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1. Introduction. Let k be an integer ≥ 2. Trifonov and the author
(cf. [3], [4], [15]) have recently made improvements on the gap problem of
finding an h = h(x) as small as possible such that for x sufficiently large,
every interval of the form (x, x + h] contains a k-free number. Although
one expects such h to exist with h as small as c log2 x for some constant
c (K. McCurley and A. Zaccagnini, independent private communications),
the best result to date is that one can take h = cx1/(2k+1) log x. This was
established recently in the case k = 2 by Trifonov and the author [4] and for
general k by Trifonov [15]. One can generalize this problem by considering
an irreducible polynomial f(z) ∈ Z[z] and ask for an h = h(f(z), x) as small
as possible such that for x sufficiently large, there is an m ∈ (x, x + h] for
which f(m) is k-free. Necessarily, one needs to require that

(1) gcd(f(m),m ∈ Z) is k-free .

The gap problem mentioned above then corresponds to the case that f(z) =
z. The general problem was considered by Cugiani [1] and Nair [9,10] and
is related to work of Nagel [8], Ricci [12], Erdős [2], Hooley [6], and Huxley
and Nair [7]. In particular, Nair [10] showed that if k ≥ n + 1 where n is
the degree of f(z), then one can take

(2) h = cxn/(2k−n+1) .

This result generalized (and slightly improved) a theorem of Halberstam and
Roth [5] which stated that for every ε > 0 and for h = x1/(2k)+ε, there is a
k-free number in the interval (x, x + h]. We note that if k ≥ n + 1 and the
greatest common divisor of the coefficients of f(z) is 1, then (1) holds (cf.
[11]). An improvement on (2) follows from the work of Huxley and Nair [7
(take t = k−g+1 in Theorem A)]. Their work implies that if k ≥ n+1 ≥ 3,
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then one can take

(3) h = cxn/(2k−n+2) .

One can further reduce h by a power of log x. A direct application of the
techniques in [15] do not improve on (3). The purpose of this paper is to
show that one can in general do significantly better than (3) by employing
different methods. Our methods here will be based on establishing some
polynomial identities which are reminiscent of polynomial identities used by
Huxley and Nair [7]. We shall also make use of divided differences which
were initially used for such problems in the work of Trifonov [13, 14] (also,
see [3]). Our result is

Theorem. Let f(z) ∈ Z[z] of degree n with f(z) irreducible. Let k be
an integer ≥ n + 1 satisfying (1). Let r be the greatest integer satisfying
r(r − 1) < 2n. Then there is a constant c = c(f(z), k) such that for x
sufficiently large, there is an integer m ∈ (x, x + h] for which f(m) is k-free
where

h = cxn/(2k−n+r) .

Observe that since r(r + 1) ≥ 2n, one may replace r above with (−1 +√
8n + 1)/2 or with

√
2n− (1/2). Thus, we have increased the denominator

in (3) by >
√

2n− (5/2). One can again reduce h by a power of log x in our
results, but we do not concern ourselves with this reduction. We note that
with h as in the Theorem, one can obtain asymptotics for the number of
m ∈ (x, x + h] for which f(m) is k-free. Asymptotic results were obtained
by the previous authors in their works. Also, we do not consider the case
that k ≤ n; however, the material in this paper is presented in such a way
that the techniques can easily be applied to such k. Given an irreducible
polynomial f(z) of degree n, Nair [9] obtained estimates for the smallest k
such that if (1) holds, then there are infinitely many integers m for which
f(m) is k-free. To obtain his results, he necessarily considered k ≤ n. The
results of Huxley and Nair [7] give a slight improvement on that work. More
specifically, they show that for some values of n, one can reduce the smallest
k permissible in the work of Nair [9,10] by 1. Our methods do not improve
further on this application of the results in [7], so we do not emphasize
results related to k ≤ n. We note, however, that some improvement on the
gap problem for k ≤ n can easily be obtained from the methods here, and
that the larger k is, the better the resulting improvement.

2. Preliminaries. We will make use of the following notation:

f(z) is an irreducible polynomial in Z[z].
n is the degree of f(z).
k and m will denote positive rational integers with k satisfying (1).
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x is a sufficiently large real number (depending on f(z) and k).
h = h(k, f(z), x) is such that limx→∞ h = ∞.
µ is a fixed root of f(z).
K = Q(µ).
R is the ring of integers in K.
{ω1, . . . , ωn} is a fixed integral basis for K over Q.
σ1, . . . , σn denote the homomorphisms of K which fix the elements of Q.
E will be a fixed element in R.
N(u) = NK/Q(u) =

∏n
j=1 σj(u) (where u ∈ K).

‖u‖ denotes the size of an element u in K (‖u‖ = max1≤j≤n |σj(u)|).
c, c1, c2, . . . and implied constants, unless otherwise stated, are positive

constants depending on f(z) and k. Constants other than c are independent
of c.

u is primary means that ‖u‖ < c1|N(u)|1/n where c1 is a constant (cf.
[9]). This differs slightly from Nair’s use of the word “primary”, but it is
sufficient for obtaining our results.

J denotes a subinterval of (x, x + h].
SJ denotes the set of u ∈ R such that u is primary and such that

there is a v = v(u) ∈ R and a rational integer m = m(u) ∈ J for which
ukv = E(m− µ).

SJ(a, b) = {u ∈ SJ : a1/n < ‖u‖ ≤ b1/n}.
S(a, b) = S(x,x+h](a, b).

Lemma 1. Let T > 0. Let

Nk(x) = |{m : x < m ≤ x + h, f(m) is k-free}| ,
P (x) = |{m : x < m ≤ x + h, pk | f(m) for some prime p > T}| ,

and
%(pk) = |{j ∈ {0, 1, . . . , pk − 1} : f(j) ≡ 0 (mod pk)}| .

Then

Nk(x) = h
∏
p

(
1− %(pk)

pk

)
+ O

(
h

(log x)k−1

)
+ O(π(T )) + O(P (x))

and
P (x) � max

∑
1 ,

where the maximum is over all E from a fixed finite set of algebraic integers
in K and the sum is over all pairs (u, v) with u, v ∈ R, u primary , ‖u‖ >
c2T

1/n, and ukv = E(m− µ) for some rational integer m ∈ (x, x + h].

