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Introduction. Let q be a natural number and p a prime with 2q | p− 1.
Let ξp = e2πi/p and Qp = Q(ξp), i.e., the pth cyclotomic field. Moreover,
consider Fp = Z/pZ = {0, 1, . . . , p− 1} and the multiplicative group Gp =
F×p of this field. There is a canonical group isomorphism

Gp → Gal(Qp/Q) : k 7→ σk ,

σk being defined by σk(ξp) = ξk
p . The field Qp contains a uniquely deter-

mined subfield K2q = K2q,p of degree [K2q : Q] = 2q, viz., the fixed field of
the group {σk ; k ∈ G2q

p }. Here Gm
p means {km

; k ∈ Gp}, m ∈ N. K2q is
imaginary if and only if −1 6∈ G2q

p , i.e., p ≡ 2q+1 mod 4q. We shall assume
this throughout the present paper.

In the sequel let g = gp ∈ Gp be chosen such that

(1) Gp/G
2q
p = {1, g, . . . , gq−1,−1,−g, . . . ,−gq−1} .

This holds, e.g., if one of the following assumptions is fulfilled:

Assumption A. 〈g〉 = Gp/G
2q
p .

Assumption B. q is odd and 〈g〉 = G2
p/G

2q
p .

The reader may verify (1) in both cases. Now let t ∈ Gp/G
2q
p . Thus t is

a set of elements of Gp, and we define the excess Φt of this set by

Φt = |{k ; 1 ≤ k < p/2, k ∈ t}| − |{k ; p/2 < k ≤ p− 1, k ∈ t}| .
If g = gp is as above and j ∈ Z, we put, in particular,

Φj = Φj(g) = Φgj = |{k < p/2 ; k ∈ gj}| − |{k > p/2 ; k ∈ gj}| .
Then

Φ = Φ(g) = (Φ0, . . . , Φq−1) ∈ Zq

is called the excess vector belonging to g = gp. Because of (1) and the
relation Φ−t = −Φt, the vector Φ describes all excesses Φt, t ∈ Gp/G

2q
p .



190 K. Girstmair

In the subsequent Section 1 we express the relative class number h−2q =
h−2q(p) of the field K2q in terms of the excesses Φj , j = 0, . . . , q−1 (formulas
(2), (4A), (4B)). Thereby we generalize formulas given in [4].

In Section 2 we investigate the divisibility of h−2q by an odd prime num-
ber l. The assertion l |h−2q can be rephrased in systems of linear congruences
mod l for the excesses Φ0, . . . , Φq−1 (Theorems 1, 2). More precisely, the fol-
lowing holds: Suppose that for all primes p ≡ 2q + 1 mod 4q the element
g = gp is chosen such that Assumption A is satisfied. Then there exists,
for almost all primes l, a linear manifold Ml ⊆ Fq

l , i.e., a union of finitely
many linear subspaces of Fq

l , with the following property: l divides h−2q(p)
if and only if Φ(g) = (Φ0, . . . , Φq−1) (∈ Fq

l ) is in Ml (Theorem 3). The
corresponding result is also valid under Assumption B.

In Section 3 we consider special cases in which the congruences describing
Ml can be rendered in a completely explicit shape. Some of these results
have been found previously, but from a less general viewpoint (cf. [4]).

Section 4 is based on the following plausible (yet unproved) hypothe-
sis: In the situation of Theorem 3 we suppose that the excess vectors Φ(g)
are equally distributed in the space Fq

l when p runs through all primes
≡ 2q + 1 mod 4q. Then

ml = |Ml|/lq

is the probability that an arbitrary vector Φ(g) is in Ml. By Theorem 3,
this is the probability that l divides h−2q(p). For 1 ≤ q ≤ 6 and 3 ≤ l < 100
we compare ml with the number

nl =
|{p < 500000 ; p ≡ 2q + 1 mod 4q, l |h−2q(p)}|

|{p < 500000 ; p ≡ 2q + 1 mod 4q}|
.

The result is given in Table 1, and it shows a high degree of conformity
between ml and nl in most cases.

At the end of this paper we give a table of the numbers h−12(p), p < 10000.
The corresponding tables for h−2q(p), 1 ≤ q ≤ 5, can be found in [2], [6],
and [3].

1. Formulas for h−2q. Let the above notations hold. By X2q we denote
the character group of Gp/G

2q
p ; as usual, we consider X2q as a subgroup of

the character group of Gp, viz.,

X2q = {χ ; Kerχ ⊇ Gp} .
Let X−

2q be the set of odd characters in X2q. Then |X−
2q| = q. Suppose that

g satisfies (1). For a vector a = (a0, . . . , aq−1) ∈ Cq we define the Fourier
transform

Fa = ((Fa)χ ; χ ∈ X−
2q) ∈ CX−

2q
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by its components

(Fa)χ =
q−1∑
j=0

χ(gj)aj .

