori of E , under all
squid operations.

P r o o f. If u ∈ H then also 1/u ∈ H. A suitable sequence of squids
maps 1/u onto v ∈ H0, so the inverse squids will map ±1/v, which is in H0,
onto u.

Obviously, by Theorem 7 we are in a position to define the proper gen-
eralization of simple special series:

Definition 7. A series w ∈ K[[x]] will be called semisimple special (in
short: sss) if w = v2, v ∈ H.

All simple special series are sss-series, and if w = v2 is sss then ( 1
v

∫
v2)2

is sss again.

3.4.4. On the significance of the bilinear differential equation B(p, q) =
0. The local version of Corollary 2.1 states that in a B-representation of
some v ∈ K[[x]] the p and q are entire series.

Theorem 8. The following are equivalent for v ∈ K[[x]], v 6= 0:

(i) v has a B-representation,
(ii) v′′/v is w.res.,
(iii) if v = cxk(1 + ax + . . .), c 6= 0, then ka = 0.

P r o o f. The residue of v′′/v is easily calculated; it is 2ak. Hence
(ii)⇔(iii). Another simple calculation shows that if v = q/p, then

B(p, q) = B(p, vp) = p2v′′ + 2(pp′′ − p′2)v ,

(26)
B(p, q)

pq
=

v′′

v
+ 2

(
p′

p

)′
.

Thus v = q/p is a B-representation if and only if

(27)
(

p′

p

)′
= −v′′

2v
.

As an immediate consequence v′′/v is w.res. if v has a B-representation.
Let, on the other hand, v′′/v be w.res.; then(

p′

p

)′
= −k(k − 1)

2
· 1
x2

+ O(1)
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can be solved for p:
p′

p
=

(
k

2

)
1
x

+ c0 + c1x + . . .

Write
p = x(k

2)r, r = 1 + r1x + r2x
2 + . . .

Then the ri can be determined recursively from

r′ = r(c0 + c1x + . . .)

or explicitly from

r = exp
(

c0x +
c1

2
x2 + . . .

)
.

Note that in accordance with Theorem 2

(ord p, ord q) = (ord p, ord(pv)) =
((

k

2

)
,

(
k + 1

2

))
is magic and p, q are entire.

The functions p, q are not uniquely determined. Due to the two integra-
tions they contain an arbitrary common factor aebx.

Corollary 8.1. If w = v2 is sss in K[[x]] then w has a B-representation
there.

R e m a r k. We saw in 3.3.2 that the converse does not hold. Now it is
easily seen why: Apart from the case k = 0 where neither condition really
means a restriction, sss consists in the vanishing of exactly k coefficients,
and B-representability of only one. In this connection it should be noted
that

Corollary 8.2. If v has a B-representation then so has vm for any
m ∈ Z.

Nothing alike holds for sss-series. The corollary follows from Theorem
8(iii) and can be made quite explicit by Lemma 4: If v = p/q, B(p, q) = 0
put a =

(
m
2

)
, b =

(
m+1

2

)
. Then

vm =
paqb

pbqa
and B(paqb, pbqa) = 0 .

4. Global again

4.1. The sss-functions in K(x). Let K be the algebraic closure of
K. Then all definitions and statements made with respect to K[[x]] can be
applied in K(x) to any finite place. Thus our old notion “w.res.” means
“w.res. everywhere”. In particular, we say that w = v2, v ∈ K(x), is sss at
ω ∈ K, v ∈ H(ω) if the Taylor expansion of v(ω+x) is an sss-series according
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to Definition 7. We define w to be (globally) sss if it is sss everywhere, i.e. we
require

v ∈ HG :=
⋂

ω∈K

H(ω) .

Corollary 7.2. Any sequence of squid operations may be applied to a
function v ∈ K(x) if and only if v ∈ HG.

This follows trivially from Theorem 7. All we have to add is that a
function v ∈ K(x) has an integral in K(x).

