Mordell-Weil rank of the jacobians of the curves defined by $y^{p}=f(x)$

by

Naoki Murabayashi (Tokyo)

1. Introduction. It is an interesting problem to study, for a given abelian variety A defined over a number field K, how the Mordell-Weil rank of $A(L)$ varies when L runs through finite extensions of K. Especially, it seems to be interesting to construct explicitly a sequence $\left\{L_{n}: n \geq 1\right\}$ of finite extensions of K such that $\operatorname{rank}\left(A\left(L_{n}\right)\right)$ grows rapidly as n tends to infinity.

Recently Top ([4]) settled this problem for hyperelliptic curves C over \mathbb{Q} with a \mathbb{Q}-rational point: he constructed explicitly infinitely many extensions of \mathbb{Q} of the form $L=\mathbb{Q}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{m}}\right)$ for which $\operatorname{rank}(J(L)) \geq$ $\operatorname{rank}(J(\mathbb{Q}))+m$ where J denotes the jacobian variety of C.

On the other hand, it has been shown by Mazur that for any \mathbb{Z}_{l}-extension $L=\bigcup_{n=1}^{\infty} L_{n}$ of K, there exists a non-negative integer ϱ such that

$$
\operatorname{rank}\left(A\left(L_{n}\right)\right)+\operatorname{corank}\left(H^{1}\left(\operatorname{Gal}\left(L / L_{n}\right), A(L)\right)\right)=\varrho l^{n}+\mathrm{const}
$$

for sufficiently large n (see [1] or [2]). He also showed that under some conditions, $\varrho=0$. Thus it seems not unlikely that if a sequence $\left\{L_{n}\right\}$ of finite l-abelian extensions of K satisfies the desired property, then the l rank of $\operatorname{Gal}\left(L_{n} / K\right)$ must grow when n tends to infinity. The above result of Top ([4]) shows that this is indeed the case for the jacobians of hyperelliptic curves.

The purpose of this paper is to extend Top's result to the case of the superelliptic curves $y^{p}=f(x)$, where p is an arbitrary prime. In our case the fields are chosen among the Kummer extensions of exponent p.
2. Statement of the result. Our main theorem is the following:

Theorem. Let p be a prime number, ζ_{p} a primitive p-th root of unity, and set $K=\mathbb{Q}\left(\zeta_{p}\right)$. Denote by \mathfrak{O}_{K} the ring of integers of K. Let $f \in \mathfrak{O}_{K}[X]$ be a separable polynomial such that the degree of f, denoted by n, is prime to p and $\frac{1}{2}(p-1)(n-1) \geq 1$. Let C be a smooth projective model of the
curve given by $y^{p}=f(x)$ and let J be the jacobian variety of C. For every $m \geq 1$ one can explicitly construct infinitely many extensions of K of the form $L=K\left(\sqrt[p]{d_{1}}, \ldots, \sqrt[p]{d_{m}}\right)$ for which

$$
\operatorname{rank}(J(L)) \geq \operatorname{rank}(J(K))+(p-1) m
$$

Remark1. In the case of $p=2$, this reduces to Top's theorem ([4]).
Remark 2. We can apply this theorem to the Fermat curve $F_{p}: x^{p}+$ $y^{p}=1$, where p is an odd prime number. In fact, putting $u:=1 /(x-1)$ and $v:=y /(x-1), F_{p}$ is birationally equivalent to the curve

$$
v^{p}=-\prod_{i=1}^{p-1}\left(\left(\zeta_{p}^{i}-1\right) u-1\right)
$$

In [5], Weil expressed the L-function $L\left(s, J_{p} / k\right)$ of the jacobian variety J_{p} of F_{p} over a number field k by means of Hecke L-functions. If the conjecture of Tate in [3] holds, for fields M constructed in the theorem $L\left(s, J_{p} / M\right)$ must have a zero at $s=1$ of order $\geq(p-1) m$. So it is interesting to prove directly that $L\left(s, J_{p} / M\right)$ has a zero at $s=1$ of order $\geq(p-1) m$. Because the action of $\mathbb{Z}\left[\zeta_{p}\right]$ on the Tate module of J_{p} commutes with the Galois action, this L-series is a $(p-1)$ st power. So the factor $p-1$ in the conjectured order of vanishing is understood.
3. The proof of the theorem. Firstly we calculate the genus g of C. Consider the morphism $\theta: C \rightarrow \mathbb{P}^{1}$ defined by