For the special vector a = Φ = Φ(g) the transform FΦ is independent of the
choice of g. Indeed,

(FΦ)χ =
∑

(χ(k) ; 1 ≤ k < p/2)

(cf. [4], Lemma 1). As in [4] one obtains∏
((FΦ)χ ; χ ∈ X−

2q) =
∏

((χ(2)− 2)Bχ ; χ ∈ X−
2q) ,

Bχ being the first Bernoulli number attached to χ. In order to evaluate the
product on the right side, one needs the order fq (f2q, resp.) of the element
2 in the group Gp/G

q
p (Gp/G

2q
p , resp.). For each prime p ≡ 2q + 1 mod 4q,

p > 2q + 1, the fundamental formula

(2)
∏

((FΦ)χ ; χ ∈ X−
2q) = 2q−1C2qh

−
2q

holds, with

(3) C2q = C2q(p) = (2fq + (−1)f2q/fq )q/fq

(cf. [4], Theorem 1 and formula (9)).
As to the actual computation of the relative class number, it is useful to

write the left side of (2) as a determinant in terms of the excesses Φj . First
suppose that Assumption A of the Introduction holds. Let the character
ψ ∈ X−

2q be arbitrarily chosen. Then

(4A) det(ψ(gj−k)Φj−k ; j, k = 0, . . . , q − 1) = 2q−1C2qh
−
2q .

In the case of Assumption B one has the simpler formula

(4B) det(Φj−k ; j, k = 0, . . . , q − 1) = 2q−1C2qh
−
2q .

Indeed, the determinants in question are group determinants for the group
Gp/G

q
p. Their evaluation is well-known (cf. [5], p. 23) and, together with (2),

yields (4A) and (4B). These formulas have been used for the numerical
computations displayed in Section 4.

2. Divisibility of h−2q and congruences for the excesses. In what
follows let q be a natural number, p a prime, p ≡ 2q+1 mod 4q, p > 2q+1. In
addition, let l be an odd prime not dividing q. The values of each character
χ ∈ X−

2q are in the field Q2q = Q(ξ2q), ξ2q = eπi/q. We consider the
automorphism τl ∈ Gal(Q2q/Q) defined by

τl(ξ2q) = ξl
2q .
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For each χ ∈ X−
2q the map τl ◦ χ : Gp → C× : k 7→ τl(χ(k)) is in X−

2q again.
Hence the group 〈τl〉 acts on the set X−

2q. The orbits under this action will
play an important role.

The group 〈τl〉 is the decomposition group of l in Q2q, and L = Ll (⊆ Q2q)
denotes its fixed field. Let L be a prime ideal of Q2q with L | l and put
l = L ∩ L. Since l splits completely in L, l is a prime ideal of degree 1
over Q. We denote by O2q (OL, resp.) the ring of integers of Q2q (of L,
resp.). The canonical maps

Fl → OL/l ,

k 7→ k

OL/l → O2q/L

x 7→ x

allow us to identify OL/l with Fl and to consider Fl as a subset of O2q/L.

Theorem 1. In the above situation, the following assertions are equiva-
lent :

(i) C2qh
−
2q ≡ 0 mod l.

(ii) There is a prime divisor L of l in Q2q and a character χ ∈ X−
2q such

that (FΦ)χ ≡ 0 mod L.
(iii) There is a prime divisor L of l in Q2q and an orbit Y = 〈τl〉 ◦ χ1

(⊆ X−
2q) such that , for all χ ∈ Y , (FΦ)χ ≡ 0 mod L.

P r o o f. The equivalence of (i) and (ii) is an immediate consequence of
formula (2). Because of τl(L) = L, assertion (iii) is equivalent to (ii).

The congruence (FΦ)χ ≡ 0 mod L can be considered as an equation over
the field O2q/L, of course. Then (iii) says that Φ = (Φ0, . . . , Φq−1) ∈ Fq

l is a
solution of the system of linear equations

(5)
q−1∑
j=0

χ(gj)Φj = 0 , χ ∈ Y ,

with coefficients χ(gj) in O2q/L. In the next theorem we transform (5) into
an equivalent system with coefficients in Fl and determine its rank. For this
purpose we need the trace map

Tl : Q2q → Ll : x 7→
∑

(τ(x) ; τ ∈ 〈τl〉) .

By ϕ we denote Euler’s function, as usual.

Theorem 2. In the situation above suppose that l -ϕ(q). Let χ1 ∈ X−
2q

and Y = 〈τl〉 ◦ χ1. The vector Φ = (Φ0, . . . , Φq−1) ∈ Fq
l is a solution of (5)

if and only if it is a solution of the system

(6)
q−1∑
j=0

Tl(χ1(g)j−k)Φj = 0 , k = 0, . . . , |Y | − 1 ,
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with coefficients in OL/l = Fl. The dimension of the space VY,g of solutions
of (6) is q − |Y |.

