Mordell–Weil rank of the jacobians of the curves defined by $y^p = f(x)$

by

NAOKI MURABAYASHI (Tokyo)

1. Introduction. It is an interesting problem to study, for a given abelian variety A defined over a number field K, how the Mordell–Weil rank of A(L) varies when L runs through finite extensions of K. Especially, it seems to be interesting to construct explicitly a sequence $\{L_n : n \ge 1\}$ of finite extensions of K such that rank $(A(L_n))$ grows rapidly as n tends to infinity.

Recently Top ([4]) settled this problem for hyperelliptic curves C over \mathbb{Q} with a \mathbb{Q} -rational point: he constructed explicitly infinitely many extensions of \mathbb{Q} of the form $L = \mathbb{Q}(\sqrt{d_1}, \ldots, \sqrt{d_m})$ for which $\operatorname{rank}(J(L)) \geq \operatorname{rank}(J(\mathbb{Q})) + m$ where J denotes the jacobian variety of C.

On the other hand, it has been shown by Mazur that for any \mathbb{Z}_l -extension $L = \bigcup_{n=1}^{\infty} L_n$ of K, there exists a non-negative integer ϱ such that

 $\operatorname{rank}(A(L_n)) + \operatorname{corank}(H^1(\operatorname{Gal}(L/L_n), A(L))) = \varrho l^n + \operatorname{const}$

for sufficiently large n (see [1] or [2]). He also showed that under some conditions, $\rho = 0$. Thus it seems not unlikely that if a sequence $\{L_n\}$ of finite *l*-abelian extensions of K satisfies the desired property, then the *l*rank of $\operatorname{Gal}(L_n/K)$ must grow when n tends to infinity. The above result of Top ([4]) shows that this is indeed the case for the jacobians of hyperelliptic curves.

The purpose of this paper is to extend Top's result to the case of the superelliptic curves $y^p = f(x)$, where p is an arbitrary prime. In our case the fields are chosen among the Kummer extensions of exponent p.

2. Statement of the result. Our main theorem is the following:

THEOREM. Let p be a prime number, ζ_p a primitive p-th root of unity, and set $K = \mathbb{Q}(\zeta_p)$. Denote by \mathfrak{O}_K the ring of integers of K. Let $f \in \mathfrak{O}_K[X]$ be a separable polynomial such that the degree of f, denoted by n, is prime to p and $\frac{1}{2}(p-1)(n-1) \geq 1$. Let C be a smooth projective model of the curve given by $y^p = f(x)$ and let J be the jacobian variety of C. For every $m \ge 1$ one can explicitly construct infinitely many extensions of K of the form $L = K(\sqrt[p]{d_1}, \ldots, \sqrt[p]{d_m})$ for which

$$\operatorname{rank}(J(L)) \ge \operatorname{rank}(J(K)) + (p-1)m$$

 $\operatorname{Remark} 1$. In the case of p = 2, this reduces to Top's theorem ([4]).

Remark 2. We can apply this theorem to the Fermat curve $F_p: x^p + y^p = 1$, where p is an odd prime number. In fact, putting u := 1/(x-1) and v := y/(x-1), F_p is birationally equivalent to the curve

$$v^p = -\prod_{i=1}^{p-1} ((\zeta_p^i - 1)u - 1).$$

In [5], Weil expressed the *L*-function $L(s, J_p/k)$ of the jacobian variety J_p of F_p over a number field k by means of Hecke *L*-functions. If the conjecture of Tate in [3] holds, for fields M constructed in the theorem $L(s, J_p/M)$ must have a zero at s = 1 of order $\geq (p-1)m$. So it is interesting to prove directly that $L(s, J_p/M)$ has a zero at s = 1 of order $\geq (p-1)m$. Because the action of $\mathbb{Z}[\zeta_p]$ on the Tate module of J_p commutes with the Galois action, this *L*-series is a (p-1)st power. So the factor p-1 in the conjectured order of vanishing is understood.

