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1. Introduction. In 1964 Erdés and Heilbronn [2] proved that if p is a
prime and A is a set of at least 31/6p residues modulo p, then Zbe gb=0
(mod p) for a non-empty subset B of A. Subsequently Olson [5] proved
the essentially best possible result that if A is a set of more than /4p — 3
non-zero residues modulo p then for every integer n there is a non-empty
subset B of A such that >, _zb=n (mod p).

In 1985, Burr and Erdés [1] studied infinite sequences A of natural num-
bers such that if A = A; U Ay then every (or every sufficiently large) num-
ber n is a sum of distinct terms of some A;, with ¢ depending on n. This is
a Ramsey-type question (see [3], [4]) for integers: when is it true that every
partition is such that at least one of the parts has a certain property?

Our aim in this note is to study some new question related to the prob-
lems above.

Denote by fi(n) the minimal integer m such that no matter how we
divide the integers from 1 to m into k classes, n is a sum of distinct terms
of one of the classes. What can one say about fi(n)? Also, let us denote by
gr(n) the minimal integer m such that there is a subset A of {1,2,...,n—1}
with gx(n) = > ,c4 @ such that if the integers in A are partitioned into
k classes, then n is always a sum of some integers from the same class.
What can one say about gx(n)? In this paper we shall investigate these two
questions for k = 2.

It is easily seen that if Y ;- ¢ < 2n — 2 then fo(n) > m; thus fo(n) >
|2v/n —1+1/2|. In Theorem 4 in the second section we shall show that
this trivial lower bound is close to the true value of fy(n), namely that
f2(n) < 2y/n+ cologn for some constant cy. It is rather surprising that it
seems to be difficult to improve substantially the trivial lower bound above:
all we shall show is that fa(n) > [2y/n]+2 if n is large enough (Theorem 5).

It is immediate from the definitions that gx(n) < fr(n)(fr(n) +1)/2 so
g2(n) < 2n+ c¢14/nlogn. However, concerning a lower bound on go(n), it is
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not even obvious that ga(n) > 2n. In Theorem 7 in the third section we shall
show that go(n) is substantially larger than 2n, in fact, g2(n) > 2n++v/2n/8
if n is sufficiently large.

2. Bounds for the function f>(n). In order to give an upper bound
for fa(n) we need three easy lemmas. As usual, denote by [b] and [a, b] the
sets of integers {i: 1 < i < b} and {i : a < i < b} respectively.

LEMMA 1. Let ¢ < d and m be positive integers. Suppose that A C [m)]
does not contain elements a and b with c < b—a <d. Then

o(A) < m(m—i—d—i—r—l—l)(m—r)—|—%(2r—e+1)e,
where r =m — |m/(c+d)](c+ d) and e = min{r,c}. In particular,
g(A) < 2(C+d)(m+1)(m—|—d). u

For the sake of convenience, given a finite set A C N denote by o(A)
the total sum of its elements, and let X(A) = {o(B) : B C A} be the set
of integers that can be written as a sum of some elements of A. Our upper
bound on f3(n) will be the function

(1) m(n) = |2v/n +logs,,n +8].

LEMMA 2. If m > 3 and A C [m] contains all odd numbers not greater
than m then X(A) D [3,0(A) — 3]. In particular, if n > 2 and A C [m(n)]
contains all odd numbers not greater than m then n € X(A).

Proof. The assertion is easily checked for 3 < m < 7; the rest follows
by induction on m since 6(A) —5>m+1form>7. m

LEMMA 3. Forn > 4, if [m(n)] = A1 U Az and neither Ay nor Ay is the
set of all odd numbers in [m(n)] then for some i we have

m(n )(m(n) 1) mn)—3  (m(n)?—3

and in A; there are two mtegers with difference 1.

Proof. The lemma is trivial if both A; and As contain two integers with
difference 1. Suppose that As does not contain two integers with difference 1.
Then A; must contain two integers with difference 1. Indeed, otherwise, one
of A; and A, must be the set of all odd numbers in [m(n)].

