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1. Introduction. It is an interesting problem to study, for a given
abelian variety A defined over a number field K, how the Mordell–Weil
rank of A(L) varies when L runs through finite extensions of K. Especially,
it seems to be interesting to construct explicitly a sequence {Ln : n ≥ 1}
of finite extensions of K such that rank(A(Ln)) grows rapidly as n tends to
infinity.

Recently Top ([4]) settled this problem for hyperelliptic curves C over
Q with a Q-rational point: he constructed explicitly infinitely many ex-
tensions of Q of the form L = Q(

√
d1, . . . ,

√
dm) for which rank(J(L)) ≥

rank(J(Q)) + m where J denotes the jacobian variety of C.
On the other hand, it has been shown by Mazur that for any Zl-extension

L =
⋃∞

n=1 Ln of K, there exists a non-negative integer % such that

rank(A(Ln)) + corank(H1(Gal(L/Ln), A(L))) = %ln + const

for sufficiently large n (see [1] or [2]). He also showed that under some
conditions, % = 0. Thus it seems not unlikely that if a sequence {Ln} of
finite l-abelian extensions of K satisfies the desired property, then the l-
rank of Gal(Ln/K) must grow when n tends to infinity. The above result of
Top ([4]) shows that this is indeed the case for the jacobians of hyperelliptic
curves.

The purpose of this paper is to extend Top’s result to the case of the
superelliptic curves yp = f(x), where p is an arbitrary prime. In our case
the fields are chosen among the Kummer extensions of exponent p.

2. Statement of the result. Our main theorem is the following:

Theorem. Let p be a prime number , ζp a primitive p-th root of unity ,
and set K = Q(ζp). Denote by OK the ring of integers of K. Let f ∈ OK [X]
be a separable polynomial such that the degree of f , denoted by n, is prime
to p and 1

2 (p − 1)(n − 1) ≥ 1. Let C be a smooth projective model of the
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curve given by yp = f(x) and let J be the jacobian variety of C. For every
m ≥ 1 one can explicitly construct infinitely many extensions of K of the
form L = K(p

√
d1, . . . ,

p
√

dm) for which

rank(J(L)) ≥ rank(J(K)) + (p− 1)m .

R e m a r k 1. In the case of p = 2, this reduces to Top’s theorem ([4]).

R e m a r k 2. We can apply this theorem to the Fermat curve Fp : xp +
yp = 1, where p is an odd prime number. In fact, putting u := 1/(x − 1)
and v := y/(x− 1), Fp is birationally equivalent to the curve

vp = −
p−1∏
i=1

((ζi
p − 1)u− 1) .

In [5], Weil expressed the L-function L(s, Jp/k) of the jacobian variety Jp

of Fp over a number field k by means of Hecke L-functions. If the conjecture
of Tate in [3] holds, for fields M constructed in the theorem L(s, Jp/M) must
have a zero at s = 1 of order ≥ (p−1)m. So it is interesting to prove directly
that L(s, Jp/M) has a zero at s = 1 of order ≥ (p−1)m. Because the action
of Z[ζp] on the Tate module of Jp commutes with the Galois action, this
L-series is a (p− 1)st power. So the factor p− 1 in the conjectured order of
vanishing is understood.

3. The proof of the theorem. Firstly we calculate the genus g of C.
Consider the morphism θ : C → P1 defined by

θ : (x, y) 7→ x .

Let O be a point of C such that θ(O) = ∞ and let e be the ramification index
of θ at O. Then the rational function f(x) on C has a pole at O of order
en (n = deg(f)). Since yp = f(x), p must divide en. By the assumption
(p, n) = 1, p | e. Since θ is a Galois covering of degree p, e = 1 or p, hence
e = p. So it follows that θ−1(∞) = {O} and O ∈ C(K). Applying the
Hurwitz formula, we have

g = 1
2 (p− 1)(n− 1) ≥ 1 .

The following two lemmas are proved by Top [4].