3. The proof of the theorem. Firstly we calculate the genus g of C. Consider the morphism $\theta: C \to \mathbb{P}^1$ defined by

$$\theta: (x,y) \mapsto x.$$

Let O be a point of C such that $\theta(O) = \infty$ and let e be the ramification index of θ at O. Then the rational function f(x) on C has a pole at O of order en $(n = \deg(f))$. Since $y^p = f(x)$, p must divide en. By the assumption $(p,n) = 1, p \mid e$. Since θ is a Galois covering of degree p, e = 1 or p, hence e = p. So it follows that $\theta^{-1}(\infty) = \{O\}$ and $O \in C(K)$. Applying the Hurwitz formula, we have

$$g = \frac{1}{2}(p-1)(n-1) \ge 1$$

The following two lemmas are proved by Top [4].

LEMMA 1. Let A be an abelian variety defined over a number field M and let q be a prime ideal of M such that

1. $e_{\mathfrak{q}} < q - 1$, where $e_{\mathfrak{q}}$ is the ramification index of \mathfrak{q} in M/\mathbb{Q} and q is a prime number for which $\mathfrak{q} \mid (q)$,

2. A has good reduction at q.

Then reduction modulo q defines an injection

$$\varrho: A(M)_{\text{torsion}} \to A(M(\mathfrak{q})),$$

with A denoting the reduction of A modulo \mathfrak{q} and $M(\mathfrak{q})$ denoting the residue field of \mathfrak{q} .

LEMMA 2. Let $F \in \mathfrak{O}_K[X]$ be a non-constant separable polynomial. There exist infinitely many prime ideals \mathfrak{q} of K for which there is $d \in \mathfrak{O}_K$ with $\mathfrak{q} \mid F(d)$ and $\mathfrak{q}^2 \nmid F(d)$ (hence $\mathfrak{q}^p \nmid F(d)$).

From now on, we fix once and for all a prime ideal q of K such that

1. (q, p) = 1,

2. $f \mod \mathfrak{q} \in K(\mathfrak{q})[x]$ is separable, i.e., $C \pmod{J}$ have good reduction modulo \mathfrak{q} ,

3. p < q - 1, where q is a prime number for which $q \mid (q)$.

Define $F(X) := q^{pn}f(X + 1/q) \in \mathfrak{O}_K[X]$ $(n = \deg(f))$. We can find $d_1, \ldots, d_m \in \mathfrak{O}_K$ such that for $1 \leq i \leq m$ the fields $K_i := K(\sqrt[p]{F(d_i)})$ satisfy $K_i \neq K$, and for every *i* there is a prime ideal of *K* which ramifies in K_i/K but not in K_j/K for $1 \leq j \leq i - 1$. Indeed, by Lemma 2 there exists a prime ideal \mathfrak{p}_1 of *K* for which $(\mathfrak{p}_1, p) = 1$ and there is $d_1 \in \mathfrak{O}_K$ with $\mathfrak{p}_1 | F(d_1)$ and $\mathfrak{p}_1^p \nmid F(d_1)$. Put $K_1 := K(\sqrt[p]{F(d_1)})$. Then by the theory of Kummer extensions we see that \mathfrak{p}_1 ramifies in K_1/K . Again, by Lemma 2 there exists a prime ideal \mathfrak{p}_2 of *K* such that $(\mathfrak{p}_2, pF(d_1)) = 1$ and there is $d_2 \in \mathfrak{O}_K$ with $\mathfrak{p}_2 | F(d_2)$ and $\mathfrak{p}_2^p \nmid F(d_2)$. Put $K_2 := K(\sqrt[p]{F(d_2)})$. Then \mathfrak{p}_2 ramifies in K_2/K but not in K_1/K . Repeating this operation we can get $d_1, \ldots, d_m \in \mathfrak{O}_K$ which satisfy the desired condition. From the condition it follows that $K_i \cap K_j = K$ if $i \neq j$ and $K_i \cap \prod_{j \neq i} K_j = K$ for $1 \leq i \leq m$.

We define

$$P_i^{(j)} := (d_i + 1/q, \zeta_p^{j} \sqrt[p]{f(d_i + 1/q)}) \in C(K_i)$$

$$(1 \le i \le m, \ 0 \le j \le p-1)$$
 and
 $D_i^{(j)} := [P_i^{(j)} - O] \in \operatorname{Pic}^0(C)(K_i) = J(K_i).$

Consider the automorphism σ of C defined by

$$(x,y) \mapsto (x,\zeta_p y)$$

and define the endomorphism φ of J by

$$\varphi([D]) = [\sigma(D)]$$

where $D = \sum_R n_R R$ is a divisor of degree 0 on C and $\sigma(D) = \sum_R n_R \sigma(R)$. Let $\operatorname{End}(J)$ denote the endomorphism ring of J and put $\operatorname{End}^0(J) := \operatorname{End}(J)$ $\otimes_{\mathbb{Z}} \mathbb{Q}$. We define the \mathbb{Q} -algebra homomorphism

$$\Phi: \mathbb{Q}[T] \to \operatorname{End}^0(J), \quad T \mapsto \varphi.$$

Now we claim that

Ker
$$\Phi = (T^{p-1} + T^{p-2} + \ldots + 1)$$
.