Since As does not contain two integers with difference 1, we have

o(A2) <m(n)+ (m(n) —2)+ (m(n) —4) + ...

m(n)(m(n)+1) m(n)—3
< 1 + 1 )
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As Ay U Ay = [m(n)], this gives
1 - 2 _
Sy 5 M) £ 1) m(n) 3 (m(n)? -~ 3
4 4 4
completing the proof of the lemma. m

THEOREM 4. If n is sufficiently large then

fa(n) <m(n) = [2v/n+logs,yn +8].
Proof. Let [m(n)] = Ay U As. To prove the theorem, we have to show

that

ne X(A)UX(Ay).
By Lemmas 2 and 3, we may assume that

2

@) o(Ay) > m(n)(rrl(n) +1) m(ni 3 _ (m(n)4) 3’
and there are a and b in A; such that b —a = 1.

We claim that A; contains a set F; = {a1,b1,...,a;,b}, where [ <
[5 logs 4 n] + 6, such that the set

1
{ E Ci:C = a orbi}
i=1

contains the interval [a,b], where a = Zizl a; and b = Zi:l b;, and this
interval has length at least m(n). Having proved the claim it is easy to see
that n € X(A;). Indeed, inequalities (1) and (2) imply that

G(Al—Fl')>M—a>n,

- 4
where F} = {a1,...,a;}. Let D be a maximal subset of A; — F} such that
o(D)<n-—a.

Then, rather crudely, o(D) 4+ m(n) > n — a, so
o(D)+a<n<o(D)+b.
Hence n € ¥(A,), as asserted by our theorem.

Now we return to prove our claim. To construct the sequence Fj, pick
elements a;,b; € Ay with by — a; = 1. Suppose we have constructed
{a1,b1,...,a;-1,b;—1}, where 2 < i <[. Inequality (2) and Lemma 1 imply
that there are two elements a;,b; € A; — {a1,b1,...,a;-1,b;—1} such that

i—1
(3) 1§bi—ai§2(bj—aj)+l

j=1
and b; — a; is maximal subject to (3). We get a new set {ai,by,...
ey @i—1,bi—1,a;,b;}. This completes the construction of the set Fj.
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To see the first property of the set F; = {a1,b1,...,a;,b;}, note that if
the integers 1 < ¢; < co < ... < ¢ are such that ¢; < 22;11 cj + 1 for
every ¢, 1 = 1,..., k, then every integer m < Zle ¢; can be represented as
m =) ;¢ for some I C [k]. Therefore, the first property holds.

Now we shall prove that the set Fj satisfies the second property. Lemma 1
and maximality of b; — a; imply that

i—1 i—1

1

12(%’—%) <bi—a; <Y (b —a;)+1
j=1 j=1

for every i = 1,2,...,[. This gives that
1

b—a=>) (bj—a;) > <i>l1 > m(n),

j=1

completing the proof of the claim and so that of the theorem. m

As we remarked in the introduction, the above upper bound on f3(n) is
close to being best possible. Indeed, if m is the maximal integer such that
St i < 2n—2then [m] has a subset Ay = {m,m—1,...,m—j}U{m—h}
with (A1) = n — 1, so with Ay = [m] — A; we have [m| = A; U Ay,
0(A1) =n—1and 0(Az) <n—1. Hence fa(n) > [2v/n —1+1/2]. It does
not seem unreasonable to conjecture that if Y1, ¢ > 2n then fo(n) < m+1.
Our next aim is to show that this is not the case.

THEOREM 5. If n is sufficiently large then
fa(n) = [2v/n] +2.
Proof. Suppose that n > 1100 and f3(n) < m, where
(4) m=[2y/n|+1.

Then for all partitions [m] = A; U Ay, either n € X(A;) or n € Y (Az). Note
first that

m

(5) Y i=m(m+1)/2<2n+3Vn+1.

=1
Let k be the integer such that
l—k<n and [>n

where | = Y"1 i. Then k < V2n+2,som—k >3 andl <n+k <
n+3m — 3k + 3. Let A; = [k + 1,m] and Ay = [k]. Then n ¢ Y (A;) so
n € Y(Az). Thus k(k + 1)/2 > n. Therefore

(6) k>V2n—1.
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To arrive at a contradiction, we shall partition [m] into classes A; and Aj
such that n ¢ X(A;) for any i. Depending on the value of [, n < I <
n + 3m — 3k + 3, we partition the integers from 1 to m into two classes A;
and As in the following way.

(i) Ifn <l <n+m-—Fk+1 then let Ay = [k —4,m] — {a} and
Ay = [k —5]U{a}, where a =1+ k — n.

(i) f n+m—k+1 <1 <n+2m—2k+2thenlet A; = [k—5,m]|—{a,b}
and Ay = [k—6]U{a, b}, where a,b € [k—1,m]|, a # band |+2k—2—n = a+bD.

