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1. Introduction. Let drdr−1 . . . d1d0 be the base b representation of
a positive integer m. We refer to a block (of digits) of m base b as being
a successive sequence of equal digits didi−1 . . . dj of maximal length. For
example, the base 10 number 8037776589 consists of 8 blocks: 8, 0, 3, 777,
6, 5, 8, and 9. We may view the number of blocks of m base b as one
more than the number of k ∈ {0, 1, . . . , r − 1} for which dk 6= dk+1, and
we denote the number of blocks by B(m, b). Thus, in the example above,
B(8037776589, 10) = 8. If the base b is understood, we may omit any
reference to it.

It is reasonable to suspect, from a probabilistic point of view, that when-
ever a is a positive integer and a is not a power of 10, then the number of
blocks of an base 10 tends to infinity as n goes to infinity. For an arbitrary
base b > 1, it is not difficult to show that B(an, b) is bounded whenever
log a/ log b is rational, and for other values of a, we would like to conclude
that B(an, b) tends to infinity with n. We show in fact that this is a conse-
quence of a certain transcendence result.

Theorem 1. Let a and b be integers ≥ 2. If log a/ log b is irrational ,
then

(1) lim
n→∞

B(an, b) = ∞ .

Theorem 1 can be improved whenever b is not a prime power and a is a
prime divisor of the base b.
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Theorem 2. Let b be a positive integer which is not a prime power and
let p be a prime. Then p divides b if and only if

(2) lim
n→∞

min
k∈Z+

b - pnk

B(pnk, b) = ∞ .

We will give an elementary proof of Theorem 2, so it is worth noting that
Theorem 2 implies that (1) holds with b = 10 for a = 2, 4, 5, 6, 8, 12, . . . and,
in general, whenever the exponent of 2 in the largest power of 2 dividing a
differs from the exponent of 5 in the largest power of 5 dividing a.

We make one further observation. Theorem 2 implies that there is a
positive integer n such that every multiple of 2n which is relatively prime to
5 contains two blocks formed from the same digit. We were able to establish
computationally that n = 53 is the smallest such n. Similarly, any odd
multiple of 513 contains two blocks formed from the same digit, and the
exponent 13 is best possible in this case. In particular, if B is the set of all
numbers not ending in the digit 0 base 10 and consisting of blocks formed
from distinct digits, then there are exactly two numbers in B divisible by
252. They are

3 . . . 3︸ ︷︷ ︸
9

7 . . . 7︸ ︷︷ ︸
16

004999999 6 . . . 6︸ ︷︷ ︸
11

88512

and
7 6 . . . 6︸ ︷︷ ︸

9

2 . . . 2︸ ︷︷ ︸
16

995000000 3 . . . 3︸ ︷︷ ︸
11

11488 .

On the other hand, there are infinitely many numbers in B divisible by
512 and these are given by the elements of B ending in 336669921875 or
663330078125.

2. The proof of Theorem 1. We first show that Theorem 1 follows
from

Lemma 1. Let a and b be integers > 1 such that log a/ log b is irrational.
Let a1, a2, . . . , am be arbitrary integers. Then there are finitely many (m+1)-
tuples (k1, k2, . . . , km, n) of nonnegative integers satisfying

(i) k1 < k2 < . . . < km,
(ii)

∑m
j=r ajb

kj > 0 for 1 ≤ r ≤ m, and
(iii)

∑m
j=1 ajb

kj = (b− 1)an.

To prove Theorem 1, it suffices to show that for any positive integer M ,
there are only finitely many n for which B(an, b) ≤ M . Given M ∈ Z+,
consider any n such that B(an, b) ≤ M . Let m = B(an, b) + 1, k1 = 0,
and define d1 to be the first right-most digit of an base b. Let d2 be the
next right-most digit of an satisfying d2 6= d1 and continue in this manner,
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defining dj+1 as the next digit of an such that dj+1 6= dj , until dm−1 has been
defined. There exist positive integers k2, . . . , km with k2 < k3 < . . . < km

such that

an = (d1 − d2)
bk2 − 1
b− 1

+ . . . + (dm−2 − dm−1)
bkm−1 − 1

b− 1
+ dm−1

bkm − 1
b− 1

.