$$
\theta:(x, y) \mapsto x
$$

Let O be a point of C such that $\theta(O)=\infty$ and let e be the ramification index of θ at O. Then the rational function $f(x)$ on C has a pole at O of order en $(n=\operatorname{deg}(f))$. Since $y^{p}=f(x), p$ must divide $e n$. By the assumption $(p, n)=1, p \mid e$. Since θ is a Galois covering of degree $p, e=1$ or p, hence $e=p$. So it follows that $\theta^{-1}(\infty)=\{O\}$ and $O \in C(K)$. Applying the Hurwitz formula, we have

$$
g=\frac{1}{2}(p-1)(n-1) \geq 1
$$

The following two lemmas are proved by Top [4].
Lemma 1. Let A be an abelian variety defined over a number field M and let \mathfrak{q} be a prime ideal of M such that

1. $e_{\mathfrak{q}}<q-1$, where $e_{\mathfrak{q}}$ is the ramification index of \mathfrak{q} in M / \mathbb{Q} and q is a prime number for which $\mathfrak{q} \mid(q)$,
2. A has good reduction at \mathfrak{q}.

Then reduction modulo \mathfrak{q} defines an injection

$$
\varrho: A(M)_{\text {torsion }} \rightarrow \bar{A}(M(\mathfrak{q}))
$$

with \bar{A} denoting the reduction of A modulo \mathfrak{q} and $M(\mathfrak{q})$ denoting the residue field of \mathfrak{q}.

Lemma 2. Let $F \in \mathfrak{O}_{K}[X]$ be a non-constant separable polynomial. There exist infinitely many prime ideals \mathfrak{q} of K for which there is $d \in \mathfrak{O}_{K}$ with $\mathfrak{q} \mid F(d)$ and $\mathfrak{q}^{2} \nmid F(d)$ (hence $\mathfrak{q}^{p} \nmid F(d)$).

From now on, we fix once and for all a prime ideal \mathfrak{q} of K such that

1. $(\mathfrak{q}, p)=1$,
2. $f \bmod \mathfrak{q} \in K(\mathfrak{q})[x]$ is separable, i.e., C (and J) have good reduction modulo \mathfrak{q},
3. $p<q-1$, where q is a prime number for which $\mathfrak{q} \mid(q)$.

Define $F(X):=q^{p n} f(X+1 / q) \in \mathfrak{O}_{K}[X](n=\operatorname{deg}(f))$. We can find $d_{1}, \ldots, d_{m} \in \mathfrak{O}_{K}$ such that for $1 \leq i \leq m$ the fields $K_{i}:=K\left(\sqrt[p]{F\left(d_{i}\right)}\right)$ satisfy $K_{i} \neq K$, and for every i there is a prime ideal of K which ramifies in K_{i} / K but not in K_{j} / K for $1 \leq j \leq i-1$. Indeed, by Lemma 2 there exists a prime ideal \mathfrak{p}_{1} of K for which $\left(\mathfrak{p}_{1}, p\right)=1$ and there is $d_{1} \in \mathfrak{O}_{K}$ with $\mathfrak{p}_{1} \mid F\left(d_{1}\right)$ and $\mathfrak{p}_{1}^{p} \nmid F\left(d_{1}\right)$. Put $K_{1}:=K\left(\sqrt[p]{F\left(d_{1}\right)}\right)$. Then by the theory of Kummer extensions we see that \mathfrak{p}_{1} ramifies in K_{1} / K. Again, by Lemma 2 there exists a prime ideal \mathfrak{p}_{2} of K such that $\left(\mathfrak{p}_{2}, p F\left(d_{1}\right)\right)=1$ and there is $d_{2} \in \mathfrak{O}_{K}$ with $\mathfrak{p}_{2} \mid F\left(d_{2}\right)$ and $\mathfrak{p}_{2}^{p} \nmid F\left(d_{2}\right)$. Put $K_{2}:=K\left(\sqrt[p]{F\left(d_{2}\right)}\right)$. Then \mathfrak{p}_{2} ramifies in K_{2} / K but not in K_{1} / K. Repeating this operation we can get $d_{1}, \ldots, d_{m} \in \mathfrak{O}_{K}$ which satisfy the desired condition. From the condition it follows that $K_{i} \cap K_{j}=K$ if $i \neq j$ and $K_{i} \cap \prod_{j \neq i} K_{j}=K$ for $1 \leq i \leq m$.