Lemma 1. Let A be an abelian variety defined over a number field M
and let q be a prime ideal of M such that

1. eq < q − 1, where eq is the ramification index of q in M/Q and q is
a prime number for which q | (q),

2. A has good reduction at q.

Then reduction modulo q defines an injection

% : A(M)torsion → A(M(q)) ,
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with A denoting the reduction of A modulo q and M(q) denoting the residue
field of q.

Lemma 2. Let F ∈ OK [X] be a non-constant separable polynomial.
There exist infinitely many prime ideals q of K for which there is d ∈ OK

with q |F (d) and q2 - F (d) (hence qp - F (d)).

From now on, we fix once and for all a prime ideal q of K such that

1. (q, p) = 1,
2. f mod q ∈ K(q)[x] is separable, i.e., C (and J) have good reduction

modulo q,
3. p < q − 1, where q is a prime number for which q | (q).

Define F (X) := qpnf(X + 1/q) ∈ OK [X] (n = deg(f)). We can find
d1, . . . , dm ∈ OK such that for 1 ≤ i ≤ m the fields Ki := K(p

√
F (di))

satisfy Ki 6= K, and for every i there is a prime ideal of K which ramifies
in Ki/K but not in Kj/K for 1 ≤ j ≤ i − 1. Indeed, by Lemma 2 there
exists a prime ideal p1 of K for which (p1, p) = 1 and there is d1 ∈ OK with
p1 |F (d1) and pp

1 - F (d1). Put K1 := K(p
√

F (d1)). Then by the theory of
Kummer extensions we see that p1 ramifies in K1/K. Again, by Lemma 2
there exists a prime ideal p2 of K such that (p2, pF (d1)) = 1 and there is
d2 ∈ OK with p2 |F (d2) and pp

2 - F (d2). Put K2 := K(p
√

F (d2)). Then p2

ramifies in K2/K but not in K1/K. Repeating this operation we can get
d1, . . . , dm ∈ OK which satisfy the desired condition. From the condition it
follows that Ki ∩Kj = K if i 6= j and Ki ∩

∏
j 6=i Kj = K for 1 ≤ i ≤ m.

We define

P
(j)
i := (di + 1/q, ζj

p
p
√

f(di + 1/q)) ∈ C(Ki)

(1 ≤ i ≤ m , 0 ≤ j ≤ p− 1) and

D
(j)
i := [P (j)

i −O] ∈ Pic0(C)(Ki) = J(Ki) .

Consider the automorphism σ of C defined by

(x, y) 7→ (x, ζpy)

and define the endomorphism ϕ of J by

ϕ([D]) = [σ(D)]

where D =
∑

R nRR is a divisor of degree 0 on C and σ(D) =
∑

R nRσ(R).
Let End(J) denote the endomorphism ring of J and put End0(J) := End(J)
⊗Z Q. We define the Q-algebra homomorphism

Φ : Q[T ] → End0(J) , T 7→ ϕ .

Now we claim that

KerΦ = (T p−1 + T p−2 + . . . + 1) .
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Indeed, for any R = (x, y) ∈ C, we have

(ϕp−1 + ϕp−2 + . . . + 1)([R−O])
= [(x, y) + (x, ζpy) + . . . + (x, ζp−1

p y)− pO]

= [div(z ◦ θ)] = 0

where z is a rational function on P1 for which div(z) = x − ∞. Since
J = Pic0(C) is generated by the set {[R−O] : R ∈ C},

(T p−1 + T p−2 + . . . + 1) ⊆ KerΦ .

The claim holds, because Q[T ] is a P.I.D. and T p−1 + T p−2 + . . . + 1 is irre-
ducible in Q[T ]. So we get the injective Q-algebra homomorphism, denoted
by the same letter Φ:

Φ : K ↪→ End0(J) , ζp 7→ ϕ .

Lemma 3. D
(0)
i , . . . , D

(p−2)
i are independent points in J(Ki) for 1 ≤ i

≤ m.

P r o o f. Suppose that they are not independent. Then there is a non-
trivial relation

λ0D
(0)
i + . . . + λp−2D

(p−2)
i = 0 .