Condition (iii) of Lemma 1 holds with a1 = −d1, aj = dj−1 − dj for j ∈
{2, . . . ,m− 1}, am = dm−1. Note that regardless of the value of n, we have
|aj | ≤ b − 1 for every j ∈ {1, . . . ,m}. Thus, each n produces a solution to
one of at most (2b − 1)M+1 equations of the form given in (iii). Moreover,
with the kj and aj defined as above, (i) is clearly satisfied and (ii) holds
since am = dm−1 ≥ 1 and

m∑
j=r

ajb
kj ≥ bkm −

m−1∑
j=r

|aj |bkj ≥ bkm −
m−1∑
j=r

(b− 1)bkj > 0 .

We deduce from Lemma 1 that there are only finitely many n for which
B(an, b) ≤ M . Theorem 1 follows.

Instead of applying Lemma 1 above, we could have appealed to the fol-
lowing result of Revuz [2]: If λ1, . . . , λM , µ1, . . . , µN are algebraic numbers,
then the equation

∑M
i=1 λiθ

mi =
∑N

j=1 µjφ
nj 6= 0 holds for only a finite

number of rational integer (m+n)-tuples (mi, nj), provided log |θ|/ log |φ|
is irrational. It appears, however, that counterexamples exist to this state-
ment, although perhaps the conditions of the theorem can be modified to
make a correct verifiable result. For example, if θ is the positive real root
of x2 − x− 1, one can conclude from this statement that

θk5 − θk4 − θk3 + θk2 − θk1 = 2m

has finitely many solutions in integers m, k1, . . . , k5; however, the equation
is satisfied whenever (m, k1, . . . , k5) = (0, 1, 2, k, k + 1, k + 2) where k is an
arbitrary integer. Note that we could replace 2m on the right-hand side of
this example with im and then take m = 4n, thereby introducing a second
integer parameter.

We say that an algebraic number α has degree d and height A if α sat-
isfies an irreducible polynomial f(x) =

∑d
j=0 ajx

j ∈ Z[x] with ad 6= 0,
gcd(ad, . . . , a1, a0) = 1, and max 0≤j≤d |aj | = A. To prove Lemma 1, we
make use of the following result which can be found in [1]. (See Theo-
rem 3.1 and the comments following it. Note that a stronger result could
have been stated.)

Lemma 2. Let α1, . . . , αr be nonzero algebraic numbers with degrees at
most d and heights at most A. Let β0, β1, . . . , βr be algebraic numbers with
degrees at most d and heights at most B ≥ 2. Suppose that

Λ = β0 + β1 log α1 + . . . + βr log αr 6= 0 .
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Then there are numbers C = C(r, d) > 0 and w = w(r) ≥ 1 such that

|Λ| > B−C(log A)w

.

P r o o f o f L e m m a 1. Throughout the proof, we will make use of
the notation f � g which will mean that |f | ≤ cg for some constant c =
c(m,a, b, a1, . . . , am) and for all k1, . . . , km, and n being considered. We also
will add to the conditions (i), (ii), and (iii) of the lemma, a fourth condition:

(iv)
∑r

j=1 ajb
kj 6= 0 for 1 ≤ r ≤ m.

We justify being able to do so by showing that if Lemma 1 is true with the
additonal condition (iv), then it is true without it. Suppose that Lemma 1
with (iv) holds. If (k1, k2, . . . , km, n) satisfies conditions (i), (ii), and (iii)
of Lemma 1, but not (iv), then let r ∈ {1, 2, . . . ,m} be as large as possible
such that

∑r
j=1 ajb

kj = 0. Note by (ii) that r < m. Observe now that
(kr+1, k2, . . . , km, n) satisfies kr+1 < . . . < km,

∑m
j=t ajb

kj > 0 for r + 1 ≤
t ≤ m,

∑m
j=r+1 ajb

kj = (b − 1)an, and
∑t

j=r+1 ajb
kj 6= 0 for r + 1 ≤ t ≤

m. One can then appeal to Lemma 1 with (iv) to conclude that there are
only finitely many such (kr+1, k2, . . . , km, n). But for each such solution
(kr+1, . . . , km, n), there is only a finite number of choices for (k1, . . . , kr)
satisfying 0 ≤ k1 < . . . < kr < kr+1. Since there are at most m− 1 possible
values of r, we see that if Lemma 1 holds under condition (iv), then it must
hold in general.