We define

$$
P_{i}^{(j)}:=\left(d_{i}+1 / q, \zeta_{p}^{j p} \sqrt{f\left(d_{i}+1 / q\right)}\right) \in C\left(K_{i}\right)
$$

$(1 \leq i \leq m, 0 \leq j \leq p-1)$ and

$$
D_{i}^{(j)}:=\left[P_{i}^{(j)}-O\right] \in \operatorname{Pic}^{0}(C)\left(K_{i}\right)=J\left(K_{i}\right) .
$$

Consider the automorphism σ of C defined by

$$
(x, y) \mapsto\left(x, \zeta_{p} y\right)
$$

and define the endomorphism φ of J by

$$
\varphi([D])=[\sigma(D)]
$$

where $D=\sum_{R} n_{R} R$ is a divisor of degree 0 on C and $\sigma(D)=\sum_{R} n_{R} \sigma(R)$. Let $\operatorname{End}(J)$ denote the endomorphism ring of J and put $\operatorname{End}^{0}(J):=\operatorname{End}(J)$ $\otimes_{\mathbb{Z}} \mathbb{Q}$. We define the \mathbb{Q}-algebra homomorphism

$$
\Phi: \mathbb{Q}[T] \rightarrow \operatorname{End}^{0}(J), \quad T \mapsto \varphi .
$$

Now we claim that

$$
\operatorname{Ker} \Phi=\left(T^{p-1}+T^{p-2}+\ldots+1\right) .
$$

Indeed, for any $R=(x, y) \in C$, we have

$$
\begin{aligned}
\left(\varphi^{p-1}+\varphi^{p-2}+\ldots+1\right) & ([R-O]) \\
& =\left[(x, y)+\left(x, \zeta_{p} y\right)+\ldots+\left(x, \zeta_{p}^{p-1} y\right)-p O\right] \\
& =[\operatorname{div}(z \circ \theta)]=0
\end{aligned}
$$

where z is a rational function on \mathbb{P}^{1} for which $\operatorname{div}(z)=x-\infty$. Since $J=\operatorname{Pic}^{0}(C)$ is generated by the set $\{[R-O]: R \in C\}$,

$$
\left(T^{p-1}+T^{p-2}+\ldots+1\right) \subseteq \operatorname{Ker} \Phi .
$$

The claim holds, because $\mathbb{Q}[T]$ is a P.I.D. and $T^{p-1}+T^{p-2}+\ldots+1$ is irreducible in $\mathbb{Q}[T]$. So we get the injective \mathbb{Q}-algebra homomorphism, denoted by the same letter Φ :

$$
\Phi: K \hookrightarrow \operatorname{End}^{0}(J), \quad \zeta_{p} \mapsto \varphi .
$$

Lemma 3. $D_{i}^{(0)}, \ldots, D_{i}^{(p-2)}$ are independent points in $J\left(K_{i}\right)$ for $1 \leq i$ $\leq m$.