We define B-representations as before, replacing simply K[[x]] by K(x).
Remember that by Theorem 2(ii) the p, q are necessarily polynomials.

Corollary 8.3. If w = v2 is sss in K(x) then w has a B-representation
there.

P r o o f. We have v′′/v w.res. (everywhere) since w is sss (everywhere).
Write w = v2,

v =
∏

i

(x− ai)νi , νi ∈ Z, ai 6= aj .

Putting

p :=
∏

i

(x− ai)(
νi
2 ) , q =

∏
i

(x− ai)(
νi+1

2 )

we have v = q/p to begin with. As before, (26) implies that B(p, q)/pq is
w.res. With Lemma 2 we compute

B(p, q)
pq

=
( ∑ (

νi+1
2

)
x− ai

−
∑ (

νi

2

)
x− ai

)2

+
(

. . . + . . .

)′
=

( ∑ νi

x− ai

)2

+
( ∑ ν2

i

x− ai

)′
=

∑
i 6=j

νiνj

(x− ai)(x− aj)
.

The relevant observation is now that B(p, q)/pq, if written in lowest terms,
has a squarefree denominator. The residues can vanish only if pq |B(p, q).
Since deg(B(p, q)) < deg(pq) this implies B(p, q) = 0.

Theorem 9. The functions v ∈ K(x) for which v2 is sss form the closure
of the function 1 under all squids and inversion.

P r o o f. Since 1 is obviously sss we may apply any sequence of squids to
it. This was already proved in Corollary 5.1. If v is sss then so is v−1.

Now suppose v2 is sss, v ∈ HG in other words. Then v−1 ∈ HG as well.
We choose v0 := v±1 such that ord∞ v0 ≤ 0. If ord∞ v0 < 0 then there is



Functions without residue 169

one integral, it may be denoted by
∫ x

∞, such that

ord∞
( x∫
∞

v2
0

)
= 2ord∞ v0 + 1 .

For

v1 :=
1
v0

x∫
∞

v2
0

we have ord∞ v1 = ord∞ v0+1. We repeat this process until we have vn with
ord∞ vn = 0. By Corollary 8.3 there are p, q ∈ K[x] such that vn = q/p,
B(p, q) = 0. Since (deg p, deg q) is magic and on the other hand deg q −
deg p = ord∞ vn = 0 it follows that p, q and therefore vn are constants.
Reversing our squid steps and adapting the constant factor in the general
definition of a squid properly we obtain v or v−1 from 1.

We are now in a position to prove a satisfactory generalization of Theo-
rem 5 and Corollary 5.1.

Theorem 10. There is a sequence of polynomials Pi=Pi(Γ1, . . . , Γi−1, x),
P0 = P1 = 1, over Q such that the functions

Wi =
(

Pi+1

Pi

)2

on every specialization Γi → γi ∈ K produce sss-functions in K(x), and any
sss-function w in K(x) is obtained by a suitable such specialization as

w(x) = c

(
Pi+1

Pi
(γ1, . . . , γi, x)

)±2

, c ∈ K .

P r o o f. The Pi are actually those of Theorem 5 in the special case
p0 = p1 = 1. Since p0, p1 ∈ Q[x] the construction (13), (14) can be carried
out over Q (⊂ K). Every specialization leaves (12) valid and produces a
squid iteration inside K(x),

(28) pi+1 = pi−1

∫ (
pi

pi−1

)2

,

or, differently written,

(29) vi =
1

vi−1

∫
v2

i−1

with vi = pi+1/pi. By Theorem 9 all these vi are in HG. Conversely, any
v ∈ HG can be obtained as v = cv±1

n , vn an element of a chain (29) with
v0 = 1. Inserting p0 = 1, pi+1 = pivi takes us back to (28) and, as was shown
in the proof of Corollary 5.1, any such sequence p0, p1, . . . is a specialization
of P0, P1, . . .
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4.2. Meromorphic functions. The basic statement to all of this
paper, that a function may be integrated if and only if it is w.res., is also
valid in the field Mer(D) of all meromorphic functions on a region D ⊂ C if D
is simply connected. Therefore Theorems 7 and 8 have obvious counterparts
here. Again v2 will be called sss at ω if the Taylor expansion of v(ω + x) is
an sss-series, and globally sss if it is sss everywhere in D, i.e. if

v ∈ HG :=
⋂

ω∈D
H(ω) .