(iti) f n+2m —2k+2 <l <n+3m—3k+3 then let A1 = [k —6,m]—
{a,b,c} and Ay = [k —7]U{a,b, c}, where a,b,c € [k,m], a # b # ¢ # a and
I+3k—-5—-—n=a+b+ec

To complete the proof, we simply check that n & X'(A;) U X(Asg) for the
partitions above.

Case (i). By (6), we have
(7) o(A1) =l—a+k—14+k—2+k—3+k—4=n+3k—10 > n+3v2n—13.

Then, by (5), we have 0(Az) < n, son & X(As).

Suppose that n € X(A;). Let @ be a subset of A; such that n = o(Q).
Since, by (7), 0(A1) = n + 3k — 10 and the minimal integer of A, is k — 4,
we have |[A; — Q| < 2. But by (4) and (7), o(A4;) > n + 3v2n — 13 >
n+m+(m—1) so we have |A; — Q| > 3, contradicting the inequality above.

Case (ii). By (6), we have
®)  o(A)=l+k-1+k—2+k-3+k—4+k-5—a—b
=n+3k—-13>n+3v2n—-16.

Then, by (5), we have o(As) < n, son ¢ Y(As).

Suppose that n € Y (A;). Let @ be a subset of A; such that n = o(Q).
Since, by (8), 0(A1) = n + 3k — 13 and the minimal integer of A; is k — 5,
we have [A; — Q| < 2. But by (4) and (8), 0(A1) > n+ 3v2n — 16 >
n+m+ (m — 1) so we have |4; — Q| > 3, which is a contradiction.

Case (iii). By (6), we have
9) o(A1)=1l4+k—-1+k—2+k—-34+k—4+k—-5+k—6—-—a—-b—c

=n+3k—-16>n+3v2n—19.
Then, by (5), we have 0(A43) < n, son & X(Asz).

Suppose that n € ¥(A4;1). Let @ be a subset of A; such that n = o(Q).

Since, by (9), 0(A1) = n + 3k — 16 and the minimal integer of A is k — 6,

we have |A; — Q| < 2. But by (4) and (9), 0(41) > n+ 3v2n — 19 >
n+m+ (m — 1) so we have the contradiction that |[A; — Q| > 3. u
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It would be of interest to decide whether f3(n)—21/n is bounded or not.
We are inclined to hazard the guess that it tends to infinity.

3. Bounds for g;(n). As Theorem 4 implies easily that go(n) is close
to 2n, the real question is the order of ga(n) — 2n. Since, trivially, g2(n) <
fa(n)(f2(n)+1)/2, Theorem 4 gives the following upper bound on g3 (n)—2n.

THEOREM 6. If n is sufficiently large then
g2(n) —2n < 3v/nlogs yn.

When trying to prove a good lower bound for g2(n) — 2n, we encounter
considerably more serious difficulties than in giving a lower bound for fs(n).
It is intuitively obvious that g2(n) —2n > 0 but, somewhat surprisingly, this
does not seem to be trivial to prove. Nevertheless, we shall show that the
bound 5y/nlogs n in Theorem 6 is not far from the truth.

THEOREM 7. If n > 3 then
g2(n) —2n > V2n/8.

Proof. As the proof is rather long, we shall put most of the work
into five lemmas. Suppose that, contrary to the assertion, there is a set
A C [n — 1] such that o(A) < 2n + v2n/8 and n € X (A;) U £(Ay) for all
partitions A = Ay U Ay. Let A = {a1,a9,...,an}, where n > a3 > az >
e >y > 0.

Our first aim is to define an increasing sequence of indices kg, k1, - - ., k¢-
In order to make this definition somewhat more convenient, let us add an
auxiliary term to the sequence (a;),, namely the term a,,+1 = n. Let ko
be the minimal index such that s(kg) = Zfil a; > n. Clearly kg > 2. If
s(ko) > n then set t = 0, otherwise let k1 be the minimal index such that

s(ky) :Zai—ako >n.

i=1
If s(k1) > n then set t = 1, otherwise let ks be the minimal index such that

s(ky) = Zai —Qp, — Ak, >N
i=1
As we have the auxiliary term a,,11 = n, continuing in this way we arrive
at a sequence ko, k1, ..., k¢, where k; is the minimal index such that s(k;) =

Zf;l ai—zgz_ol ag, > n. Thus s(k;) =nforj=0,1,...,t—1, and s(k;) > n.
Let us start with some easy observations concerning the sequence ay,,

Akyy -y 0k, . As s(ko) = Zfio a; = n, we have kg > 2 and

(10) ak, < n/ko <mn/2.
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Furthermore, as

kjt1
ag,; = Z a;
i=kj+1

holds for j =0,1,...,t — 2, we have
(11) Ak; iy < akj/(kj+1 - k;]) < a’kj/27
implying

t—1 t—1
(12) Zaki < Qg, 22_j < 2ap, <n.