The proof of Lemma 1 can be found in [9], so we omit its proof here. We
take T = h

√
log x. Thus, the error term involving π(T ), which represents

the number of primes ≤ T , is � h/
√

log x. To estimate P (x), we divide the
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interval (x, x + h] into subintervals of length H. Our goal will be to find an
upper bound on SJ(t, 2nt), say U , which is independent of the subinterval
J ⊆ (x, x + h] with |J | = H and independent of E. It will then follow that

(4) |S(t, 2nt)| �
(

h

H
+ 1

)
U .

Then we will use the fact that

P (x) �
∞∑

j=0

|S(2jncn
2T, 2(j+1)ncn

2T )| .

This idea for bounding P (x) can be found in [7], [9], and [10].
Our next lemma provides us with the means to estimate SJ(t, 2nt) and,

hence, the right-hand side of (4). Again the result is a consequence of [9].

Lemma 2. Let J ⊆ (x, x + h]. Let B > 0 and t > 0. Suppose that for
every u ∈ SJ(t, 2nt), there are � 1 numbers α with ‖α‖ ≤ B for which
u + α ∈ SJ(t, 2nt). Then

|SJ(t, 2nt)| � t

Bn
+ 1 .

With s an integer in [1, k − 1] and with

H = c3t
(k−s)/n

for some constant c3, Nair [10] showed that one can take

B = c4x
−1/(2s+1)t(k+s+1)/(n(2s+1)),

for some constant c4. Huxley and Nair [7] obtained improvements on the
results in [10] by showing that Nair’s choice of B above can be used with

H = c5t
2s(k−s)/(n(2s+1))x1/(2s+1) ,

for some c5. In this paper, we will pursue the ideas of Huxley and Nair a little
further and show that if we decrease Nair’s choice of B by a small amount,
we can increase his choice of H by a considerably larger amount. Their
work was based on constructing polynomials with some good approximation
properties, and likewise we will need to develop similar polynomials.

3. Some polynomial identities. The work of Halberstam and Roth
[5] was based on a particular polynomial identity which was later generalized
by Nair [9]. The polynomials which occurred in Nair [9] were not given
explicitly until the work of Huxley and Nair [7]. The following lemma follows
from the latter (though our polynomial Qs,k(u, α) is expressed differently).
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Lemma 3. Let s be a non-negative integer ≤ k − 1. Let

Ps,k(u, α) =
(k + s)!

s!

s∑
j=0

(−1)j

(
s

j

)
(2s− j)!

(k + s− j)!
αj(u + α)s−j

and

Qs,k(u, α) =
(k + s)!

s!

s∑
j=0

(
s

j

)
(2s− j)!

(k + s− j)!
αjus−j .

Then Ps,k(u, α) and Qs,k(u, α) are homogeneous polynomials in Z[u, α] of
degree s which satisfy

(5) (u + α)kPs,k(u, α)− ukQs,k(u, α) = Gs,k(u, α) ,

where Gs,k(u, α) is a polynomial of degree k − s − 1 in the variable u and ,
hence, divisible by α2s+1.

The polynomials in Lemma 3 will play a major role in the arguments of
this paper; we, therefore, present a proof of Lemma 3. Our proof will differ
from that given by Huxley and Nair. It is easy to verify that Ps,k(u, α)
and Qs,k(u, α) are homogeneous polynomials in Z[u, α] of degree s, so we
only concern ourselves with establishing (5). For convenience, we ignore
for the moment concerns about our polynomials being in Z[u, α] and seek
first to construct Ps,k(u, α) and Qs,k(u, α) in Q[u, α] which are homogeneous
polynomials of degree s and which satisfy (5). To motivate the argument,
we assume first that we have polynomials satisfying (5). By differentiating
the equation

(u + α)k+1Ps,k+1(u, α)− uk+1Qs,k+1(u, α) = Gs,k+1(u, α)

with respect to the variable u, we obtain (5) with

Ps,k(u, α) = (k + 1)Ps,k+1(u, α) + (u + α)P ′s,k+1(u, α) ,

Qs,k(u, α) = (k + 1)Qs,k+1(u, α) + uQ′s,k+1(u, α) ,

and
Gs,k(u, α) = G′s,k+1(u, α) .

In other words,
d

du
((u + α)k+1Ps,k+1(u, α)) = (u + α)kPs,k(u, α)

and
d

du
(uk+1Qs,k+1(u, α)) = ukQs,k(u, α) .

Hence, we want

(6) Ps,k+1(u, α) =
1

(u + α)k+1

∫
(u + α)kPs,k(u, α) du
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and

(7) Qs,k+1(u, α) =
1

uk+1

∫
ukQs,k(u, α) du ,

where the constants of integration (which may depend on α) are chosen so
that the right-hand sides above are homogeneous polynomials in Q[u, α]. We
are not making claims yet that the constants can be so chosen. The point
here is that if an identity like (5) is to be possible, then the above must all
be possible. We are therefore motivated to use (6) and (7) to construct our
polynomials.

We have not yet defined Pk,k(u, α) and Qk,k(u, α), but it is convenient
to do so. We define

Pk,k(u, α) = uk and Qk,k(u, α) = (u + α)k .

Thus,

(8) (u + α)kPk,k(u, α)− ukQk,k(u, α) = 0 .

Motivated by the above, we integrate both sides of this equation with respect
to u. Observe that with the change of variable v = u + α and a suitable
choice of constants of integration∫

(u + α)kPk,k(u, α) du =
∫

(u + α)kuk du =
∫

vk(v − α)k dv

=
k∑

j=0

(−1)j

(
k

j

)
αj

∫
v2k−j dv

=
k∑

j=0

(−1)j

(
k

j

)
1

2k − j + 1
αj(u + α)2k−j+1 .

This last expression is divisible by (u + α)k+1 so that after integrating the
first term in (8), we can rewrite it in the form (u + α)k+1Pk,k+1(u, α) for
some Pk,k+1(u, α) ∈ Q[u, α]. Similarly, after integration, we can rewrite
the second term in (8) in the form uk+1Qk,k+1(u, α). In other words, after
integrating in (8) and replacing k with k − 1, we are led to

(9) (u + α)kPk−1,k(u, α)− ukQk−1,k(u, α) = Gk−1,k(u, α),

where

Pk−1,k(u, α) =
k−1∑
j=0

(−1)j

(
k − 1

j

)
1

2k − j − 1
αj(u + α)k−j−1 ,

Qk−1,k(u, α) =
k−1∑
j=0

(
k − 1

j

)
1

2k − j − 1
αjuk−j−1 ,
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and Gk−1,k(u, α) is necessarily a polynomial depending only on α. It is
not difficult to determine Gk−1,k(u, α) explicitly, but observe that since
Pk−1,k(u, α) is of degree k−1 in u, it is not divisible by uk so that (9) implies
that Gk−1,k(u, α) 6≡ 0. Also, the left-hand side of (9) is a homogeneous
polynomial of degree 2k − 1 so that Gk−1,k(u, α) must be also.