Here again v is in HG exactly if any sequence of squids can be applied
to it. Such a function also has a B-representation: v = q/p, B(p, q) = 0
where p and q are entire, i.e. holomorphic on D. To see this, note that by
Theorem 8 for v ∈ HG we have v′′/v w.res. at any ω ∈ D and remember
that all solutions p of the differential equation (27) are holomorphic in some
neighbourhood of ω. So any solution of (27) can be analytically continued
to all of D. As in the local case, p and q = vp are determined up to an
arbitrary common factor aebz only.

If p1/p0 is a B-representation of v0 then B-representations of the vn,
derived by (29), can be obtained in the form pn+1/pn with the pn of (28).
To see this we only need our old observation that B(pn−1, pn) = 0 and (28)
imply B(pn, pn+1) = 0.

An interesting example is v0 = tan on D = C. Not only is v2 superspecial
but in addition all powers of v2 are sss-functions! At z = 0 this is clear
because for all n and k ∈ Z we have vn ∈ Hk, and the other zeros and poles
are obtained from these by simple translations. We conclude that starting
from

v0 = tann, p0 = cos(
n+1

2 ) sin(n
2), p1 = cos(

n
2) sin(n+1

2 )

all vi produced by (29) are meromorphic and all pi from (28) are entire on
all of C.

Exactly the same arguments apply to w = ℘− e1, where ℘ is any Weier-
straß elliptic function with a primitive pair of periods ω, ω′ and e1 = ℘(ω/2),
say. Here again all wn are sss. Starting from (27) a B-representation of
v = w1/2 can be given in terms of the corresponding σ-function:

p(z) = e−e1z2/4σ(z), q(z) = eηz/2−e1z2/4σ

(
ω

2

)−1

σ

(
z − ω

2

)
,

where η = 2σ′

σ (ω
2 ).

4.3. Squids and the Padée approximation of e2ix. It is well-
known that there are uniquely determined αn ∈ C[x] of degree n such that
the Taylor expansion of

∆n(x) := αneix + αne−ix
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begins with

x2n+1

(2n + 1)!
+ . . .

In fact,

(30) ∆n(x) =
1

22n+1n!2

+x∫
−x

(x2 − y2)neiy dy .

Also well-known and easily derived from (30) are some linear recursions:

2n∆′
n = x∆n−1 ,(31)

2n∆n = (2n− 1)∆n−1 − x∆′
n−1 ,(32)

2(n + 1)∆n+1 − (2n + 1)∆n +
x2

2n
∆n−1 = 0 ,(33)

the last being an immediate consequence of (31) and (32). The following
squid type recursion, however, may be new. Put

pn(x) = dnx(n−1
2 )∆n−1(x) for n ∈ N, p0 = cos ,

with constants defined by

d1 = d2 = 1, dn+2 =
(n + 1)d2

n+1

n(2n + 1)dn
.

Then

(34) pn+2 = pn

x∫
0

(
pn+1

pn

)2

for all n ∈ N0 .

This, since p1 = sin, identifies the vn from

v0 = tan, vn+1 =
1
vn

x∫
0

v2
n

as

vn(x) =
dn+1

dn
xn−1 ∆n+1(x)

∆n(x)
.

P r o o f o f (34). We claim that for all n ∈ N0

(35) p′n+2pn − pn+2p
′
n = p2

n+1 .