P r o o f. Suppose that r = |Y | and Y = {χ1, . . . , χr}. By means of the
Fourier transform of Section 1 we define the linear map

λ : (O2q/L)q → (O2q/L)r : a 7→ ((Fa)χ1 , . . . , (Fa)χr ) .

The matrix of λ (with respect to the standard bases) is

A = (χi(gj) ; i = 1, . . . , r , j = 0, . . . , q − 1) .

Because of (1), Gp/G
2q
p = 〈−1, g〉, which implies that the values χi(g), i =

1, . . . , r, are all different. Moreover, l does not divide 2q, hence the 2qth roots
of unity χi(g) are all different, too. This means that the minor (χi(gj) ; i =
1, . . . , r, j = 0, . . . , r − 1) of A is a regular matrix (of Vandermonde type).
Therefore the rank of A is r and λ is surjective. Let c be the natural number

c = ord(τl)/r ,

with ord(τl) = |〈τl〉|. Since ϕ(2q) = [Q2q : Q] 6≡ 0 mod l, c ∈ Fl is different
from 0. We define another linear map

µ : (O2q/L)r → (O2q/L)r

by putting

µ(b1, . . . , br) =
(
c

r∑
i=1

χi(g−j) bi ; j = 0, . . . , r − 1
)
.

The matrix of µ (with respect to the standard bases) is

B = (c χi(g−j) ; j = 0, . . . , r − 1 , i = 1, . . . , r) .

By the above, B is regular and µ bijective. Thus µ ◦ λ is surjective. The
kth component of µ ◦ λ(a) is

(7) (µ ◦ λ(a))k =
q−1∑
j=0

c

r∑
i=1

χi(gj−k) aj =
q−1∑
j=0

Tl(χ1(gj−k)) aj ,

k = 0, . . . , r − 1. Now Φ is in the space VY,g of solutions if and only if
λ(Φ) = 0. Since µ is bijective, this is equivalent to µ ◦ λ(Φ) = 0. By (7),
this means that Φ is a solution of (6).

Finally, observe that the matrix of µ ◦ λ is

BA = (Tl(χ1(gj−k)) ; k = 0, . . . , r − 1 , j = 0, . . . , q − 1) .

Its coefficients are in OL/l = Fl, and the fact that µ ◦ λ is surjective shows
that its rank is r. Thus VY,g has dimension q − r = q − |Y |.
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R e m a r k. Theorem 2 can be rephrased without the assumption l -ϕ(q).
But then the trace Tl must be replaced by a trace Tl,Y : Ll,Y → Ll, where
Ll,Y is a subfield of Q2q depending on l and Y .

Let Y be the set of all orbits Y of the group 〈τl〉 on X−
2q. We define the

linear manifold
Ml,g =

⋃
(VY,g ; Y ∈ Y)

in Fq
l and show

Lemma 1. Let p run through all primes ≡ 2q + 1 mod 4q, p > 2q + 1,
and suppose that the elements g = gp are chosen such that Assumption A of
the Introduction holds. Then Ml,g is independent of the choice of g and p.

P r o o f. Let

E−
2q = {η ∈ C ; ηq = −1} (⊆ Q2q) .

Then 〈τl〉 acts in the usual way on E−
2q. Let Z be the set of orbits under

this action. Since Gp/G
2q
p = 〈g〉, there is a bijection

X−
2q → E−

2q : χ 7→ χ(g) ,

which induces the bijection

Y → Z : Y = 〈τl〉 ◦ χ1 7→ Z = 〈τl〉(χ1(g)) .

The system (6) defining the space VY,g can be written as

(8)
q−1∑
j=0

Tl(ηj−k)Φj = 0 , k = 0, . . . , |Z| − 1 ,

with η ∈ Z arbitrary. By the systems (8) belonging to the orbits Z, the
manifold Ml,g is defined in an invariant way.

Lemma 2. Let q be odd and suppose that the elements g ∈ Gp are always
chosen such that Assumption B of the Introduction holds. Then Ml,g is
independent of the choice of g and p.

P r o o f. One argues as in the case of Lemma 1, but the role of E−
2q is

played by Eq = {η ∈ C ; ηq = 1}; and in (8), Z means an orbit of 〈τl〉
on Eq.

If Z is an orbit on E−
2q (on Eq, resp.), put

VZ = {Φ ∈ Fq
l ; Φ satisfies (8)} and Ml =

⋃
(VZ ; Z ∈ Z) .

In the situation of Lemmas 1 and 2 we have

Ml,g = Ml .

The spaces VZ defining the manifold Ml have dimension q − |Z|, in accor-
dance with Theorem 2. We have shown:
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Theorem 3. Let q ∈ N, l an odd prime, l - q, l -ϕ(q). Suppose that for
each prime number p, p ≡ 2q+1 mod 4q, p > 2q+1, the element g is chosen
such that Assumption A of the Introduction holds. Then there exists a linear
manifold Ml ⊆ Fq

l with the following property : C2qh
−
2q(p) ≡ 0 mod l if and

only if Φ(g) ∈Ml.
This assertion remains valid if “Assumption A” is replaced by “Assump-

tion B”.