We now continue by repeatedly integrating both sides of (9). It is easy
to check that after a total of k − s integrations (replacing k by k − 1 after
each integration), one is led to (5) with

Ps,k(u, α) =
s∑

j=0

(−1)j

(
s

j

)
× 1

(2s− j + 1)(2s− j + 2) . . . (2s− j + (k − s))
αj(u + α)s−j

and

Qs,k(u, α) =
s∑

j=0

(
s

j

)
1

(2s− j + 1)(2s− j + 2) . . . (2s− j + (k − s))
αjus−j .

The polynomials thus constructed are in Q[u, α]; after multiplication by
(k+s)!/s!, we are left with polynomials in Z[u, α]. The resulting polynomials
can easily be rewritten in the form given by the lemma.

Corollary. Let Ps,k(u, α) and Qs,k(u, α) be as in Lemma 3. Then

Qs,k(u, α) = Ps,k(u + α,−α) .

This simple Corollary will be useful in the remainder of this section. It
is also motivated by the fact that if one replaces α with −α and then u with
u + α in (5), then one is left with an equation which is similar to (5).

The polynomials Ps,k(u, α) given by Lemma 3 here are the same as those
obtained from Lemma 2 of [7] with e = f = s and x = α/(u + α). Observe
that (5) implies that for j ∈ {0, 1, . . . , s}, the coefficient of αs−juk+j in
(u + α)kPs,k(u, α) is the same as the coefficient of αs−juj in Qs,k(u, α). In
particular, (5) and Ps,k(u, α) uniquely determine Qs,k(u, α). This implies
that if we obtain Qs,k(u, α) from Lemma 2 of [7] in the same manner that we
obtained Ps,k(u, α), then we must get the same Qs,k(u, α) given in Lemma 3.
Hence, from the work of Huxley and Nair [7] we get

Qs,k(u, α) =
s∑

j=0

(k − s + j − 1)!
(k − s− 1)!

· (2s− j)!
s!

(
s

j

)
αj(u + α)s−j .

The Corollary of Lemma 3 implies that Ps,k(u, α) = Qs,k(u+α,−α). Thus,
we obtain the following new expression for Ps,k(u, α).
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Lemma 4.

Ps,k(u, α) =
s∑

j=0

(−1)j (k − s + j − 1)!
(k − s− 1)!

· (2s− j)!
s!

(
s

j

)
αjus−j .

Before continuing, we give a brief description of what our immediate
goal is. For the moment, fix s as in Lemma 3. Let r be a positive integer.
We seek next to find r + 1 polynomials P0, . . . , Pr in Z[u, α1, . . . , αr] which
cause the expression

(10)
P0

uk
+

P1

(u + α1)k
+ . . . +

Pr

(u + α1 + . . . + αr)k

to be small in absolute value. One of course can find such Pj which cause
the expression to be 0. In addition, however, we will want to choose the Pj

so that at least one of them is non-zero and so that they are each themselves
fairly small in absolute value. We will also wish to view u as being large
in comparison to the αj . Lemma 3 corresponds to the case in which r = 1
with P0 = Ps,k(u, α1) and P1 = −Qs,k(u, α1). It was observed by Huxley
and Nair [7] that by increasing the size of r to 2, it is possible to decrease
the maximum size of the Pj in Lemma 3 without altering the relative size
of the expression in (10). The main idea in this paper is centered around
this idea of Huxley and Nair. We will choose r to be considerably larger in
order to decrease the maximum size of the Pj in (10). We will do this at the
cost of increasing the size of the expression in (10), but the factor we will
be increasing this expression by will be considerably smaller than the factor
we will be decreasing the size of the Pj by. This latter fact will enable us to
get the results mentioned in the introduction.

For simplicity in notation, we momentarily fix s and define

P (u, α) = Ps,k(u, α) and Q(u, α) = Qs,k(u, α) .

We consider the following array:

P (u, α1) P (u, α1+α2) P (u, α1+α2+α3) . . .

P (u+α1,−α1) P (u+α1, α2) P (u+α1, α2+α3) . . .

P (u+α1+α2,−α1−α2) P (u+α1+α2,−α2) P (u+α1+α2, α3) . . .

P (u+α1+α2+α3,−α1−α2−α3) P (u+α1+α2+α3,−α2−α3) P (u+α1+α2+α3,−α3) . . .

...
...

...

so that if fi,j is the element in the ith row and jth column, then

(11) fi,j =

{
P (u +

∑i−1
l=1 αl,−

∑i−1
l=j αl) if j ≤ i− 1,

P (u +
∑i−1

l=1 αl,
∑j

l=i αl) if j ≥ i.
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We form our choice of polynomials Pi in (10) by considering a divided dif-
ference to approximate an (r − 1)th derivative of ±P (u, α) with respect to
α. To obtain Pi, we make use of elements from the (i + 1)th row above and
the first r columns.

As an example, we consider the case r = 2. We take

P0 = f1,2 − f1,1, P1 = −(f2,2 − f2,1), and P2 = f3,2 − f3,1 .

By the definition of fi,j and the Corollary to Lemma 3, in this case we get

P0 = P (u, α1 + α2)− P (u, α1), P1 = −P (u + α1, α2) + Q(u, α1) ,

and

P2 = Q(u + α1, α2)−Q(u, α1 + α2) .

Observe that P (u, α) and Q(u, α) are polynomials of total degree s in u
and α and of degree s in the variable u whereas P0, P1, and P2 are of total
degree s in u and α but only of degree s−1 in u. If we clear the denominator
in (10) and rearrange terms, we obtain

(u + α1)k((u + α1 + α2)kP (u, α1 + α2)− ukQ(u, α1 + α2))

− (u + α1 + α2)k((u + α1)kP (u, α1)− ukQ(u, α1))

− uk((u + α1 + α2)kP (u + α1, α2)− (u + α1)kQ(u + α1, α2)) .