Assume that (k1, k2, . . . , km, n) satisfies conditions (i)–(iv). If m = 1,
then (iii) becomes

a1b
k1 = (b− 1)an .

Observe that if k1 and n satisfy the above equation and k′1 and n′ are
integers for which a1b

k′1 = (b−1)an′ , then bk1−k′1 = an−n′ . Since log a/ log b
is irrational, we could then deduce that n′ = n and k′1 = k1. In other words,
the above equation has at most one solution in integers k1 and n. Lemma 1
follows immediately, in this case.

Suppose now that m > 1. We make some preliminary estimates. Since
an ≤ Mbkm , where

M =
m∑

j=1

|aj | ≥ 1 ,

we have
n � km .

We improve this estimate to

n � km − k1 .

This is just the previous bound on n if k1 = 0. Suppose now that k1 > 0.
Then conditions (i) and (iii) of the lemma imply that every prime divisor of
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b divides a. Let p1, . . . , pt be the distinct prime divisors of a. Write

a =
t∏

j=1

p
ej

j and b =
t∏

j=1

p
fj

j ,

where ej ≥ 1 and fj ≥ 0 for each j ∈ {1, . . . , t}. We show that for some u
and v in {1, . . . , t},

(3) eufv < evfu .

If some fv = 0, then (3) holds upon taking pu to be any prime divisor of b.
On the other hand, if each fj > 0, then the values of ej/fj for j ∈ {1, . . . , t}
cannot all be the same, since otherwise log a/ log b would equal this common
value and, hence, would be rational. Thus, there are u and v in {1, . . . , t}
for which eu/fu < ev/fv, so (3) holds in this case. Fix u and v as in (3) and
consider equation (iii). Note that fu > 0. The largest power of pu dividing
the right-hand side of (iii) is peun

u . Since pfu
u divides b and bk1 divides the

left-hand side of (iii), we obtain k1fu ≤ eun. Now divide both sides of (iii)
by bk1 . Then the left-hand side becomes

m∑
j=1

ajb
kj−k1 ≤ Mbkm−k1 � bkm−k1 ,

while the right-hand side (b−1)an/bk1 will be a positive integer divisible by
pw

v , where

w = evn− k1fv ≥ (evfu − eufv)n/fu ≥
n

fu
.

It follows that

pn/fu
v � bkm−k1 .

Since pv and fu depend only on a and b, we deduce the inequality n �
km − k1, as desired.

We will also want

(4) km � n + 1 ,

so we show next that this is a consequence of (i)–(iii). For r ∈ {2, 3, . . . ,m},
we obtain

(b− 1)an =
m∑

j=1

ajb
kj =

( m∑
j=r

ajb
kj−kr

)
bkr +

r−1∑
j=1

ajb
kj

≥ bkr −
( r−1∑

j=1

|aj |
)
bkr−1 ≥ bkr−kr−1 −

r−1∑
j=1

|aj | ,

provided that this last expression is positive. Since bkr−kr−1 � 1 if this last
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expression is nonpositive, it follows that in either case

kr − kr−1 � n + 1 for r ∈ {2, 3, . . . ,m} .

Therefore,

km − k1 = (km − km−1) + (km−1 − km−2) + . . . + (k2 − k1) � n + 1 .

From (iii), we obtain bk1 | an so that k1 � n + 1. Hence, (4) follows.
The basic idea now is to use Lemma 2 to strengthen these estimates.

More precisely, we consider n > 2 and show that

(5) km−i+1 − km−i � (log n)wi−1i for 1 ≤ i ≤ m− 1 ,

where w = w(4) is as in Lemma 2. This will imply that

n � km − k1 = (km − km−1) + (km−1 − km−2) + . . . + (k2 − k1)(6)

� (log n)wm−1m .