3. Special cases of systems of equations. The foregoing section sets
the following task: bring the systems (8) describing Ml into a form which
is as explicit as possible. We shall do this in some special cases (e.g., for all
q ≤ 6) and discuss the choice of these special cases.

(I) The case τl = id. Let τl = id, which means l ≡ 1 mod 2q. Here l
splits completely in Q2q and Tl = id. The set {η ∈ O2q/L ; η ∈ E−

2q} ({η ∈
O2q/L ; η ∈ Eq} in the case of Assumption B) can be identified with E

−
2q =

{w ∈ Fl ; wq = −1} (Eq = {w ∈ Fl ; wq = 1}, resp.). The systems (8) take
the form

(9)
q−1∑
j=0

wj Φj = 0 .

We obtain: The prime l divides C2qh
−
2q if and only if equation (9) holds for

at least one w ∈ E−
2q (Eq, resp.). In the case of Assumption B this assertion

was just the content of Theorem 4 in [4].
Suppose now that τl 6= id has a small order. Then [L : Q] is large

and the elements Tl(ηj−k) ∈ OL occurring in (8) are irrationalities of high
degree, in general. It seems to be difficult to identify Tl(ηj−k) ∈ OL/l with
an appropriate element of Fl = Z/lZ in this general context. For instance,
let l ≡ −1 mod 2q, which implies ord(τl) = 2. If ord(η) = 2q, the element
Tl(η) = η+η−1 generates the maximal real subfield of Q2q. Apparently, the
minimal polynomial P of η+η−1 over Q is not explicitly known (in general);
the zeros of P in Fl are even less known. But these zeros occur, arranged
in some way, as coefficients of equations (8). This discussion suggests to
investigate the case when ord(τl) is large, rather. Indeed, we shall only
consider examples with ord(τl) ∈ {ϕ(2q), ϕ(2q)/2}.

(II) The case ord(τl) = ϕ(2q). Here Gal(Q2q/Q) = 〈τl〉 is cyclic, which
requires that q ∈ {1, 2} or that q is an odd prime power. For q = 1,
Φ0 = C2qh

−
2q and (8) reads Φ0 = 0. If q = 2, the set E−

4 = {±
√
−1} consists

of a unique orbit, and (8) means Φ0 = Φ1 = 0 ∈ Fl. Therefore let q = nr,
n ≥ 3 prime, r ≥ 1. Furthermore, let Assumption B of the Introduction
hold. Put Zs = {η ∈ Eq ; ord(η) = ns}, s = 0, 1, . . . , r. Then |Zs| = ϕ(ns),
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and Z = {Z0, Z1, . . . , Zr}. For an element η ∈ Eq,

Tl(η) =


0 if η 6∈ Z0 ∪ Z1,
−q/n if η ∈ Z1,
q − q/n if η ∈ Z0.

The system (8) belonging to Z0 is

Φ0 + Φ1 + . . .+ Φq−1 = 0 .

Let s ≥ 1 and η ∈ Zs be arbitrary. Then the system (8) attached to Zs

takes the form

(10) n− 1Φk −
∑

(Φj ; ηj−k ∈ Z1 , j ∈ {0, . . . , q − 1}) = 0 ,

k = 0, . . . , ϕ(ns)− 1 .

Let us inspect the particular case s = r ≥ 1. Here (10) reads

nΦk =
∑

(Φj ; j ≡ k mod q/n , j ∈ {0, . . . , q− 1}) , k = 0, . . . , ϕ(q)− 1 ;

this system can be transformed into

Φj = Φk , k = 0, . . . , q/n− 1 , j = 0, . . . , q − 1 , j ≡ k mod q/n .

If r = 1 we obtain: Let q be an odd prime, l - q, l - q − 1. Then l divides
C2qh

−
2q if and only if Φ0 + . . . + Φq−1 = 0 or Φ0 = Φ1 = . . . = Φq−1. This

statement is contained in Theorem 3 of [4].

In the remainder of this section ord(τl) = ϕ(2q)/2. Again, we restrict
our interest to the simplest cases: viz., q ≥ 3 prime, q = 2r, and q = 6.

(III) The case ord(τl) = (q − 1)/2, q ≥ 3 prime. Let Assumption B of
the Introduction hold. We put

Q = {k ∈ Z ; q - k , k a quadratic residue mod q}

and

N = {k ∈ Z ; q - k , k 6∈ Q} .
Moreover, let q∗ = q if q ≡ 1 mod 4, and q∗ = −q if q ≡ 3 mod 4. Then
〈τl〉 = {τk ; k ∈ Q}, and L = Q(

√
q∗). Take an element η ∈ Eq \ {1}. The

set Eq splits into the orbits

Z1 = {1} , Z2 = {ηk ; k ∈ Q} , Z3 = {ηk ; k ∈ N} .