The case n = 0 is easily checked separately. Now let n ∈ N and put

M := (dn+2dn)−1x1−(n+1
2 )−(n−1

2 )(p′n+2pn − pn+2p
′
n − p2

n+1) .
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Then

M =
((

n + 1
2

)
∆n+1 + x∆′

n+1

)
∆n−1

−∆n+1

((
n− 1

2

)
∆n−1 + x∆′

n−1

)
− n(2n + 1)

n + 1
∆2

n

= (2n− 1)∆n+1∆n−1 + x(∆′
n+1∆n−1 −∆n+1∆

′
n−1)−

n(2n + 1)
n + 1

∆2
n .

Eliminating ∆′
n+1 by (31) and ∆′

n−1 by (32) gives

M = 2n∆n∆n+1 +
x2

2(n + 1)
∆n∆n−1 −

n(2n + 1)
n + 1

∆2
n

=
n

n + 1
∆n

(
2(n + 1)∆n+1 − (2n + 1)∆n +

x2

2n
∆n−1

)
= 0 ,

by (33).
Finally, (34) follows from (35) because of ord0 pn =

(
n+1

2

)
; cf. (9).

5. Superspecial rational functions. Quite in contrast to the situa-
tion in Mer(C) we have

Theorem 11. The only superspecial functions in K(x) are the functions
given in (2).

The proof uses an old formula on the inversion of power series. Let

f(x) = x + a2x
2 + a3x

3 + . . . , ϕ(y) = y + b2y
2 + b3y

3 + . . .

be inverses of each other. Then for all n ∈ N

(36) bn =
1
n

Res(f−n, 0) .

This is proved most easily for series with a positive radius of convergence
over the field K = C. Substituting x = ϕ(y) in Cauchy’s formula gives

Res(f−n, 0) =
1

2πi

∮
dx

fn(x)
=

1
2πi

∮
ϕ(y)′ dy

yn
= nbn .

Both Res(f−n) and bn can be obtained as polynomials in a2, a3, . . . , an with
coefficients in Z by purely formal operations. As we see, these polynomi-
als are equal, whence (36) follows for all fields and irrespective of conver-
gence.

Assume now that w = p/q, where p, q ∈ K[x] are co-prime, is superspe-
cial and that there is a pole of order k at 0. In K[[x]] ⊃ K(x) we have an
expansion

1/w = xk(ck + ck+1x + . . .), ck 6= 0 .
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Without loss of generality we take ck = 1. Then there is an f(x) ∈ K[[x]]
such that

1/w = fk, f = x + a2x
2 + . . .

and f has an inverse

ϕ(y) = y + b2y
2 + . . .

By (36) the assumption implies that bn = 0 for all n ≡ 0 mod k. If ζ denotes
a primitive kth root of unity we can express this by

k∑
κ=1

ϕ(ζκy) = 0 .

Writing xκ := ϕ(ζκy) we obtain
∑k

κ=1 xκ = 0 together with w(xκ) = y−k.
If the pole in question is at an arbitrary place ω, then xκ − ω replace the
xκ, giving

(37)
k∑

κ=1

xκ = kω .

The xκ are zeros, though not necessarily all zeros, of

g(x) := zp(x) + q(x), z := yk ;

the rest will be called xk+1, . . . , xn.

K[[y]] L
# c #

K(y) K(x1, . . . , xk)
c #

K(z)
|
K

By Gauß’s Theorem and because p, q are coprime g is irreducible over
K(z). Let L denote the splitting field of g, N its degree over K(z) and Tr
the trace operator of L over K(z). Since ω ∈ K and

Trxκ =
N

n

n∑
ν=1

xν for all κ = 1, . . . , n ,

(37) implies

kNω = Tr
( k∑

κ=1

xκ

)
= k

N

n

n∑
ν=1

xν ,
n∑

ν=1

xν = nω .
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If g is normalized into g∗, the (monic) minimal polynomial of the xκ, then∑n
ν=1 xν is the second highest coefficient of −g∗; hence ω is uniquely deter-

mined by our function w. Moreover, changing from w to 1/w affects g∗ only
by substituting 1/z for z, which does not change the coefficient in question
because it is in K, supposing that w had any pole at all. As w and 1/w
together have at most one pole the theorem is proved.
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