By Lemma 3, the above is a polynomial of degree at most 2k − s − 1 in
the variable u. Viewing α1 and α2 as small compared to u, we get that
the expression in (10) is of order � max{|α1|, |α2|}2s+1u−(k+s+1). With
r = 1, P0 = Ps,k(u, α), and P1 = −Qs,k(u, α), Lemma 3 gives that (10) is
� |α1|2s+1u−(k+s+1). We will not distinguish yet between the relative sizes
of the |αj | so that the bounds we get on the expression in (10) for the cases
that r = 1 and r = 2 are the same. Thus, we have decreased the maximum
size of the Pj without altering the bounds we obtain for the expression in
(10). This corresponds then to the role of the polynomials constructed by
Huxley and Nair in [7, Lemma 6].

For general r, we proceed as follows. Consider i and j with 1 ≤ i ≤ r+1
and 1 ≤ j ≤ r. Set

α′l =

{αl if 1 ≤ l ≤ i− 2,
αl + αl+1 if l = i− 1,
αl+1 if i ≤ l ≤ r − 1,

and

α′′l =


α′l if 1 ≤ l ≤ j − 2,
α′l + α′l+1 if l = j − 1,
α′l+1 if j ≤ l ≤ r − 2.
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Define

Ai,j = A
(r)
i,j =

∏
1≤l1≤l2≤r−2

(α′′l1 + α′′l1+1 + . . . + α′′l2) ,

where the superscript will be used for later purposes. In the next section,
we will also need to distinguish between different values of Ai,j obtained
from different choices of α1, . . . , αr; we will write Ai,j = Ai,j(α1, . . . , αr) for
such purposes. One easily checks that

(12) Ai,j =
{

Aj+1,i if i ≤ j,
Aj,i−1 if i > j.

Let

(13) Pi−1 = (−1)i−1
r∑

j=1

(−1)jAi,jfi,j .

The definitions of P0, . . . , Pr given by (13) are simply divided differences of
±P (u, α) which approximate the (r−1)th partial derivative of±P (u, α) with
respect to α. There is an aspect of these definitions which is very important
to us. Although the (r − 1)th derivatives are taken with respect to α, the
degreee of the polynomial with respect to u is decreased by r − 1. To see
this, observe that as a polynomial in u, the coefficient of us−j in P (u, α)
is a polynomial of degree ≤ j in α; in fact, it is a multiple of αj . Hence,
the divided difference above will result in the coefficients of us, . . . , us−r+2

being 0. In other words, each Pi is a polynomial of degree at most s− r + 1
in u.

From (13), we get

r+1∑
i=1

Pi−1

(u + α1 + . . . + αi−1)k

=
r+1∑
i=1

r∑
j=i

(−1)i+j−1 Ai,jfi,j

(u + α1 + . . . + αi−1)k

+
r+1∑
i=1

i−1∑
j=1

(−1)i+j−1 Ai,jfi,j

(u + α1 + . . . + αi−1)k
.

Observe that in the first double sum on the right-hand side above, the range
on i may be restricted to 1 ≤ i ≤ r since when i = r + 1 the inner sum is
vacuously 0. Also, (12) implies that

r+1∑
i=1

i−1∑
j=1

(−1)i+j−1 Ai,jfi,j

(u + α1 + . . . + αi−1)k
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=
r∑

j=1

r+1∑
i=j+1

(−1)i+j−1 Aj,i−1fi,j

(u + α1 + . . . + αi−1)k

=
r∑

j=1

r∑
i=j

(−1)i+j Aj,ifi+1,j

(u + α1 + . . . + αi)k

=
r∑

i=1

r∑
j=i

(−1)i+j Ai,jfj+1,i

(u + α1 + . . . + αj)k
.

From the Corollary to Lemma 3 and (11), we now get

(14)
r+1∑
i=1

Pi−1

(u + α1 + . . . + αi−1)k

=
r∑

i=1

r∑
j=i

(−1)i+j−1

(
Ai,jfi,j

(u + α1 + . . . + αi−1)k
− Ai,jfj+1,i

(u + α1 + . . . + αj)k

)

=
r∑

i=1

r∑
j=i

(−1)i+j−1Ai,j

(
P (u + α1 + . . . + αi−1, αi + . . . + αj)

(u + α1 + . . . + αi−1)k

−Q(u + α1 + . . . + αi−1, αi + . . . + αj)
(u + α1 + . . . + αj)k

)
.

Note that the left-hand side of (14) is the expression in (10). To get an
estimate on this expression, we use the definition of the Ai,j and apply
Lemma 3 to the right-hand side of (14). We arrive at

Lemma 5. Let r and s be integers with 1 ≤ r ≤ s + 1 ≤ k. Let B and
t be positive real numbers with B ≤ t1/n. Suppose that |u| � t1/n and that
|αj | � B for 1 ≤ j ≤ r. Define P0, . . . , Pr as in (13). Then each Pi is
a polynomial of degree at most s − r + 1 in u and of total degree at most
s + ((r − 1)(r − 2)/2) in the variables u, α1, . . . , αr. Furthermore,

P0

uk
+

P1

(u + α1)k
+ . . . +

Pr

(u + α1 + . . . + αr)k

� B2s+1 +((r−1)(r−2)/2)t−(k+s+1)/n ,

where the implied constants depend on r, k, and s.

Next, we examine Pr more closely. We first obtain a lemma which will
help us in this regard. Let l be a non-negative integer, and consider the
expression

E =
r∑

j=1

(−1)jAr+1,j(αj + αj+1 + . . . + αr)l .
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E is a polynomial in α1, . . . , αr and can be viewed as a divided difference
which is divisible by ∏

1≤l1≤l2≤r−1

(αl1 + αl1+1 + . . . + αl2) .

It is easily checked that the remaining factor is 0 if l < r − 1 and a homo-
geneous polynomial of degree l − r + 1 if l ≥ r − 1. In the latter case, the
next lemma asserts that whenever

∑r
j=1 ej = l − r + 1 with e1, . . . , er non-

negative integers, the coefficient of αe1
1 αe2

2 . . . αer
r in the remaining factor is

negative.

Lemma 6. Let r ≥ 1. Given the notation above,

E = −
( ∏

1≤l1≤l2≤r−1

(αl1 + . . . + αl2)
)
E′ ,

where E′ = 0 if l < r− 1 and otherwise E′ is a homogeneous polynomial in
Z[α1, . . . , αr] of degree l − r + 1 having positive coefficients.