By means of Gauss sums we obtain (cf. [1], p. 195)

Tl(ηk) =

 (q − 1)/2 if q | k,
(−1 +

√
q∗)/2 if k ∈ Q,

(−1−
√
q∗)/2 if k ∈ N .
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Here
√
q∗ depends on the choice of η. The elements −1 +

√
q∗, −1−

√
q∗ of

OL/l can be identified with the zeros w, w′ in Fl of the equation

w2 + 2w + 1− q∗ = 0 .

The system (8) belonging to Z1 is Φ0 + . . .+ Φq−1 = 0. For the orbit Z2 it
reads

(11) q − 1Φk +
q−1∑
j=0

j−k∈Q

wΦj +
q−1∑
j=0

j−k∈N

w′Φj = 0 , k = 0, . . . , (q − 3)/2 .

The corresponding system for Z3 arises from (11) by interchanging w and w′.

(IV) The case ord(τl) = q/2, q = 2r. Let the Assumption A of the
Introduction hold. We may suppose that q ≥ 4. In general, only two groups
〈τl〉 can occur, viz., 〈τl〉 = 〈τ5〉, if l ≡ 5 mod 8, and 〈τl〉 = 〈τ−5〉, if l ≡
3 mod 8. In the case q = 4 there is an additional group, viz., 〈τ7〉 = 〈τ−1〉.

We consider the case 〈τl〉 = 〈τ5〉 first. The set E−
2q consists of two orbits

Z1, Z2 of length |Z1| = |Z2| = q/2. Furthermore, L = Q(
√
−1), and for

η ∈ E−
2q, k ∈ Z,

Tl(ηk) =
{

(q/2)ηk if k ≡ 0 mod q/2,
0 otherwise.

We identify ηq/2 =
√
−1 ∈ OL/l with the corresponding root w ∈ Fl of the

equation w2 + 1 = 0. Then the equations (8) for Z1 take the form

Φk+q/2 = wΦk , k = 0, . . . , q/2− 1 .

In the equations for Z2, w must be replaced by −w.
If 〈τl〉 = 〈τ−5〉, there are also two orbits Z1, Z2 of equal length. Here

L = Q(
√
−2), and for η ∈ E−

2q, k ∈ Z,

Tl(ηk) =
{

(q/4)(ηk + η3k) if k ≡ 0 mod q/4,
0 otherwise.

Let w ∈ Fl be a root of w2 + 2 = 0. Then the first system (8) reads

Φk+q/2 = − Φk + wΦk+q/4 ,

Φk+3q/4 = wΦk − Φk+q/4 ,
k = 0, . . . , q/4− 1 .

In the second system (8) the root w is replaced by −w.
Finally, if q = 4 and l ≡ 7 mod 8, there are also two orbits of equal

length, and L = Q(
√

2). Let w ∈ Fl be a root of w2 − 2 = 0. The first
system (8) is

(12)
{
Φ2 = wΦ1 − Φ0,

Φ3 = Φ1 − wΦ0.

Again, the substitution w 7→ −w yields the second system.
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(V) The case q = 6. If τl 6= id, the order of τl is 2, and the cases
l ≡ 5, 7, 11 mod 12 must be distinguished. All of them are treated similarly,
hence we pick out the case l ≡ 5 mod 12 only. Let η ∈ E−

12, ord(η) = 12.
There are four orbits: Z1 = {η3}, Z2 = {η9}, Z3 = {η, η5}, Z4 = {η7, η11}.
Moreover, η3 =

√
−1 and L = Q(

√
−1). By means of the relation η4 = η2−1

arising from the 12th cyclotomic polynomial, one obtains

Tl(ηk) =


η3k if (k, 12) = 1,
2ηk if k ≡ ±3 mod 12,
−1 if k ≡ ±4 mod 12,
1 if k ≡ ±2 mod 12.

Let w be a root of w2 +1 = 0. The system (8) of Z1 consists of the equation

Φ0 − Φ2 + Φ4 = w(Φ1 − Φ3 + Φ5) .

In the case of Z3 there are two equations:

2Φ0 + Φ2 − Φ4 = w(Φ1 + 2Φ3 + Φ5) ,

Φ0 − Φ2 − 2Φ4 = w(2Φ1 + Φ3 − Φ5) .

The substitution w 7→ −w yields the systems (8) belonging to Z2 and Z4.

R e m a r k. From the systems of equations occurring in cases (III)–(V)
one can deduce quadratic congruences mod l which are very convenient in
practice. For instance, the equations (12) imply

2Φ2
0 ≡ (Φ1 − Φ3)2 mod l , 2Φ2

1 ≡ (Φ0 + Φ2)2 mod l .

