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1. Introduction. Let &,(z) = Z;’;(Z% a(m,n)z™ be the nth cyclotomic
polynomial. Let

Am) = max a(m.n)| and  S)= 3 la(mn).
0<m<p(n)

The coefficients a(m, n) and especially A(n) and S(n) have been the subject
of numerous investigations (see [1] and the references given there). Until
recently all these investigations concerned very thin sets of integers n. In [3]
the author could establish a property valid for a set of integers of asymptotic
density 1. Let e(n) be any function defined for all positive integers such that
lim, oo e(n) = 0. Then S(n) > n'T¢(") for a set of integers of asymptotic
density 1. Here we deal with properties valid for sequences of positive lower
density.

THEOREM. For any N > 0, there are ¢c(N) > 0 and xo(N) > 1 such that
card{n <z : A(n) > n"™} > ¢(N)z,
for all x > xo(N).

2. A certain set of candidates. Let N > 0 be given. In this section
we identify a certain set of integers in which a large subset will later be
shown to have A(n) > n™. To describe the set, we fix a positive odd integer
(2.1) K =K(N)

(to be determined later) and set
1 0

L = 20K - .
0K, 0=105" ¢~ 12
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The letter p always denotes prime numbers and w(m) denotes the number
of distinct prime factors of m. Basic for our construction is the set S.
Let

(22) S=SWN,z)={n=mp1...pp <z: 2T e <p; < a:lL;s'HE,
p(m) = p(n) =1, wim) < (1+¢)(loglogz)}.

LEMMA. For each N, there are effectively computable constants co(N)
>0 and xo(N) > 0 such that for all x > xo(N),

card S > ¢o(N)z.

Proof. Let 7 = 7 (x) be the set of n < z which have all of the properties
of elements of S, but the condition u(n) =1 fails. This implies that at least

two of the primes p1,...,pr are the same. We have
1 / ’
(2.3) cardszﬂz...z Z 1—cardT
P1 L m<z/p1...pL

p(m)=1,w(m)<(1+4¢) loglogz

. —s _s
where ) /denotes a sum over p; with e T < p <aTote
Clearly

1
card7T < leﬁ =o(x) forxz — oco.
P
From [2] and [4] we know that the inner sum in (2.3) is at least x/10p; ... pL,
for all x > x1(IV), where x1(N) is a constant depending only on the choice
of N. Thus

N
(2.4) card § > ﬁ <Z’p> —o(x) forzx— .
Now

/1 1—-9 1-6 1
Zp_log<L+e> —log <L_€>+O<log:p>’

so there is some number ¢; (N) such that
1
Z/* > (N) >0
p

for all x > x4(INV), where z2(NN) is a constant depending only on N. The
lemma now follows from (2.4).

3. Investigation of log |®,,(z)| on the unit circle. We start with the
well-known identity

(3.1) Bo(z) = [T = 29y

d|n
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for all complex z for which both sides are defined. We write e?™* = e(a)
and obtain

(3.2) bg@nw«nn::EZM(Z)I%ﬂl—e«mn.

d|n

To show that A(n) is large it would suffice to show there is some o with
log |®,,(e())| large. The terms on the right of (3.2) will be large for p(n/d)
= —1 and ||ad| small. (Here ||-|| denotes the distance to the nearest integer.)
Simple choices for the pair («, d) however do not work because of a certain
cancellation effect which has already been described in [3]. We repeat its
description for the convenience of the reader.

Assume 7 |n/d, p(n/d) = —1, p(n) # 0, w(r) > 2 and ad = k + o
with k& an integer, |o| < 1/2. Thus |o| = ||ad||. Also assume that |ro| <
1/2. For t|r we have e(adt) = e(to) = 1+ 2miot + O((ot)?). This implies
log |1 — e(adt)| = log(ot) + O(1). Thus

;M<Z> log |1 — e(adt)]
= ZN<Z>(IOgQ+logt) —I—O(Zl) :O(Zl)a

tlr t|r t|r

where we use

> u(t)=0 and (forw(r)>2) > pu(t)logt=0.
t|r tlr
Thus the large contribution p(n/d) log |1 —e(ad)| is cancelled by other terms.