If l < r − 1, the result is clear. To prove the lemma, we suppose that
l ≥ r − 1. We use induction on r. The case r = 1 is easily seen to be
true. For r = 2, E = −(α1 + α2)l + αl

2, and the result follows by applying
the binomial theorem and factoring out −α1. For j ∈ {1, . . . , r}, Ar+1,j is a
polynomial which is independent of αr. Since the product on the right-hand
side above is independent of αr, E and E′ have the same degree with respect
to αr. Hence, E is of degree at most l− 1 in αr. For r > 2, we consider the
coefficient of αi

r in E where i ∈ {0, . . . , l − 1}. It is
r∑

j=1

(−1)jAr+1,j

(
l

i

)
(αj + αj+1 + . . . + αr−1)l−i

=
(

l

i

) ∏
1≤l′≤r−1

(αl′ + αl′+1 + . . . + αr−1)

×
r−1∑
j=1

(−1)jA′j(αj + αj+1 + . . . + αr−1)l−i−1 ,

for some polynomials A′j in Z[α1, . . . , αr−1]. We clarify here that the Ar+1,j

occurring above are A
(r)
r+1,j . It is easily checked that A′j = A

(r−1)
r,j for 1 ≤

j ≤ r − 1, and the lemma follows.
From (13), we have

Pr = (−1)r
r∑

j=1

(−1)jAr+1,jP (u + α1 + . . . + αr,−αj − αj+1 − . . .− αr) .
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We write

P (u, α) =
s∑

l=0

(−1)lalα
lus−l ,

where by Lemma 4, al > 0 for each l ∈ {0, 1, . . . , s}. Thus, from Lemma 6,
we get

Pr = (−1)r
r∑

j=1

(−1)jAr+1,j

×
s∑

l=0

al(αj + αj+1 + . . . + αr)l(u + α1 + . . . + αr)s−l

= (−1)r
s∑

l=0

al(u + α1 + . . . + αr)s−l

×
r∑

j=1

(−1)jAr+1,j(αj + αj+1 + . . . + αr)l

= (−1)r+1
( ∏

1≤l1≤l2≤r−1

(αl1 + . . . + αl2)
)

×
s∑

l=0

al(u + α1 + . . . + αr)s−lE′l ,

where E′l = 0 if l < r− 1 and otherwise E′l is a homogeneous polynomial in
Z[α1, . . . , αr] of degree l − r + 1 with positive coefficients. The next result
follows.

Lemma 7. Let r be an integer with 1 ≤ r ≤ s + 1, and let Pr be defined
as in (13). Then

Pr = (−1)r+1
( ∏

1≤l1≤l2≤r−1

(αl1 + . . . + αl2)
)
L(u, α1, . . . , αr) ,

where L(u, α1, . . . , αr) is a homogeneous polynomial in Z[u, α1, . . . , αr] of
degree s− r + 1 with positive coefficients.

Lemmas 4 and 7 are considerably stronger than we require. To obtain
Lemma 7, we needed that the coefficients of P (u, α) alternate in sign as
above rather than the full strength of Lemma 4. Furthermore, we will use
only the fact that L(0, 0, . . . , 0, αr) 6= 0 rather than the full strength of
Lemma 7.

4. Further preliminaries. We return now to our discussion at the end
of Section 2. Fix E as in Lemma 1. Fix J ⊆ (x, x + h] with |J | = H, where
H is a real number ≥ 1 to be specified momentarily. Let y ∈ J . Recall
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the notation m(u) in the definition of SJ . For any u ∈ SJ(t, 2nt) and any
σ ∈ {σ1, . . . , σn}, we get

|(m(u)− σ(µ))− y| ≤ H + |σ(µ)| � H .

Thus,

(15)
m(u)− σ(µ)

σ(u)k
=

y

σ(u)k
+ O

(
H

|σ(u)|k

)
=

y

σ(u)k
+ O

(
H

tk/n

)
.

Note that the above holds for any u ∈ SJ(t, 2nt). We will make use of

Lemma 8. Let d be an integer ≥ 2, and let φ1, . . . , φd be any d functions
from R into the real numbers having the property that for each α ∈ R, there
is a φj with 1 ≤ j ≤ d such that |φj(α)| ≥ 1. Let r be a positive integer , and
let r′ = (r + 2)! ! . . . ! where d− 1 factorials appear to the right of r + 2. Let
α1, . . . , αr′ ∈ R. Then there exist non-negative integers i(0), . . . , i(r) with
i(0) < i(1) < . . . < i(r) ≤ r′ and a φ ∈ {φ1, . . . , φd} such that

|φ(αi(j)+1 + αi(j)+2 + . . . + αi(j+1))| ≥ 1 for all j ∈ {0, . . . , r − 1} .

P r o o f. To see why Lemma 8 holds, we consider a double induction on
d and r. Suppose that d = 2. Since there is a φj with 1 ≤ j ≤ d such
that |φj(α)| ≥ 1, one can easily handle the case that r = 1. Suppose we
know the result is true with r ≥ 2 replaced by r − 1 (and d = 2). Let
r′ = (r + 2)!, and consider α1, . . . , αr′ ∈ R. For each j′ ∈ {0, . . . , r + 1},
we can find φ′j′ ∈ {φ1, φ2} and non-negative integers i(j′, 0), . . . , i(j′, r − 1)
with i(j′, 0) < . . . < i(j′, r − 1) ≤ (r + 1)! and

|φ′j′(αi(j′,j)+j′(r+1)!+1 + αi(j′,j)+j′(r+1)!+2 + . . . + αi(j′,j+1)+j′(r+1)!)| ≥ 1

for all j ∈ {0, . . . , r − 2}. Observe that if 1 ≤ j1 + 1 < j2 ≤ r + 1 and
φ′j1 6= φ′j2 , then since we are in the case d = 2, either

|φ′j1(αi(j1,r−1)+j1(r+1)!+1 + αi(j1,r−1)+j1(r+1)!+1 + . . . + αi(j2,0)+j2(r+1)!)| ≥ 1

or

|φ′j2(αi(j1,r−1)+j1(r+1)!+1 +αi(j1,r−1)+j1(r+1)!+1 + . . .+αi(j2,0)+j2(r+1)!)| ≥ 1 .