This implies that ϕ′(D(0)
i ) = 0 where ϕ′ := λ0 + λ1ϕ + . . . + λp−2ϕ

p−2 ∈
End(J). Since ϕ′ ∈ Φ(K×), ϕ′ is a unit of End0(J), i.e., an isogeny of J .
Hence Kerϕ′ is finite, so D

(0)
i ∈ J(Ki)torsion. Let Qi be a prime ideal of Ki

lying over q. Then eQi
≤ p < q−1. Moreover, J has good reduction modulo

Qi and D
(0)
i mod Qi is the identity element of J . By Lemma 1, D

(0)
i is the

identity element of J , i.e., there is a rational function w on C such that
div(w) = P

(0)
i − O. So C must be isomorphic to P1; this contradicts g ≥ 1

and proves the lemma.

Let L := K1 · . . . ·Km and take a basis Q1, . . . , Qr of J(K) modulo tor-
sion. We show that D

(0)
1 , . . . , D

(p−2)
1 , . . . , D

(0)
m , . . . , D

(p−2)
m , Q1, . . . , Qr are

independent points in J(L). We assume that there is a relation

λ
(0)
1 D

(0)
1 + . . . + λ

(p−2)
1 D

(p−2)
1 + . . . + λ(0)

m D(0)
m + . . . + λ(p−2)

m D(p−2)
m

+µ1Q1 + . . . + µrQr = 0 .

Putting Di := λ
(0)
i D

(0)
i + . . . + λ

(p−2)
i D

(p−2)
i (1 ≤ i ≤ m), this implies that

D1 = −D2 − . . .− µrQr ∈ J(K1 ∩K2 · . . . ·Km) = J(K) .

Let τ be the element of Gal(K1/K) defined by

τ : p
√

f(d1 + 1/q) 7→ ζp
p
√

f(d1 + 1/q) .
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Then since D
(0)
1 + . . . + D

(p−2)
1 + D

(p−1)
1 = 0 in J , we have

Dτ
1 = λ

(0)
1 D

(1)
1 + . . . + λ

(p−3)
1 D

(p−2)
1 + λ

(p−2)
1 D

(p−1)
1

= − λ
(p−2)
1 D

(0)
1 + (λ(0)

1 − λ
(p−2)
1 )D(1)

1 + . . . + (λ(p−3)
1 − λ

(p−2)
1 )D(p−2)

1 .

Since Dτ
1 = D1, Lemma 3 implies that

λ
(0)
1 = − λ

(p−2)
1 ,

λ
(1)
1 = λ

(0)
1 − λ

(p−2)
1 ,

...

λ
(p−2)
1 = λ

(p−3)
1 − λ

(p−2)
1 .

Hence for

B :=



1 0 . . . . . . . . . . . 0 1
−1 1 0 . . . . . . . 0 1

0−1 1 0 . . . . 0 1
... . . .

. . . ...
−1 1 1

0 . . . . . . . . . . 0−1 2

 ∈ Mp−1(Z) ,

we have

B


λ

(0)
1

λ
(1)
1
...

λ
(p−2)
1

 =

 0
...
0

 .

Lemma 4. det B = p.

P r o o f. For any integer h ≥ 1 let B(h) be the h × h matrix defined as
above. By induction on h we prove that det B(h) = h + 1. In case h = 1,
since B(1) = (2), the claim is true. Assuming detB(h−1) = h, we have

detB(h) = det B(h−1)+det


0 . . . . . . . . . . . 0 1

−1 1 0 . . . . 0 1

0 . . .
. . . ...

... −1 1 1
0 . . . . . . 0−1 2




h− 1 rows

= . . . = det B(h−1) + det
(

0 1
−1 2

)
= h + 1 .

Hence the claim holds. So detB = detB(p−1) = p. This completes the proof
of the lemma.
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By Lemma 4, it follows that

λ
(0)
1 = . . . = λ

(p−2)
1 = 0 .

By the same reasoning,

λ
(0)
i = . . . = λ

(p−2)
i = 0

for every i. Moreover, by the choice of Q1, . . . , Qr, we have

µ1 = . . . = µr = 0 .

Hence our relation is trivial. This proves the theorem.
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