Indeed, for any $R = (x, y) \in C$, we have

$$(\varphi^{p-1} + \varphi^{p-2} + \ldots + 1)([R - O])$$

= $[(x, y) + (x, \zeta_p y) + \ldots + (x, \zeta_p^{p-1} y) - pO]$
= $[\operatorname{div}(z \circ \theta)] = 0$

where z is a rational function on \mathbb{P}^1 for which $\operatorname{div}(z) = x - \infty$. Since $J = \operatorname{Pic}^0(C)$ is generated by the set $\{[R - O] : R \in C\},\$

$$(T^{p-1} + T^{p-2} + \ldots + 1) \subseteq \operatorname{Ker} \Phi.$$

The claim holds, because $\mathbb{Q}[T]$ is a P.I.D. and $T^{p-1} + T^{p-2} + \ldots + 1$ is irreducible in $\mathbb{Q}[T]$. So we get the injective \mathbb{Q} -algebra homomorphism, denoted by the same letter Φ :

$$\Phi: K \hookrightarrow \operatorname{End}^0(J), \quad \zeta_p \mapsto \varphi.$$

LEMMA 3. $D_i^{(0)}, \ldots, D_i^{(p-2)}$ are independent points in $J(K_i)$ for $1 \leq i \leq m$.

 $\Pr{\text{oof.}}$ Suppose that they are not independent. Then there is a non-trivial relation

$$\lambda_0 D_i^{(0)} + \ldots + \lambda_{p-2} D_i^{(p-2)} = 0$$

This implies that $\varphi'(D_i^{(0)}) = 0$ where $\varphi' := \lambda_0 + \lambda_1 \varphi + \ldots + \lambda_{p-2} \varphi^{p-2} \in$ End(J). Since $\varphi' \in \Phi(K^{\times})$, φ' is a unit of End⁰(J), i.e., an isogeny of J. Hence Ker φ' is finite, so $D_i^{(0)} \in J(K_i)_{\text{torsion}}$. Let \mathfrak{Q}_i be a prime ideal of K_i lying over \mathfrak{q} . Then $e_{\mathfrak{Q}_i} \leq p < q-1$. Moreover, J has good reduction modulo \mathfrak{Q}_i and $D_i^{(0)} \mod \mathfrak{Q}_i$ is the identity element of \overline{J} . By Lemma 1, $D_i^{(0)}$ is the identity element of J, i.e., there is a rational function w on C such that $\operatorname{div}(w) = P_i^{(0)} - O$. So C must be isomorphic to \mathbb{P}^1 ; this contradicts $g \geq 1$ and proves the lemma.

Let $L := K_1 \cdot \ldots \cdot K_m$ and take a basis Q_1, \ldots, Q_r of J(K) modulo torsion. We show that $D_1^{(0)}, \ldots, D_1^{(p-2)}, \ldots, D_m^{(0)}, \ldots, D_m^{(p-2)}, Q_1, \ldots, Q_r$ are independent points in J(L). We assume that there is a relation

$$\lambda_1^{(0)} D_1^{(0)} + \ldots + \lambda_1^{(p-2)} D_1^{(p-2)} + \ldots + \lambda_m^{(0)} D_m^{(0)} + \ldots + \lambda_m^{(p-2)} D_m^{(p-2)} + \mu_1 Q_1 + \ldots + \mu_r Q_r = 0.$$

Putting $D_i := \lambda_i^{(0)} D_i^{(0)} + \ldots + \lambda_i^{(p-2)} D_i^{(p-2)}$ $(1 \le i \le m)$, this implies that $D_1 = -D_2 - \ldots - \mu_r Q_r \in J(K_1 \cap K_2 \cdot \ldots \cdot K_m) = J(K)$.