A method to avoid this cancellation effect is to choose o and d such that
for t < to we have |pt| < 1/2 but for ¢ > to, |ot| > 1/2. This leads to
estimates of incomplete convolutions

> “(Z) (log 0 + log t)

t|r
t<to

which can be made large by an appropriate choice of d, r, to and «. For the
remaining sum

EZM(;)bgu—emﬁn,

t|r
t>to

we have to show that the terms are small for appropriate choice of «. This
will be done by showing that ||adt|| is not too small.
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DEFINITIONS. Let S(mqo) = {n € 8 :n=mopr...pr}, yo = a— = E+1-9),
For each mg we define an interval
I(mg) = [mo_1 + mo_lyo,mgl + 2m51y0] )

For n € S with n = mpy...pr, set II(n) = p1pa...pr. I n € S(myg), we
write

(3.3) log |, (e(@)| =3 + 3+ .

where

Y=y u(Z) log |1 — e(ad)| ,

d=mot,t|II(n)
w(t) <K

2= X u(£*>1og|1_e<am*>|,

m™ | mo
m”#mo

3, = 3 “(Z) log |1 — e(ad))|.

all other divisors
d|n

We shall investigate these three sums for a € I(my).

4. The main part ). Let t | II(n) withw(t) = K—1,0 <1 < K. Then
t is the product of K — [ distinct primes from [:U¥_€, xlT_sJ“s]. Therefore

(4.1) te [p T A= (K-De ;5 1-8)H(K-De]

Moreover, if o € I(my), then amgt € [t + tyo,t + 2typ], so that {amgt} €
[tyo, 2tyo], where {-} means fractional part. We write {amot} = ntyo with
1 < n < 2. We have e(amot) = e({amot}) = 1 + 2mintyo + O((tyo)?) and
thus

(4.2) log |1 — e(amqt)| = log tyg + O(1).
From (4.1) and the definition of yo we get
(4.3) tyo € [x—”Tl—(K—z—n%—(K—z)a,x—HTl_(K—l—n%Jr(K—Z)e]_

For [ = 0, that is, for w(t) = K, we use the upper bound in (4.3) and
together with (4.2) we get

1 0 1
log |1 — e(amgot)| < (— A (K — 1)Z —|—K£> logz +0(1) < —Zlogx,

for z sufficiently large. There are ( IL<) divisors ¢ | IT(n) with w(t) = K and
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for each we have p(n/(mot)) = —1. Thus we get
L
(4.4) ( log |1 — e(amqt)| > (K) L 'logz.
tln(ﬂ)
w(t)=

For 1 <[ < K, that is, w(t) = K — [, from (4.2) and (4.3) we get
[+1 0 3l
|log |[1—e(amgt)|| < (Z—F(K -1 )L+(K—l)€> log z+0(1) < flogac,

for z sufficiently large. Since there are ( KL_ ;) divisors ¢ | II(n) with w(t) =

K — 1 we get
n 3l L
t;() u(mmt) log |1 —e(amot)|‘ < L<K—l) logx .

w(t)=K-I

(4.5)

We study the ratio of these upper bounds for consecutive I-values. For [ > 1,

)T ) = 0 D

_ 2K 2
L-K 19’
(4.5) we obtain for z sufficiently large

>logx—3< )log:cz<19>
L)logx_”?( L )mw

From this, (4.4) an

K—1
(T K DALY o L |
- TL—K+1)10\Kx) %"~ 17L o8-

5. The divisors of mg. Our aim now is to show that ), is small for
n €S, a € I(mp). By definition we have

> .= Z ( )1og\1—e(am ).

m” | mo
m*#£mg

Note that for a € I(mg) and m*|mg, m* < mg we have 0 < am* < 1.
Thus

e(am®) = 14 2wiam* 4+ O((am™)?).
From this we get

|1 —e(am™)| = 2ram™ (1 + O(am™))
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and so
log |1 — e(am™)| =logm™ + loga + O(1).
Thus for all n € S,

. ﬁ @ * (14¢) log 2
Zl—u<m0> > u(m*>(logm +log a) + O((log x) ),

m* | mo
m*#mg
since w(mg) < (14 ¢)loglog .
We have (since pu(mg) = 1 implies myq is not a prime or prime power)

mo %
E ,u<*> logm™ = —logmg
m

m™ | mo

m*#mo

mo
E ,u<*> loga = —log .
m

m* | mo
m*#mo

Since log(amg) < 1, this yields
(5.1) 21 < (log )1+ 082 for n e S a e I(mg).

and

6. The divisors d = m*t with w(t) < K. The remaining divisors
in ), are of two kinds. The first kind are of the form m*t with m™* | my,
m* < myp, t|II(n) and 1 < w(t) < K. We treat the contribution of these
divisors in this section, leaving the treatment for the remaining divisors,
which are of the form m*¢t with w(t) > K, for the final section.

Let C' > 0 be a constant that we will soon choose as a large absolute
constant. If we have |mg'm*t|| > 2(logz)~¢ for w(t) < K, then we also
have

(6.1) lamn*t|| > (log )~
for all a € I(myg). Indeed,
lam*t — mg tm*t] < 2mg 'yom*t < yot = o((logz) =)

for any C.
We study the exceptional set

(6.2)  Sp(mg) = {n € S(mo) : ||mg 'm*t|| < 2(logx)~°
for some m* |mg, m* <mg, t|II(n), 1 <w(t) < K}.