Proof. Suppose that they are not independent. Then there is a nontrivial relation

$$
\lambda_{0} D_{i}^{(0)}+\ldots+\lambda_{p-2} D_{i}^{(p-2)}=0 .
$$

This implies that $\varphi^{\prime}\left(D_{i}^{(0)}\right)=0$ where $\varphi^{\prime}:=\lambda_{0}+\lambda_{1} \varphi+\ldots+\lambda_{p-2} \varphi^{p-2} \in$ $\operatorname{End}(J)$. Since $\varphi^{\prime} \in \Phi\left(K^{\times}\right), \varphi^{\prime}$ is a unit of $\operatorname{End}^{0}(J)$, i.e., an isogeny of J. Hence $\operatorname{Ker} \varphi^{\prime}$ is finite, so $D_{i}^{(0)} \in J\left(K_{i}\right)_{\text {torsion. }}$ Let \mathfrak{Q}_{i} be a prime ideal of K_{i} lying over \mathfrak{q}. Then $e_{\mathfrak{Q}_{i}} \leq p<q-1$. Moreover, J has good reduction modulo \mathfrak{Q}_{i} and $D_{i}^{(0)} \bmod \mathfrak{Q}_{i}$ is the identity element of \bar{J}. By Lemma $1, D_{i}^{(0)}$ is the identity element of J, i.e., there is a rational function w on C such that $\operatorname{div}(w)=P_{i}^{(0)}-O$. So C must be isomorphic to \mathbb{P}^{1}; this contradicts $g \geq 1$ and proves the lemma.

Let $L:=K_{1} \cdot \ldots \cdot K_{m}$ and take a basis Q_{1}, \ldots, Q_{r} of $J(K)$ modulo torsion. We show that $D_{1}^{(0)}, \ldots, D_{1}^{(p-2)}, \ldots, D_{m}^{(0)}, \ldots, D_{m}^{(p-2)}, Q_{1}, \ldots, Q_{r}$ are independent points in $J(L)$. We assume that there is a relation

$$
\begin{array}{r}
\lambda_{1}^{(0)} D_{1}^{(0)}+\ldots+\lambda_{1}^{(p-2)} D_{1}^{(p-2)}+\ldots+\lambda_{m}^{(0)} D_{m}^{(0)}+\ldots+\lambda_{m}^{(p-2)} D_{m}^{(p-2)} \\
\\
+\mu_{1} Q_{1}+\ldots+\mu_{r} Q_{r}=0 .
\end{array}
$$

Putting $D_{i}:=\lambda_{i}^{(0)} D_{i}^{(0)}+\ldots+\lambda_{i}^{(p-2)} D_{i}^{(p-2)}(1 \leq i \leq m)$, this implies that $D_{1}=-D_{2}-\ldots-\mu_{r} Q_{r} \in J\left(K_{1} \cap K_{2} \cdot \ldots \cdot K_{m}\right)=J(K)$.
Let τ be the element of $\operatorname{Gal}\left(K_{1} / K\right)$ defined by

$$
\tau: \sqrt[p]{f\left(d_{1}+1 / q\right)} \mapsto \zeta_{p} \sqrt[p]{f\left(d_{1}+1 / q\right)} .
$$

Then since $D_{1}^{(0)}+\ldots+D_{1}^{(p-2)}+D_{1}^{(p-1)}=0$ in J, we have

$$
\begin{aligned}
D_{1}^{\tau} & =\lambda_{1}^{(0)} D_{1}^{(1)}+\ldots+\lambda_{1}^{(p-3)} D_{1}^{(p-2)}+\lambda_{1}^{(p-2)} D_{1}^{(p-1)} \\
& =-\lambda_{1}^{(p-2)} D_{1}^{(0)}+\left(\lambda_{1}^{(0)}-\lambda_{1}^{(p-2)}\right) D_{1}^{(1)}+\ldots+\left(\lambda_{1}^{(p-3)}-\lambda_{1}^{(p-2)}\right) D_{1}^{(p-2)} .
\end{aligned}
$$