In either case, one deduces the result in Lemma 8 (for example, in first case,
take i(j) = i(j1, j)+j1(r+1)! if 0 ≤ j ≤ r−1 and i(r) = i(j2, 0)+j2(r+1)!).
Hence, we obtain that φ′j1 = φ′j2 for all j1, j2 ∈ {0, . . . , r+1}. For simplicity,
suppose this common value is φ1. Observe that we can take φ = φ1 in
Lemma 8 for the case d = 2 if

|φ1(αi(0,r−1)+1 + αi(0,r−1)+2 + . . . + αi(1,r−1)+(r+1)!)| ≥ 1 .

Therefore, we can suppose that

|φ2(αi(0,r−1)+1 + αi(0,r−1)+2 + . . . + αi(1,r−1)+(r+1)!)| ≥ 1
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and similary that

|φ2(αi(j′,r−1)+j′(r+1)!+1 + αi(j′,r−1)+j′(r+1)!+2

+ . . . + αi(j′+1,r−1)+(j′+1)(r+1)!)| ≥ 1

for each j′ ∈ {0, . . . , r}. It follows that we can take φ = φ2 in Lemma 8
completing the case d = 2.

Assuming Lemma 8 holds with d ≥ 3 replaced by d − 1, general result
follows by induction upon considering

φ′j(α) =
{

φj(α) if j ≤ d− 2,
max{|φd−1(α)|, |φd(α)|} if j = d− 1.

More specifically, we can find non-negative integers i(0), . . . , i(r) with i(0) <
i(1) < . . . < i(r) ≤ r′ = (r + 2)! ! . . . ! and a φ′j ∈ {φ′1, . . . , φ′d−1} such that

|φ(αi(j)+1 + αi(j)+2 + . . . + αi(j+1))| ≥ 1 for all j ∈ {0, . . . , (r + 2)!− 1} .

If j ≤ d−2, we are through. If j = d−1, then the result already established
for d = 2 completes the argument.

Divide the complex plane into disjoint quadrants Q1, . . . , Q4 defined by

Q1 = {a + bi : a = b = 0 or both a > 0 and b ≥ 0} ,

Q2 = {a + bi : a ≤ 0 and b > 0} ,

Q3 = {a + bi : a < 0 and b ≤ 0} ,

Q4 = {a + bi : a ≥ 0 and b < 0} .

We will use Lemma 8 with d = 4n and

φ4i+j(α) =
{

σi+1(α) if σi+1(α) ∈ Qj ,
0 otherwise,

where i ∈ {0, . . . , n − 1} and j ∈ {1, 2, 3, 4}. Since for every α ∈ R, there
is a σ ∈ {σ1, . . . , σn} such that |σ(α)| ≥ 1 and a j ∈ {1, 2, 3, 4} such that
σ(α) ∈ Qj , the conditions of the lemma are met. We now fix u′ ∈ SJ(t, 2nt).
Let r and s be integers with 1 ≤ r ≤ s + 1 ≤ k. We will show that for B
appropriately chosen, there are � 1 numbers α′ such that ‖α′‖ ≤ B and
u′ + α′ ∈ SJ(t, 2nt). We may therefore assume that there are at least
r′ = (r + 2)! ! . . . ! (with d− 1 factorials) such non-zero α′. We denote these
by α′1, α

′
1 +α′2, . . . , α

′
1 + . . .+α′r′ . Observe that ‖α′1 + . . .+α′j‖ ≤ B for each

j ∈ {1, . . . , r′} and that ‖α′i+α′i+1+. . .+α′j‖ ≤ 2B whenever 1 ≤ i ≤ j ≤ r′.
By Lemma 8, there exist i(0), . . . , i(r) with 0 ≤ i(0) < i(1) < . . . < i(r) ≤ r′

and a φ ∈ {φ1, . . . , φd} such that if

αj+1 = α′i(j)+1 + α′i(j)+2 + . . . + α′i(j+1) for all j ∈ {0, . . . , r − 1} ,

then
|φ(αj+1)| ≥ 1 for all j ∈ {0, . . . , r − 1} .
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Since each φ(αj) is necessarily in the same quadrant of the complex plane,
so are any sums composed of the φ(αj)’s. In particular, for some σ′ ∈
{σ1, . . . , σn},
(16) |σ′(αi + . . . + αj)| ≥ 1 for all i ∈ {1, . . . , r} and j ∈ {i, . . . , r} .

We fix αj as above and u = u′ + α′1 + . . . + α′i(0). Then u + α1 + . . . + αj ∈
SJ(t, 2nt) for each j ∈ {1, . . . , r} and ‖αi + αi+1 + . . . + αj‖ ≤ 2B for
1 ≤ i ≤ j ≤ r. For every α′ ∈ R with ‖α′‖ ≤ B and u′ + α′ ∈ SJ(t, 2nt),
there is an α with ‖α‖ ≤ 2B and u + α1 + . . . + αr + α = u′ + α′; thus, it
suffices to show that there are � 1 values of α ∈ R such that ‖α‖ ≤ 2B
and u + α1 + . . . + αr + α ∈ SJ(t, 2nt). Let αr+1 denote any such α. Let
P0, P1, . . . , Pr be any algebraic integers in K. Then either

(17)
r∑

j=0

v(u + α1 + . . . + αj) Pj = 0

or there is a σ ∈ {σ1, . . . , σn} such that

(18)
∣∣∣σ( r∑

j=0

v(u + α1 + . . . + αj)Pj

)∣∣∣ ≥ 1 .

Suppose for the time being that (17) does not hold, and consider any σ ∈
{σ1, . . . , σn}. Then (15) implies that

(19) σ
( r∑

j=0

v(u + α1 + . . . + αj)Pj

)
=

r∑
j=0

σ(E)(m(u + α1 + . . . + αj)− σ(µ))
σ(u + α1 + . . . + αj)k

σ(Pj)

=
r∑

j=0

σ(E)y
σ(u + α1 + . . . + αj)k

σ(Pj) + O

(
max0≤j≤r{|σ(Pj)|}H

tk/n

)

= σ(E)y σ

( r∑
j=0

Pj

(u + α1 + . . . + αj)k

)
+ O

(
max0≤j≤r{|σ(Pj)|}H

tk/n

)
.

Observe that if B > t1/n, then the upper bound on |SJ(t, 2nt)| in
Lemma 2 will be dominated by the number 1. Now, suppose that B ≤ t1/n.
We consider Pj for j ∈ {0, . . . , r} as in (13). Then Lemma 5 implies that

max
0≤j≤r

{|σ(Pj)|} � Br(r−1)/2t(s−r+1)/n .