Let τ be the element of $\operatorname{Gal}(K_1/K)$ defined by

$$\tau: \sqrt[p]{f(d_1+1/q)} \mapsto \zeta_p \sqrt[p]{f(d_1+1/q)}$$

300

Then since $D_1^{(0)} + \ldots + D_1^{(p-2)} + D_1^{(p-1)} = 0$ in J, we have $D_1^{\tau} = \lambda_1^{(0)} D_1^{(1)} + \ldots + \lambda_1^{(p-3)} D_1^{(p-2)} + \lambda_1^{(p-2)} D_1^{(p-1)}$ $= -\lambda_1^{(p-2)} D_1^{(0)} + (\lambda_1^{(0)} - \lambda_1^{(p-2)}) D_1^{(1)} + \ldots + (\lambda_1^{(p-3)} - \lambda_1^{(p-2)}) D_1^{(p-2)}.$

Since $D_1^{\tau} = D_1$, Lemma 3 implies that

$$\begin{split} \lambda_1^{(0)} &= -\,\lambda_1^{(p-2)}\,,\\ \lambda_1^{(1)} &= \lambda_1^{(0)} - \lambda_1^{(p-2)}\,,\\ &\vdots\\ \lambda_1^{(p-2)} &= \lambda_1^{(p-3)} - \lambda_1^{(p-2)}\,. \end{split}$$

Hence for

$$B := \begin{pmatrix} 1 & 0 \dots & 0 & 1 \\ -1 & 1 & 0 \dots & 0 & 1 \\ 0 - 1 & 1 & 0 \dots & 0 & 1 \\ \vdots & \ddots & \ddots & \vdots \\ & & -1 & 1 & 1 \\ 0 \dots & 0 & -1 & 2 \end{pmatrix} \in M_{p-1}(\mathbb{Z}),$$

we have

$$B\begin{pmatrix}\lambda_1^{(0)}\\\lambda_1^{(1)}\\\vdots\\\lambda_1^{(p-2)}\end{pmatrix} = \begin{pmatrix}0\\\vdots\\0\end{pmatrix}$$

LEMMA 4. det B = p.

Proof. For any integer $h \ge 1$ let $B^{(h)}$ be the $h \times h$ matrix defined as above. By induction on h we prove that det $B^{(h)} = h + 1$. In case h = 1, since $B^{(1)} = (2)$, the claim is true. Assuming det $B^{(h-1)} = h$, we have

$$\det B^{(h)} = \det B^{(h-1)} + \det \begin{pmatrix} 0 \dots 0 & 1 \\ -1 & 1 & 0 \dots & 0 & 1 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & -1 & 1 & 1 \\ 0 \dots & 0 & -1 & 2 \end{pmatrix} \end{pmatrix} h - 1 \text{ rows}$$
$$= \dots = \det B^{(h-1)} + \det \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} = h + 1.$$

Hence the claim holds. So det $B = \det B^{(p-1)} = p$. This completes the proof of the lemma.

By Lemma 4, it follows that

$$\lambda_1^{(0)} = \ldots = \lambda_1^{(p-2)} = 0.$$

By the same reasoning,

$$\lambda_i^{(0)} = \ldots = \lambda_i^{(p-2)} = 0$$

for every *i*. Moreover, by the choice of Q_1, \ldots, Q_r , we have

$$\mu_1 = \ldots = \mu_r = 0.$$

Hence our relation is trivial. This proves the theorem.

References

- Yu. I. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (6) (1971), 7–78.
- B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266.
- [3] H. P. F. Swinnerton-Dyer, The conjectures of Birch and Swinnerton-Dyer, and of Tate, in: Proceedings of a conference on local fields (Driebergen, 1966), Springer, 1967, 132–157.
- [4] J. Top, A remark on the rank of jacobians of hyperelliptic curves over Q over certain elementary abelian 2-extensions, Tôhoku Math. J. 40 (1988), 613–616.
- [5] A. Weil, Jacobi sums as Grössencharaktere, Trans. Amer. Math. Soc. 73 (1952), 487–495.

DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCE AND ENGINEERING WASEDA UNIVERSITY 3-4-1, OKUBO SHINJUKU-KU, TOKYO 169 JAPAN

> Received on 28.7.1992 and in revised form on 21.1.1993

(2287)