4. Numerical results. Let the above notations hold. We are interested
in applying Theorem 3 to q = 1, 2, . . . , 6. The hypothesis l -ϕ(q) of this
theorem is meaningless here, since ϕ(q) is a power of 2. In the sequel we
must exclude the case that l divides C2q. For this reason we collect up the
pairs (q, f2q), q ≤ 6, for which a prime l ≥ 3 divides C2q (cf. formula (3)).

l = 3 : (q, f2q) ∈ {(1, 2), (3, 2), (3, 6), (4, 2), (5, 2), (5, 10)} ;
l = 5 : (q, f2q) ∈ {(2, 4), (4, 4), (6, 4), (6, 12)} ;
l = 7 : (q, f2q) = (3, 3) ;
l = 11 : (q, f2q) = (5, 10) ;
l = 13 : (q, f2q) = (6, 12) ;
l = 31 : (q, f2q) = (5, 5) .

In what follows let Assumption A hold for even q’s and Assumption B
for odd ones. The set Z consists of all orbits of 〈τl〉 on E−

2q (on Eq, resp.)
and, as above,

Ml =
⋃

(VZ ; Z ∈ Z) .
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Let p denote a prime, p ≡ 2q + 1 mod 4q, p > 2q + 1. If l divides C2q =
C2q(p), the vector Φ = Φ(g) is in Ml, of course. However, if p runs through
all primes with l -C2q, it could happen that the excess vectors Φ were equally
distributed in the space Fq

l . Suppose this is true. Then the number

ml = |Ml|/|Fq
l | = |Ml|/lq

is the probability that l divides the class number h−2q(p), by Theorem 3.
In order to compute ml one has to determine the cardinality of Ml. This

can be done by means of the well-known sieve formula (cf. [1], p. 123)

Ml =
∑

(|VZ | ; Z ∈ Z)−
∑

(|VZ ∩ VZ′ | ; {Z,Z ′} ⊆ Z)(13)

+
∑

(|VZ ∩ VZ′ ∩ VZ′′ | ; {Z,Z ′, Z ′′} ⊆ Z)− . . .

According to Theorem 2, |VZ | = lq−|Z| for all Z ∈ Z. From the proof of
Theorem 2 it is clear that

(14)
⋂

(VZ ; Z ∈ Z) = {0} ,

i.e., the union of all systems (8) forms a linearly independent system of
equations. For these reasons (13) yields

|Ml| =
∑

(lq−|Z| ; Z ∈ Z)−
∑

(lq−|Z|−|Z
′| ; {Z,Z ′} ⊆ Z)(15)

+
∑

(lq−|Z|−|Z
′|−|Z′′| ; {Z,Z ′, Z ′′} ⊆ Z)− . . .

Moreover, if all orbits Z ∈ Z have the same length |Z| = z, (15) takes the
simplified form

(16) |Ml| = lq(1− (1− 1/lz)q/z) .

If q is an odd prime number, one orbit has length 1 and the remaining ones
the same length z. From (16) we deduce for this situation

(17) |Ml| = lq−1(1 + (l − 1)(1− 1/lz)(q−1)/z) .

The values of ml given in Table 1 have been found by means of (15)–(17).
We put

P = {p ; p prime , p < 500000 , p ≡ 2q + 1 mod 4q , p > 2q + 1}

and

nl = |{p ∈ P ; l |h−2q(p)}|/|P | .
For small primes l ≥ 3, l - q, l -C2q, q ≤ 6, the number nl can serve as
an approximation of the probability that l divides h−2q(p). In the few cases
where l divides a number C2q = C2q(p) (cf. the above list), we define nl as

nl = |{p ∈ P ; l -C2q(p) , l |h−2q(p)}|/|{p ∈ P ; l -C2q(p)}| .
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Table 1

l-divisibility of h−2 (p) for p < 500000; total number of p’s: 20805

l nl ml l nl ml

3* 0.4063 0.3333 5 0.2313 0.2000

7 0.1634 0.1429 11 0.0992 0.0909

13 0.0817 0.0769 17 0.0636 0.0588

19 0.0545 0.0526 23 0.0453 0.0435

29 0.0343 0.0345 31 0.0344 0.0323

37 0.0263 0.0270 41 0.0256 0.0244

43 0.0246 0.0233 47 0.0219 0.0213

53 0.0192 0.0189 59 0.0175 0.0169

61 0.0170 0.0164 67 0.0146 0.0149

71 0.0158 0.0141 73 0.0129 0.0137

79 0.0146 0.0127 83 0.0125 0.0120

89 0.0115 0.0112 97 0.0106 0.0103

l-divisibility of h−4 (p) for p < 500000; total number of p’s: 10396

l nl ml l nl ml

3 0.1293 0.1111 7 0.0189 0.0204

11 0.0082 0.0083 13 0.1513 0.1479

17 0.1238 0.1142 19 0.0036 0.0028

23 0.0009 0.0019 29 0.0676 0.0678

31 0.0013 0.0010 37 0.0526 0.0533

41 0.0518 0.0482 43 0.0007 0.0005

47 0.0001 0.0005 53 0.0374 0.0374

59 0.0003 0.0003 61 0.0368 0.0325

67 0.0002 0.0002 71 0.0002 0.0002

73 0.0261 0.0272 79 0.0003 0.0002

83 0.0003 0.0001 89 0.0209 0.0223

97 0.0187 0.0205

In Table 1 we display both “probabilities” nl and ml for q ≤ 6 and 3 ≤
l < 100, l - q. The primes l for which l |C2q(p) can occur are distinguished
by an asterisk.