Since m and w are fixed, we can conclude that n is bounded. By (4) and
(i), we conclude that all the ki are bounded, thereby completing the proof.

It remains to establish (5), which we now prove by induction on i. As-
sume n > 2 and consider first the case when i = 1. Using (ii) with r = m,
we see that am > 0. From (iii) we get

(7) ambkm(1 + D) = (b− 1)an ,

where from (i),

|D| =
∣∣∣∣ m−1∑

j=1

aj

am
bkj−km

∣∣∣∣ ≤ Mbkm−1−km .

If km − km−1 ≤ log (2M)/ log b, then since n ≥ 3, we have immediately
km−km−1 � log n, which is (5) for the case i = 1. So suppose km−km−1 >
log (2M)/ log b. It follows that |D| < 1/2 and hence

| log(1 + D)| ≤
∞∑

j=1

|D|j

j
≤ |D|+ |D|2

2(1− |D|)

< (1 + |D|)|D| < 3
2
|D| � bkm−1−km .

Taking the logarithm of both sides of (7) gives

(8) log am + km log b− log(b− 1)− n log a � bkm−1−km .

We use Lemma 2 with d = 1, r = 4, A = max{b, a, am} � 1, and B =
max{km, n} � n, where the last inequality follows from (4). Observe that
the left-hand side of (8) is zero if and only if D = 0. But D = 0 implies that∑m−1

j=1 ajb
kj = 0, contradicting (iv) since m ≥ 2. So D 6= 0 and, therefore,
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the left-hand side of (8) is nonzero. It follows from Lemma 2 that

bkm−1−km � B−C(log A)w

,

where C = C(4, 1) and w = w(4). Thus,

km − km−1 � C(log A)w log B � log n ,

proving that (5) holds for i = 1. Now fix i in the range 2 ≤ i ≤ m− 1 and
suppose that (5) holds for each positive integer j < i. Then from (iii), we
obtain

D1b
km−i+1(1 + D2) = (b− 1)an ,

where from (ii) with r = m− i + 1,

0 < D1 = ambkm−km−i+1 +am−1b
km−1−km−i+1 + . . .+am−i+1 � bkm−km−i+1

and

|D2| =
∣∣∣∣ m−i∑

j=1

aj

D1
bkj−km−i+1

∣∣∣∣ ≤ Mbkm−i−km−i+1 � bkm−i−km−i+1 .

The induction hypothesis implies that

km − km−i+1 = (km − km−1) + . . . + (km−i+2 − km−i+1) � (log n)wi−2(i−1)

so that

(9) log D1 � (log n)wi−2(i−1) .

If km−i+1 − km−i ≤ log (2M)/ log b, then km−i+1 − km−i � (log n)wi−1i, as
desired. So suppose km−i+1 − km−i > log (2M)/ log b. As in the above case
for i = 1 we have |D2| < 1/2 and hence |log(1 + D2)| < 3|D2|/2. Thus,

(10) log D1 + km−i+1 log b− log(b− 1)− n log a � bkm−i−km−i+1 .

We use Lemma 2 with d = 1, r = 4, A = max{b, a, D1}, and B =
max{km−i+1, n} � n. Observe that the left-hand side of (10) is zero if
and only if D2 = 0. But D2 = 0 implies

∑m−i
j=1 ajb

kj = 0, which contradicts
(iv) since m ≥ m − i ≥ 1. Hence the left-hand side of (10) is nonzero.
Therefore, from Lemma 2,

bkm−i−km−i+1 � B−C(log A)w

where C = C(4, 1) and w = w(4). Note that (9) implies that

log A � (log n)wi−2(i−1) .