=0 J=0

Our next aim is to prove a simple lemma claiming that, in fact, the
auxiliary term a,,+1 is not needed in the definition above.

LEMMA 8. In the notation above, we have ky < m.

Proof. Suppose that, contrary to the assertion, ks = m+1. Thent > 1
and so
kt—1 t—2

s(ki—1) = Z a; — Zaki =n
i=1 7=0

and
Ak, , > Ak, _+1 Tt Ak, 42+ ...+ ap .
Consequently,

m t—1
(13) Zai—Zakj<n.
i=1 §=0

Inequalities (12) and (13) suggest a partition A = A; U Ay contradicting
our assumption on A: setting A; = {ax, : 0 < j <t} and Ay = A — Ay,
clearly n ¢ Y(A;) U X (Az). m

Our next lemma is a considerable extension of Lemma 8: not only do
we have k; < m but also the sum ag, 41 + ag, 42+ ...+ ap, is quite large. In
the proof of this lemma, and in the rest of the proof of Theorem 7, we shall
make use of two sets, namely

K ={ak,, 0k, ax,_,}, L=A{ai,a9,...,ar}— K.
Note that o(L) = s(k;) > n and o(K) < o(L) — ag, < n.
LEMMA 9. We have a, > v2n/4 and
m
(14) > ai>n/16.

i=ke+1
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Proof. Clearly, inequality (14) implies that ax, > ag,+1 +1 > v2n/4,
so it suffices to prove (14).

First we assume that t < 3. Let A4y = L and A, = A—-L = KU
{ak,+1,---,am}. By the definition of k;, we have n ¢ X (A;) so, by our
assumption, n must be in the set X'(A3). A fortiori,

t—1 m
O’(AQ):Z(I;%—F Z a; > n,
i=0

so, recalling (10) and (11), we find that

t—1 t—1 2
(15) zm: aiZn—Zaki>n—akoz2*i>n—gz2*i:n/8.
i=0 =0 =0

i=ke+1

Assume now that ¢ > 4 and (14) is false. We claim that ky = 2, k1 = 4
and ko = 6. Indeed, if kg > 3 then with A1 = L and Ay = A — A =
K U {ak,+1,--.,am} we have n ¢ Y(A;) so n € ¥(As). Consequently,
analogously to (15), we have

m t—1 2
) n .
E a;>n-—a E 2_Z>n——§ 27" >n—2n/kg >n/3.
) ko — ko — [ko 2/
i=ke¢+1 =0 =0

This shows that, contrary to our assumption, (14) does hold. The assertions
k1 = 4 and ky = 6 are proved in a similar manner, by making use of the
inequality in (11) for j =0 and j = 1.

As n = a; + az, az = a3z + a4 and ay = as + ag, we have ay < n/2,
as < n/4 and ag < n/8; furthermore,

(16) a1 +az+tas+ag=ar+az+as=a1+ax=n
and
(17) as+asg+as+ag=as+az+as =2a <ay+ax=n.

Our next aim is to show that
(18) al—a2+a3—a4+a5—a6>n/16.

To this end, let A; = {a2,as,a4,a5,a6} and Ay = {a1,ar,as,...,an}. By
assumption, either n € X (A;) or n € ¥(As).
In the first case, as 0(A41) — a4 < n by inequality (17), we have

(19) 2a9 + ag = az + (a3 + a4) + ag = 0(A41) —as <n.
As ay + 3a6/2 < Tn/16, inequalities (16) and (19) imply that
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ap —az +a3 —aqg +as —ag
=a1 +ag +as + as — (az + ag/2) — (a4 + 3as/2)
>n—n/2—Tn/16 =n/16.
In the second case n < g(As) so
(20)  2a2+ a4 =az+ (az+ aq) + (a5 + ag) = 0(A1)
=0(A) —o(A) <2n+V2n/8 —n =n+V2n/8.
As ay4/2 4 2a6 < 3n/8, inequalities (16) and (20) imply that
ay —az+ a3 —aq+as — ag
=ai;+az+as+as — (a2 + as/2) — (as/2 + 2as)
>n—n/2—V2n/16 —3n/8 =n/8 —/2n/16 > n/16,

completing the proof of (18).