We shall replace the inequality with a congruence. Let n € Sg and suppose
|lmg tm*t|| < 2(logz)~C. Let my ' m*t = k + o where k is an integer and
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lo| <2(logx)~¢. Then
mok mo

* m*

t =

Note that r := (mg/m™*)e is an integer. Thus
(6.3) t = r mod m—g , o < 2m—g(logx)7c .
m m

We estimate the cardinality of Sg(mg) by writing Sg(mo) as a union
of subsets. For a given m*|mg with m* < mg and a given integer g with
1<g<K,let

Sg(mo,m*,g) = {n € S(myg) : ||mg m*t| < 2(logz)~¢
for some t | II(n) with w(t) = g}.
Note that if n = motu € Sg(mg, m*, g) then u < z/(mot) and
(6.4) 290709 <4 < oo +e)
and (6.3) holds for some integer r. Thus
% * x |
1Se(mo,m*,g) <> D> 1< mfz n
t u<z/(mot) t

where Y~ denotes a sum over ¢ satisfying (6.4) and satisfying (6.3) for some
integer r. Since t|I1(n) and w(t) > 1 one has t > my/m*, so that possible
solutions of (6.3) with ¢t < mg/m* do not occur in the sum .. Thus for a
fixed r, we have

w(r) 1 1
Z (i < gelogx

- t " mo/m*

uniformly in r. Since each prime divisor of t exceeds my/m*, we see that
r = 0 is not a possibility in (6.3) and so the set of possible values of r is
empty when 2(mo/m*)(logz)~¢ < 1. Therefore

swlogx Z 1.

0 |r|<2|mo/m*|(log z)~C

m
|SE(m07m*7g)| < ggm

Thus

Z|SE m0’<z Z Z|SE mo, M 7g)|

mo m*|mog 1

< Z Z —az (log z)*=¢

mo m* |m0
< Z o z(logz)'~¢ < 2(log )3~ ¢ .

mo
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7. The larger divisors. Here we study the divisors d = m*t with
m* | mg, t| II(n), w(t) > K. In contrast to the last section we here have to
remove exceptional a-values from I(my).

Given a fixed triplet (mg, m*,t) with m* |mg, t|II(n), w(t) > K, we
want an estimate for AE(mg, m*,t), where E(mg,m*,t) = {a € I(my) :
|m*ta|| < (logz)~¢}, and A denotes the Lebesgue measure. We have

AE(mg,m*,t) = )\{a € I(my) :

1 -¢ 1 —¢
we [k - oses b G

— , for some k € Z ¢ .
m*t m*t m*t m*t

We determine the number of integers k for which

[ ko (logz)™¢ &k N (log:n)_c] A I(mo) £0.

(7.1) ,
m*t m*t m*t m*t

From the definition of I(mg), such k-values satisfy

t 2 *t
—(logz) ¢ <k< me .y Zhom
mo mo mo mo

m*t . Yyom™t c

+ (logx)™

Since w(t) > K, we have yom*t/mg — oo as x — oo. Thus for large z,
the number of integers k satisfying (7.1) is at most 2yom*t/mg. Thus for
large x, we have

290
7.2 \E ) < —
( ) (m07m ) )— mo(log:c)c
For n € S, let
J(n) = I(mo) — U E(mo,m",t).
m* | mo

t|I(n),w(t)>K

Thus from (7.2) we have

Yo 2yo
A (n) > 2o Y%
J(n) = mo Z mo(log z)¢
t|H(n),w(tO)>K

Yo 27(myg)2" Yo _
> (1_(10!07113)0 > m—0(1—2L+1(10g$)1 C)

from the definition of S. Thus for x large, we have J(n) # 0.

We now use the results of this section and the previous section to es-
timate ) ,. Let n € S — Sg and let a € J(n). Then from (6.1) and the
definition of J(n), we have for each divisor d of n in the sum ), that

lad]| = (log )= .
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Thus for these values of d and a we have
llog |1 — e(ad)|| < loglogz .
Recalling the definition of ), in (3.3) we conclude that

ZQ < 7(mg)2F loglog z < (log a:)(1+25) log2

Combining this estimate with our estimates (4.6) and (5.1) for >, and ),
we have for = sufficiently large, n € S — Sg, and o € J(n),

1

log(nA(n)) > log S(n) > log |®,(e())| > 3 (f{)L‘l logz.

From Sections 2 and 6 we have |S — Sg| >k « for any fixed K. Thus by
choosing K sufficiently large, we have the Theorem.
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