If q is odd, the number C2qh
−
2q is divisible by C2h

−
2 . Theorem 3 and

formula (2) yield the following

Corollary. Let q ≥ 1 be odd , p prime, p ≡ 2q+1 mod 4q, p > 2q+1.
Let l ≥ 3 be a prime, l - q, l - q − 1. Then l divides C2qh

−
2q/(C2h

−
2 ) if and

only if the vector Φ ∈ Fq
l is in the linear manifold

M∗
l =

⋃
(VZ ; Z ∈ Z , Z 6= {1}) .



l-divisibility of the relative class number 201

Table 1 (cont.)

l-divisibility of h−6 (p) for p < 500000; total number of p’s: 10402

l nl ml n∗l m∗
l l nl ml n∗l m∗

l

5 0.2701 0.2320 0.0386 0.0400 7* 0.4104 0.3703 0.2899 0.2653

11 0.1055 0.0984 0.0074 0.0083 13 0.2269 0.2135 0.1578 0.1479

17 0.0663 0.0621 0.0030 0.0035 19 0.1543 0.1497 0.1073 0.1025

23 0.0480 0.0453 0.0010 0.0019 29 0.0349 0.0356 0.0012 0.0012

31 0.0976 0.0937 0.0673 0.0635 37 0.0822 0.0789 0.0567 0.0533

41 0.0254 0.0250 0.0004 0.0006 43 0.0705 0.0682 0.0473 0.0460

47 0.0221 0.0217 0.0004 0.0005 53 0.0184 0.0192 0.0003 0.0004

59 0.0195 0.0172 0.0002 0.0003 61 0.0477 0.0484 0.0316 0.0325

67 0.0441 0.0441 0.0289 0.0296 71 0.0174 0.0143 0.0002 0.0002

73 0.0385 0.0405 0.0261 0.0272 79 0.0392 0.0375 0.0248 0.0252

83 0.0138 0.0122 0.0002 0.0001 89 0.0130 0.0114 0.0001 0.0001

97 0.0327 0.0306 0.0225 0.0205

l-divisibility of h−8 (p) for p < 500000; total number of p’s: 5165

l nl ml l nl ml

3* 0.2151 0.2099 5* 0.0794 0.0784

7 0.0414 0.0404 11 0.0170 0.0165

13 0.0112 0.0118 17 0.2290 0.2153

19 0.0048 0.0055 23 0.0043 0.0038

29 0.0031 0.0024 31 0.0017 0.0021

37 0.0019 0.0015 41 0.0931 0.0940

43 0.0019 0.0011 47 0.0010 0.0009

53 0.0004 0.0007 59 0.0002 0.0006

61 0.0002 0.0005 67 0.0010 0.0004

71 0.0002 0.0004 73 0.0511 0.0537

79 0.0004 0.0003 83 0.0008 0.0003

89 0.0409 0.0442 97 0.0451 0.0406

In view of the Corollary we also render the numbers

n∗l = |{p ∈ P ; l | (h−2q(p)/h
−
2 (p))}|/|P |

and
m∗

l = |M∗
l |/lq

in Table 1, for q = 3, 5. If l divides some quotient C2q/C2, the definition of
n∗l has been modified appropriately.

Let q = 6. Then C4h
−
4 divides C12h

−
12. Again, l divides the quotient

C12h
−
12/(C4h

−
4 ) if and only if Φ is in a certain linear manifold M∗

l ⊆ F6
l .

Table 1 contains m∗
l = |M∗

l |/l6 and the comparative figure n∗l .
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Table 1 (cont.)