Armed with (18), the proof of our lemma is easily completed. Indeed,
set Ay = L —{ag,} and Ay = A— Ay = KU {ag,,ak,+1,---,am}. Then
o(Ay) < nso o(As) > n. Hence, by inequality (18),

m t
Z ai:o'(Az)—a(K)—akth—Zakj
t

t
O'(Al) — Zaki > Z ak._l —CLk
j=0

§=0
>a) —ag +as —aq +as — ag >n/16,
as claimed. =

From Lemma 9 and the definitions of k; and s(k;), we easily deduce two
more lemmas.

LEMMA 10. Let Q be a set of integers with o(Q) < n+ ag, — s(kt). Then
n¢g X(LUQ).
Proof. Let us assume that n € X(L U Q). Then there is a set Q1 such

that Q1 C LUQ and 0(Q1) = n. As o(L) > n, there is an a; in L such that
a; & Q1. Therefore

o(Q1) <o(LUQ) —a; < s(k) —ax, +0(Q)
< s(ky) —ap, +n+ag, —s(ky) <n. =
LEMMA 11. n + ay, — s(k;) > v/2n/8.

Proof. Let Ay =L and Ay = A— L. Then n ¢ ¥ (A;), son € Y(As).
As 0(A) < 2n+ v2n/8, we have

s(ky) = 0(A1) < 2n+V2n/8 — g(Az) <n+v2n/8.
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Therefore, by Lemma 9,
n+ag, —s(k)) >n+v2n/4d—(n+v2n/8) =v2n/8. =

Before we can complete the proof of Theorem 7, we need one more
lemma; this lemma is the heart of the entire proof. For the sake of con-
venience, let us extend the sequence a; > as > ... > a,, by the trivial term
Am+1 = 0.

LEMMA 12. There is an index h with k; +1 < h < m + 1 such that
n ¢ X(LU{ap}) and

h—1
(21) oK)+ Y ai<n.
i=ki+1

Proof. We shall consider two cases.
Case l. k; — k;_1 > 3. We shall make use of the set
B:{aj—f—n—S(kt)th_1+1§j§]€t}.

First assume that there is an index h with k; +1 < h < ky + (ks — kt—1)
such that a;, ¢ B. It is easy to check that n ¢ Y(L U {ap}). Indeed, if
n € X(LU{ap}), i.e. thereis a set @ C LU {ap} such that n = o(Q), then
Q = LU{an} —{a;} for some a; in L, son = o(Q) = s(kt) + ap, — a;. Since
ap ¢ B, we have ¢ < k;_1, so a; > a;—1 > ag,_,+1 + ak,_,+2. Thus

n=s(ky) +an —a; < s(k) +ap, —ag, _,
< s(ke) +an —ag, 41— ak,_ 42 < (k) —ag, <n,

which is a contradiction. Therefore n ¢ X (L U {ay}), showing the first
assertion of the lemma. To see the second assertion, note that as j <
kt + (kt — ]{thl), we have

j—1 ki1 ki—1
G(K)+ Z ai<2ai—a(K)+ Z ai:U(L)_akt<n-
i=k+1 i—1 i=ky_1+1

Assume now that a; € B for all j with k; +1 < j < k; + (k¢ — ki—1)
and so B = {ag,+1,ak,+2,--,02%,—k,_, }- Lhen, in particular, ask, —x, , =
ak, +n — s(k:). We shall show that h = 2k; — k; + 1 will do. Clearly,

o(LU{an})—ar, = o(LU{a2k,—k,_,+1}) —ar, < o(L)+azk,—k,_, —ak, =n.

As ag, is the smallest term in L and o(L) > n, this implies that n &
Y(L U{ap}). Furthermore,

{a’ko—lvakl—l? s 7a’kt—1_1} CL- {akt—1+17akt71+27 s ?a’kt}7
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SO
t—1 t—1 kq
o(K)= Zaki < Za‘ki_l <o(L) - Z a;
i=0 i=0 i=ky 141
implying
h—1 ke h—1
o(K)+ Z a; < o(L)— Z a; + Z a;
j=ke+1 i=ks_1+1 j=ki+1
ke—ke—1
= U(L) - Z (akt—l-i-i - akt-i-i)
i=1

SJ(L)—i-ah_l—akt =n.