Thus, we easily deduce that

km−i+1 − km−i � C(log A)w log B � (log n)wi−1i ,

which completes the induction and the proof.
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3. The proof of Theorem 2. Fix b not a prime power, and let p
be a prime. If p does not divide b, then for each positive integer m, pn

divides bmφ(pn) − 1, a number having exactly one block, and so (2) does
not hold. Conversely, suppose p divides b. To prove (2), it suffices to show
that for each positive integer k, there is a positive integer n such that every
multiple of pn not ending in the digit 0 base b has > k blocks base b.
Assume to the contrary that there exists a positive integer k such that for
each positive integer n there is a multiple mn of pn which does not end in
0 and which has ≤ k blocks. Since {mn}∞n=1 is an infinite sequence, some
infinite subsequence S1 satisfies the condition that every m ∈ S1 ends in the
same nonzero digit d1 base b. There must now exist an infinite subsequence
S2 of S1 such that every m ∈ S2 ends in the same two digits d2d1 base b.
Continue in this manner so that for j ≥ 2, Sj is a subsequence of Sj−1 such
that every m ∈ Sj ends in the same j digits djdj−1 . . . d1 base b. We now
have an infinite sequence {dj}∞j=1, where d1 6= 0, such that for each positive
integer n, there is a multiple m of pn such that the last n digits of m are
dndn−1 . . . d1 and B(m, b) ≤ k. Since each such m has ≤ k blocks, there
are at most k− 1 integers j ≥ 2 such that dj 6= dj−1. Hence, there exists an
integer J ≥ 2 and a d ∈ {0, 1, 2, . . . , b− 1} such that dj = d for every j ≥ J .
Write

(dJ−1dJ−2 . . . d1)b = pn1u and bJ−1d = pn2v ,

where the integers u and v are relatively prime to p. We consider two cases,
arriving at a contradiction in each case.

C a s e 1: n1 6= n2. Since the b-ary number 111 . . . 11b is congruent to
1 (mod b), we get 111 . . . 11b ≡ 1 (mod p). Thus, (dd . . . ddJ−1 . . . d1)b =
bJ−1d(11 . . . 1)b + (dJ−1 . . . d1)b is a sum of two numbers, the first exactly
divisible by pn2 and the second exactly divisible by pn1 . Let t = min{n1, n2}.
Since n1 6= n2, we have

(11) pt ‖ (dd . . . ddJ−1 . . . d1)b ,

for any positive number of d’s. By the definition of SJ+t, there is an m ∈
SJ+t such that pt+1 divides m. Also, we may write m in the form bJ+tm′+
(dd . . . ddJ−1 . . . d1)b, where m′ is a positive integer and t+1 d’s occur to the
left of dJ−1. The fact that pt+1 divides both m and bJ+tm′ implies pt+1

divides (dd . . . ddJ−1 . . . d1)b, contradicting (11).

C a s e 2: n1 = n2. Let w = v − u(b − 1). First, we show that w 6= 0.
For suppose w = 0. Since d1 6= 0, we deduce that bJ−1d = pn2v = pn1v =
pn1u(b− 1) = (dJ−1 . . . d1)b(b− 1) is not divisible by b. This contradicts the
fact that b divides bJ−1d, since J was chosen ≥ 2. Thus w 6= 0. Let t be the
nonnegative integer for which pt exactly divides w. Pick m ∈ SJ+t+n1+1

such that pJ+t+n1+1 divides m and write m in the form bJ+t+n1+1m′ +
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(dd . . . ddJ−1 . . . d1)b, where m′ is an integer and t+n1+2 digits d occur to
the left of dJ−1. We obtain

pJ+t+n1+1 | (dd . . . ddJ−1 . . . d1)b = bJ−1d

(
bt+n1+2 − 1

b− 1

)
+ (dJ−1 . . . d1)b .

Hence,

pn1v(bt+n1+2 − 1) ≡ −pn1u(b− 1) (mod pJ+t+n1+1) .

Since pt+1 divides bt+n1+2, we get v ≡ u(b−1) (mod pt+1). This contradicts
the fact that pt exactly divides w = v − u(b− 1).

In conclusion, the authors thank (blame) J. L. Selfridge for mentioning
related questions which led to this work. The authors are also grateful to
Titu Andrescue and Andrzej Schinzel for simplifying separate parts of the
proof of Lemma 1.
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