Since Pj is a polynomial,

σ(Pj(u, α1, . . . , αr)) = Pj(σ(u), σ(α1), . . . , σ(αr)) ,
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and Lemma 5 implies that

σ

( r∑
j=0

Pj

(u + α1 + . . . + αj)k

)
� B2s+1 +((r−1)(r−2)/2)t−(k+s+1)/n .

The idea now is to choose B and H so that (18) cannot hold and, hence, so
that (17) must hold. Observe that y ∈ (x, x + h]. Let

w = w(r) =
(r − 1)(r − 2)

2
.

We consider
B ≤ c6t

(k+s+1)/(n(2s+1+w))x−1/(2s+1+w)

and
H ≤ c7t

(k−s+r−1)/nB−r(r−1)/2

= c7t
−(2s+2−r)(r2+2s−2k−3r+2)/(2n(2s+1+w))xr(r−1)/(2(2s+1+w)) ,

where c6 and c7 are sufficiently small positive constants. Observe that if
r = 2, then w = 0 and our choice of B and H is the same as that of Huxley
and Nair given at the end of Section 2. It is easily checked that (19) implies
(18) cannot hold for any σ ∈ {σ1, . . . , σn}. Thus, (17) holds.

Observe that (17) holds whenever u ∈ SJ(t, 2nt) and α1, α2, . . . , αr are
such that u+α1+. . .+αj ∈ SJ(t, 2nt) and ‖αj‖ ≤ 2B for each j ∈ {1, . . . , r}.
In particular, we can replace αr by αr + αr+1 in (17), and we can replace
αr−1 by αr−1 + αr and αr by αr+1 in (17). In other words, we get the
equations

(20)
r−1∑
i=0

v(u + α1 + . . . + αi) Pi(u, α1, . . . , αr−1, αr + αr+1)

+v(u + α1 + . . . + αr+1) Pr(u, α1, . . . , αr−1, αr + αr+1) = 0

and

(21)
r−2∑
i=0

v(u + α1 + . . . + αi) Pi(u, α1, . . . , αr−2, αr−1 + αr, αr+1)

+ v(u + α1 + . . . + αr)Pr−1(u, α1, . . . , αr−2, αr−1 + αr, αr+1)

+ v(u + α1 + . . . + αr+1) Pr(u, α1, . . . , αr−2, αr−1 + αr, αr+1) = 0 .

Recall that we are viewing u, α1, . . . , αr as being fixed and wanting to
show that there are � 1 values of αr+1 as above. Since u, α1, . . . , αr are
fixed, the values of v(u+α1 + . . .+αi) for i ∈ {0, . . . , r} are fixed. We elimi-
nate v(u+α1 + . . .+αr+1) from (20) and (21) to obtain a polynomial which
any αr+1 as above must satisfy. More specifically, we multiply the expression
on the left-hand side of (20) by Pr(u, α1, . . . , αr−2, αr−1+αr, αr+1) and sub-
tract the product of the left-hand side of (21) with Pr(u, α1, . . . , αr−1, αr +
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αr+1). Call the result M = M(αr+1) = M(u, α1, . . . , αr, αr+1). Then M is
a polynomial in αr+1 which by Lemma 5 is of degree ≤ 2s + (r − 1)(r − 2).
Momentarily, we shall obtain the exact value of this degree. To show that
there are � 1 choices for αr+1, we observe that αr+1 is a root of M so that
it suffices to show simply that M 6≡ 0.

Lemma 4 implies that if P =
∑s

l=0(−1)lalα
lus−l, then we have as =

(k − 1)!/(k − s − 1)! > 0. If i = r + 1 or j = r, then Ai,j does not depend
on αr; and if 1 ≤ i ≤ r and 1 ≤ j ≤ r− 1, then Ai,j is a polynomial in αr of
degree r−2 ≤ s−1. Thus, for 0 ≤ i ≤ r−1, we get that Pi as defined in (13)
is a polynomial of degree s in αr with leading coefficient (−1)r+s+iAi+1,ras;
and by Lemma 7, Pr is a polynomial of degree s− r + 1 in αr with leading
coefficient (−1)r+1(

∏
1≤l1≤l2≤r−1(αl1 + . . .+αl2))b for some positive integer

b. To simplify notation, we set

F (α1, . . . , αr−1) =
∏

1≤l1≤l2≤r−1

(αl1 + . . . + αl2)

and

G(α1, . . . , αr−1) =
∏

1≤l≤r−1

(αl + . . . + αr−1) .

Then M is a polynomial in αr+1 of degree ≤ 2s− r + 1, and the coefficient
of α2s−r+1

r+1 in M is

r−1∑
i=0

(−1)s+1+iasbv(u + α1 + . . . + αi)

×Ai+1,r(α1, . . . , αr−1, αr + αr+1)F (α1, . . . , αr−2, αr−1 + αr)

−
r−2∑
i=0

(−1)s+1+iasbv(u + α1 + . . . + αi)

×Ai+1,r(α1, . . . , αr−2, αr−1 + αr, αr+1)F (α1, . . . , αr−1)
−(−1)s+rasbv(u + α1 + . . . + αr)

×Ar,r(α1, . . . , αr−2, αr−1 + αr, αr+1)F (α1, . . . , αr−1) .

To prove that M 6≡ 0, it suffices to show that the expression above is not 0.
We collect like terms to rewrite the expression in the form

(22) (−1)s+1asb
( ∏

1≤l1≤l2≤r−2

(αl1 + . . . + αl2)
)

×
r∑

i=0

(−1)iDiv(u + α1 + . . . + αi) ,

and compute Di for 0 ≤ i ≤ r. Observe that
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(23) F (α1, . . . , αr−1) =
( ∏

1≤l1≤l2≤r−2

(αl1 + . . . + αl2)
)
G(α1, . . . , αr−1) .

In particular, this implies that the product in (23) divides both F (α1, . . .
. . . , αr−1) and F (α1, . . . , αr−2, αr−1 + αr) so that each Di in (22) lies in
Z[α1, . . . , αr]. Consider i fixed with i ∈ {0, . . . , r − 2}. We define

α′l =

{αl if 1 ≤ l ≤ i− 1,
αl + αl+1 if l = i,
αl+1 if i + 1 ≤ l ≤ r − 1,

and

α′′l =
{

α′l if 1 ≤ l ≤ r − 3,
α′l + α′l+1 if l = r − 2.