Therefore Lemma 12 holds if k; — k;_1 > 3.
Case 2. k; — ki1 = 2. This time we set

B:{ai—l—n—s(kt):k:t_2—|—1§i§k:t, i;’ékt_l}

and b = k; —k;—o—1 = |B|. Since s(kt) = Zf;l a; —Z’;é ar, <n++v2n/8,

n = s(ki—1) = Zf;’ll a; — Zf;g ak,;, and, by Lemma 9, ay, > v2n/4, we
have

ki—1—1 t—2
(22) A, _, = S(kt_l) — Z a; + Zaki
i=1 i=0
ki1 t—1
= s(ki—1) — Z a; + Zaki =n—s(kt) + ax,—1 + ag,
i=1 i=0

> ag,—1 + ag, — v2n/8 > ag,—1 + akt/2.

Let us assume first that k;_o — ky—1 > 4 so that b > 5 and a, , >
Ak, o+1+ Gk, o+2+ak, ,+3. Let h be the first index in the interval k; +1 <
h < ki + b+ 1 such that a,, ¢ B. Then n ¢ X(L U {ay}). Indeed, suppose
that n € X¥(L U {an}), i.e. thereis a set Q C L U {ap} with n =0(Q). As

o(LU{an} —A{ak,,ar,—1}) = s(ke) — ag, — ax,—1 + ap < s(k) —ag, <n,
the set @ is of the form Q = LU{ap} —{a;} for some a; € Lson =o(Q) =
s(k¢) + ap — a;. Therefore ap, = a; + n — s(kt), and as ap, € B, we have
i [ki—o+1, kt] soi <ky_o and a; > ag,_, > ag,_,+1 + ak,_,+2. Thus
n=s(ke)+an —a; <s(ky) +an — ar, 541 — Ak, 42
< s(kt) — ag,_n4+1 < s(ky) —ax, <n,

which is a contradiction. Therefore n ¢ X (L U {ay}), showing the first
assertion of the lemma.



352 B. Bollobéas et al.

Let us turn to the proof of (21). If h < k; + b — 1, we can see (21) as
follows:

h—1
o(K)+ Z Zak + Z al<Zak_1+ Z a;
i=ki+1 i=ky+1 i=ky+1
ki_1—2 ki h—1
< (O’(L) - Z a; — Z aj) + Z a;
=kt _ot1 j=ki_1+1 i=ky+1
ki—1—2 kie—1 h—1
:O'(L)—< Z aj—i- Z aj — Z ai)—akt
j=kt—2+1 j=ki—1+1 i=ki+1

<o(L)—ag, =s(ks) —ar, <n.
Thus we may suppose that h = k; +b or h = ks + b+ 1. Then
Aky 41y Ay 42y - - -y Q-1 € B so ap—1 = aj+n—s(k;) for some | with I —k;_o >
h—k;. Hencel > h —k;+ ko > b+ ki_o = k;y — 1. Therefore, arguing as
above, by (22) we have

h—1 ke—1—2 ke h—1
o(K)+ Z a; <o(L)— Z a; — Z a; + Z a;
i=ke+1 J=ki_a+1 j=ki_1+1 i=ky+1
ki_o+42 ki—1—2 ky
s(ky) — Z a; — Z a; — Z a;
j=kt—2+1 j=kt—2+3 j=ki—1+1
ki+3
+ Z a; + Z a; + ap—1
i=ks+1 i=ki+4
ki_o+2 ki+3
= S(kt) — ( Z aj — Z ai)
J=ke_o+1 i=ki+1
ki_1—2 k¢ h—2
—( Z aj—l— Z a; —ap — Z ai>
j=ki—2+3 Jj=ki—1+1 i=ki+4
+ap—1 —qq

The sums in the parentheses are non-negative: the first by inequality (22),
and the second as it has (k1—1 — kt—o —4) + (k¢ — k¢—1) positive terms and
1+ (h—ke—5) < (kt—1 — kt—2 — 4) + (k¢ — kt—1) smaller negative terms.
Thus,
h—1
o(K)+ Z a; < s(ky) +ap—1 —a;=n.
i=ky+1
Hence the lemma holds if ko — ki1 > 4.
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Let us assume then that k;_s — k;—1 < 3. Suppose first that there is an
h such that k; +1 < h < k; +b—1 and ap, € B. Then, arguing as above,
we find that n ¢ Y(L U {an}), and, as h < k; +b—1,

h—1
o(K)+ Z a; < s(ky) —ar <n,
i=ki+1

as required.