Since $D_{1}^{\tau}=D_{1}$, Lemma 3 implies that

$$
\begin{gathered}
\lambda_{1}^{(0)}=-\lambda_{1}^{(p-2)}, \\
\lambda_{1}^{(1)}=\lambda_{1}^{(0)}-\lambda_{1}^{(p-2)}, \\
\vdots \\
\lambda_{1}^{(p-2)}= \\
\lambda_{1}^{(p-3)}-\lambda_{1}^{(p-2)} .
\end{gathered}
$$

Hence for

$$
B:=\left(\begin{array}{rrrrrr}
1 & 0 & \ldots & \ldots & 0 & 1 \\
-1 & 1 & 0 & \ldots & \cdots & 0 \\
0 & 1 & 1 \\
0 & -1 & 1 & 0 & \ldots & 0 \\
\vdots & & \ddots & 1 \\
& & & -1 & 1 & \vdots \\
0 \ldots & \ldots & 0 & 0 & -1 & 2
\end{array}\right) \in M_{p-1}(\mathbb{Z})
$$

we have

$$
B\left(\begin{array}{c}
\lambda_{1}^{(0)} \\
\lambda_{1}^{(1)} \\
\vdots \\
\lambda_{1}^{(p-2)}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

Lemma 4. $\operatorname{det} B=p$.
Proof. For any integer $h \geq 1$ let $B^{(h)}$ be the $h \times h$ matrix defined as above. By induction on h we prove that $\operatorname{det} B^{(h)}=h+1$. In case $h=1$, since $B^{(1)}=(2)$, the claim is true. Assuming $\operatorname{det} B^{(h-1)}=h$, we have

$$
\begin{aligned}
\operatorname{det} B^{(h)} & =\operatorname{det} B^{(h-1)}+\operatorname{det}\left(\begin{array}{rrrrr}
0 \ldots \ldots & \ldots & 0 & 1 \\
-1 & 1 & 0 & \ldots & 0 \\
1 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & & -1 & 1 & 1 \\
0 \ldots \ldots & 0-1 & 2
\end{array}\right) \\
& =\ldots=\operatorname{det} B^{(h-1)}+\operatorname{det}\left(\begin{array}{rr}
0 & 1 \\
-1 & 2
\end{array}\right)=h+1 .
\end{aligned}
$$

Hence the claim holds. So $\operatorname{det} B=\operatorname{det} B^{(p-1)}=p$. This completes the proof of the lemma.

By Lemma 4, it follows that

$$
\lambda_{1}^{(0)}=\ldots=\lambda_{1}^{(p-2)}=0 .
$$

By the same reasoning,

$$
\lambda_{i}^{(0)}=\ldots=\lambda_{i}^{(p-2)}=0
$$

for every i. Moreover, by the choice of Q_{1}, \ldots, Q_{r}, we have

$$
\mu_{1}=\ldots=\mu_{r}=0 .
$$

Hence our relation is trivial. This proves the theorem.

References

[1] Yu. I. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (6) (1971), 7-78.
[2] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266.
[3] H. P. F. Swinnerton-Dyer, The conjectures of Birch and Swinnerton-Dyer, and of Tate, in: Proceedings of a conference on local fields (Driebergen, 1966), Springer, 1967, 132-157.
[4] J. Top, A remark on the rank of jacobians of hyperelliptic curves over \mathbb{Q} over certain elementary abelian 2-extensions, Tôhoku Math. J. 40 (1988), 613-616.
[5] A. Weil, Jacobi sums as Grössencharaktere, Trans. Amer. Math. Soc. 73 (1952), 487-495.

DEPARTMENT OF MATHEMATICS
SCHOOL OF SCIENCE AND ENGINEERING
WASEDA UNIVERSITY
3-4-1, OKUBO SHINJUKU-KU, TOKYO
169 JAPAN