l-divisibility of h−10(p) for p < 500000; total number of p’s: 5208

l nl ml n∗l m∗
l l nl ml n∗l m∗

l

3* 0.4181 0.3416 0.0054 0.0123 7 0.1674 0.1432 0.0006 0.0004

11* 0.4203 0.3791 0.3514 0.3170 13 0.0816 0.0770 0.0000 0.0000

17 0.0588 0.0588 0.0000 0.0000 19 0.0613 0.0579 0.0056 0.0055

23 0.0432 0.0435 0.0000 0.0000 29 0.0313 0.0368 0.0021 0.0024

31* 0.1602 0.1512 0.1281 0.1229 37 0.0244 0.0270 0.0000 0.0000

41 0.1171 0.1161 0.0916 0.0940 43 0.0246 0.0233 0.0000 0.0000

47 0.0236 0.0213 0.0000 0.0000 53 0.0173 0.0189 0.0000 0.0000

59 0.0207 0.0175 0.0010 0.0006 61 0.0762 0.0793 0.0618 0.0640

67 0.0134 0.0149 0.0000 0.0000 71 0.0672 0.0685 0.0545 0.0552

73 0.0113 0.0137 0.0000 0.0000 79 0.0180 0.0130 0.0004 0.0003

83 0.0132 0.0120 0.0000 0.0000 89 0.0119 0.0115 0.0006 0.0003

97 0.0117 0.0103 0.0000 0.0000

l-divisibility of h−12(p) for p < 500000; total number of p’s: 5191

l nl ml n∗l m∗
l l nl ml n∗l m∗

l

5* 0.0820 0.0784 7 0.0543 0.0600 0.0358 0.0404

11 0.0235 0.0246 0.0171 0.0165 13* 0.4038 0.3814 0.2993 0.2740

17 0.1310 0.1203 0.0060 0.0069 19 0.0100 0.0083 0.0062 0.0055

23 0.0056 0.0057 0.0046 0.0038 29 0.0657 0.0700 0.0025 0.0024

31 0.0029 0.0031 0.0017 0.0021 37 0.1516 0.1516 0.1063 0.1038

41 0.0541 0.0493 0.0012 0.0012 43 0.0025 0.0016 0.0019 0.0011

47 0.0008 0.0014 0.0006 0.0009 53 0.0364 0.0381 0.0006 0.0007

59 0.0006 0.0009 0.0004 0.0006 61 0.0896 0.0944 0.0584 0.0640

67 0.0000 0.0007 0.0000 0.0004 71 0.0006 0.0006 0.0002 0.0004

73 0.0746 0.0794 0.0516 0.0537 79 0.0008 0.0005 0.0002 0.0003

83 0.0006 0.0004 0.0002 0.0003 89 0.0223 0.0226 0.0000 0.0003

97 0.0599 0.0603 0.0403 0.0406

In Table 2 we have collected up the relative class numbers h−12(p) for all
p < 10000 (p ≡ 13 mod 24, of course).

Table 2. Relative class numbers h−12

p h−12 p h−12 p h−12

13 1 37 1 61 1

109 17 157 65 181 925

229 221 277 272 349 1040

373 305 397 832 421 925

541 2257 613 2425 661 1053
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Table 2 (cont.)

p h−12 p h−12 p h−12

709 12688 733 3645 757 157625

829 26245 853 2516 877 22681

997 1825 1021 3977 1069 13949

1093 555185 1117 577405 1213 94357

1237 42125 1381 166617 1429 288353

1453 270725 1549 17725 1597 682541

1621 1441557 1669 1512745 1693 314237

1741 116285 1789 57616 1861 132977

1933 24737 2029 3922321 2053 92537

2221 1797497 2269 67625 2293 171593

2341 1173037 2389 23725 2437 660857

2557 514345 2677 1338949 2749 1112905

2797 1502800 2917 300913 3037 469456

3061 102245 3109 350649 3181 7938905

3229 3985097 3253 9983713 3301 369313

3373 7747909 3469 821881 3517 186004

3541 152165 3613 2595125 3637 3896505

3709 6131905 3733 20787845 3853 14944265

3877 3801037 4021 849433 4093 37654825

4261 570704 4357 1633360 4549 457145

4597 1505969 4621 5254945 4789 3930768

4813 3288745 4861 21461193 4909 5479825

4933 24722117 4957 15291185 5077 601625

5101 5343205 5197 623376 5413 2707549

5437 1916217 5557 6719089 5581 1208453

5653 8808669 5701 7036165 5749 6233305

5821 907985 5869 1652813 6037 1839188

6133 1254509 6229 5476409 6277 6378125

6301 74076509 6373 7973593 6397 11072477

6421 20553277 6469 8725853 6637 9356180

6661 13352065 6709 1458500 6733 3908125

6781 18425549 6829 12125605 6949 5479825

6997 5553841 7069 43433797 7213 1275625

7237 14537637 7309 5188433 7333 6472325

7477 8024605 7549 2665345 7573 124889341

7621 26335985 7669 345404785 7717 95208637

7741 2900269 7789 10178869 7933 19589465

8053 88674769 8101 20686509 8221 6688625

8269 283411453 8293 14654925 8317 7268249

8389 7384609 8461 5808245 8581 2116585

8629 77909364 8677 550198737 8821 120093581

8893 2169593 8941 43577965 9013 27373801
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Table 2 (cont.)

p h−12 p h−12 p h−12

9109 1759504 9133 10980625 9157 2655065

9181 4484077 9277 156931101 9349 20541845

9397 22924681 9421 397973056 9613 406792061

9661 44395585 9733 26450125 9781 34076653

9829 7163125 9901 661365493 9949 15834377

9973 286173589

References

[1] T. M. Aposto l, Introduction to Analytic Number Theory , Springer, New York 1976.
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