One checks that( ∏
1≤l1≤l2≤r−2

(α′l1 + . . . + α′l2)
)
G(α1, . . . , αr−2, αr−1 + αr)

and ( ∏
1≤l1≤l2≤r−2

(α′′l1 + . . . + α′′l2)
)
G(α1, . . . , αr−1)

are each divisible by

1
α′r−1

( ∏
1≤l1≤l2≤r−1

(α′l1 + . . . + α′l2)
)

.

In addition, each has a remaining linear factor. The linear factors are αi+1+
. . . + αr and αi+1 + . . . + αr−1, respectively. We easily conclude that

(24) Di =
∏

1≤l1≤l2≤r−1

(α′l1 + . . . + α′l2)

for 0 ≤ i ≤ r − 2 (where the definition of α′l depends on i). Similarly, one
can check that (24) holds for i = r− 1 and i = r and α′l in each case defined
as above. Thus, to show that M 6≡ 0, it suffices to show that

r∑
i=0

(−1)iDiv(u + α1 + . . . + αi) 6= 0 .

Analogous to (19), we get that for any σ ∈ {σ1, . . . , σn},

(25) σ
( r∑

i=0

(−1)iDiv(u + α1 + . . . + αi)
)
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=
r∑

i=0

(−1)iσ(E)(m(u + α1 + . . . + αi)− σ(µ))
σ(u + α1 + . . . + αi)k

σ(Di)

= σ(E)y
r∑

i=0

(−1)iσ(Di)
σ(u + α1 + . . . + αi)k

+
r∑

i=0

O

(
|σ(Di)|H

tk/n

)
.

From (24), we see that the first of these last 2 sums can be viewed as a
divided difference. In particular, we get

(26)
∣∣∣∣ r∑

i=0

(−1)iσ(Di)
σ(u + α1 + . . . + αi)k

∣∣∣∣
�

∣∣∣σ( ∏
1≤l1≤l2≤r

(αl1 + . . . + αl2)
)∣∣∣t−(k+r)/n .

In fact, the left-hand side of (26) can be written as the quotient of 2 poly-
nomials in Z[u, α1, . . . , αr] with the numerator divisible by the product ap-
pearing on the right-hand side of (26). Observe also that each Di divides
the product on the right-hand side of (26). Recalling (16), we take σ = σ′.
Then∣∣∣σ( ∏

1≤l1≤l2≤r

(αl1 + . . . + αl2)
)/

Dj

∣∣∣ ≥ 1 for every j ∈ {0, . . . , r} .

Thus, we get∣∣∣∣σ( r∑
i=0

(−1)iDi

(u + α1 + . . . + αi)k

)∣∣∣∣ � |σ(Dj)|t−(k+r)/n

for every j ∈ {0, . . . , r} .

Since y ∈ (x, x + h], we obtain that the right-hand side of (25) will be
non-zero provided that

H ≤ c8xt−r/n ,

for some sufficiently small constant c8. Conditionally, then, we get M 6≡ 0.
We apply Lemma 2 to get the following result.

Lemma 9. Let r and s be integers with 1 ≤ r ≤ s + 1 ≤ k, and let
w = (r−1)(r−2)/2. Then there exist positive constants c6 and c9 such that
if

B = c6t
(k+s+1)/(n(2s+1+w))x−1/(2s+1+w)

and
H ≤ c9 min{t(k−s+r−1)/nB−r(r−1)/2, xt−r/n} ,

then whenever J ⊆ (x, x + h] with |J | ≤ H,

|SJ(t, 2nt)| � t

Bn
+ 1 � t−(k−s−w)/(2s+1+w)xn/(2s+1+w) + 1 .
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5. The proof of the Theorem. In this section, we show how to use
Lemma 9 to prove the Theorem. We consider only n ≥ 2 since the case
n = 1 follows from the work of Nair [10]. We take s = k−n+r−1. Observe
that the condition 1 ≤ r ≤ s+1 ≤ k of Lemma 9 is met provided 1 ≤ r ≤ n
and this follows easily from the definition of r in the Theorem. We set

(27) B = c6t
(k+s+1)/(n(2s+1+w))x−1/(2s+1+w) and H = h .

We now show that the inequality on H in Lemma 9 holds provided that

(28) t ≤ c10x
(n+r−1)/(2k−n+r) .

With t as above, one easily checks that h ≤ c9xt−r/n. We now show that

(29) h ≤ c9t
(k−s+r−1)/nB−r(r−1)/2 .

Using the value of B given by (27), we get that the exponent on t in (29) is

k − s + r − 1
n

− r(r − 1)(k + s + 1)
2n(2s + 1 + w)

= 1− r(r − 1)(2k − n + r)
n(4k − 4n + r2 + r)

=
(2n− r(r − 1))(2k − 2n + r)

n(4k − 4n + r2 + r)
> 0 .

Thus, the right-hand side of (29) obtains its minimum when t is minimal.
Recalling from Section 2 that we are interested in t ≥ c2T � h

√
log x, we

use the definition of h and (27) to obtain that the right-hand side of (29) is
� c−l1h(

√
log x)l2 where l1 = −r(r − 1)(k + s + 1)/(2n(2s + 1 + w)) and

where l2 is the exponent on t in (29) given above and, hence, positive. Since
x is sufficiently large, (29) holds.

From Lemma 9 we get

|S(t, 2nt)| � t−(k−s−w)/(2s+1+w)xn/(2s+1+w) + 1

if (28) holds. Observe that if ukv = E(m − µ) as in Lemma 1, then |u| �
x1/k. Thus, |S(t, 2nt)| = 0 unless t � xn/k. We suppose now that t � xn/k.
It is easily checked then that the first term on the right-hand side above is
> 1. Also, k − s− w > 0. Hence,

|S(cn
2T, c10x

(n+r−1)/(2k−n+r))|
� T−(k−s−w)/(2s+1+w)xn/(2s+1+w) � xn/(2k−n+r) .

Although our main application of Lemma 9 is that given above, we con-
sider applying the lemma with a different value of r, namely r = 1. It is
necessary, however, to avoid altering the value of h which depends on the
value of r given above. In other words, we consider h = cxn/(2k−n+r) with
r fixed as in the statement of the Theorem, and we consider Lemma 9 with
the role of r replaced with 1 and with s = k − n. One easily gets that the
lemma applies and
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|S(c10x
(n+r−1)/(2k−n+r),∞)|

� (x(n+r−1)/(2k−n+r))−n/(2k−2n+1)xn/(2k−2n+1) � xn/(2k−n+r) .

The Theorem now follows.
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