Suppose then that a; € B for all j with £, +1 < j < k; +b — 1. Then
either (i) ag,+b—1 = ak,—1 +n — s(ke) or (ii) ag,+p—1 = ar, +n — s(k).

To complete the proof of our lemma, we shall show that the assertions
of the lemma hold in these two cases.

(i) Assume that ag,+p—1 = ag,—1 +n — s(k¢). Since ak,+b—2, Ak, +b—3, - - -
...,ak,+1 are all in B, they are all of the form a; +n — s(k;), where a; € L.
We have ak,+p—2 > a, -3, g, +6-3 = Ak, —4, - - and
(23/) Ak, +1 > Aky_o+1 +n— S(kt) .

In fact, as dg,+1 = a; +n — s(k¢) for some i > k;—o + 1, we have equality
in (23'):

(23) Qy+1 = Qky_p41 + N — S(kt) :
Similarly, if k;_o + 2 # k;_1 then
(24) Q42 = Qky_o42 TN — S(kt) )

and if k;_o +2 = ky;_1 then

(25) Akpr2 = g,y 11+ 1 — 8(ke) -
Inequalities (24) and (25) imply
(26) s(kt) + ag,42 —ag, > n,

and as, by Lemma 9, s(k;) < n+ v2n/8 and ax, > v2n/4 inequality (26)
implies that
(27) Aky4+1 > Qlgyt2 > Gk, T —n —V2n/8 > V2n/8.

Let us partition A by setting Ay = LU {ak,+1,ak,+2} — {ak, } and Az =
A— A;. Then, by (26) and (27), we have 0(A1) > n++v2n/8,s0 0(A2) <n
and thus n € X(A;). Let @ be a subset of A; such that n = o(Q). Since
s(kt) — ag, < 0, inequality (26) implies that there is an a; € L — {ag, } such
that @ = A; — {a;}. Therefore, by (23),

n=0(Q)=0(A1)—aj =0(L)+ag,+1 + ag,42 — ax, — a;

s(ke) + ag,+1 + k42 — ag, — a;
= S(k‘t) +ag,_,+1+Nn— S(k?t) + ag, 42 — ag, — a;
(

N+ (Aky,_p41 — G5 + Gk 42 — Ak,) -
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However, we claim that

(28) k41 — Q5 + A, 42 — A, 7 0.

It is trivial that (28) holds for a; = ag, ,+1. If a; = ag, ,42, then ky_o+2 #
ki—1,s0, by (23) and (24), ag, ,+1—a;+ap,42—ak, = Qg _,41+n—5(k) —
ag, > ag, ,+1+n—s(ky)—ag,+1 =0. If a; = ag, , 41, then, by (26) and (27),
Ak, y+1+ Qg2 > G, + V2n/8 > a; + ag,, so, inequality (28) holds again.
In fact, these are all the cases since k;—1 —kt—o < 3 and k; — k;—1 = 2. Thus
(28) does hold, which is a contradiction.

(ii) Assume now that ax,+5-1 = ar, + n — s(kt). We shall show that
h = k; + b will do for the claim in the lemma. Clearly
o(LU{ap}) — ar, = s(kt) + ak,+6 — ag, < s(kt) + ar,+6-1 — ar, =n.

As o(L) > n and ay, is the smallest term in L, this implies n ¢ X (L U
{ak,+bv}), showing the first assertion of the lemma. To see the second asser-
tion, note that

h—1 kt—1_2 kt kt-f—b—l
O'(K)+ E a; <3(kt)_ E a; — E a; + E a;
i=k¢+1 i=kt_o+1 i=ki_1+1 i=ks+1
ki_1—2 ki—1 ki+b—2
= S(kit) — ( E a; + a; — E ai)
i:kt72+1 i:kt71+1 l:ktJrl

— Ak, + Ay yb—1
< s(ky) — ag, + ag,40-1 =1,

since the sum in parentheses is positive as there are b — 2 positive terms and
b — 2 smaller negative terms. This completes the proof of the lemma. =

Armed with Lemma 12, the proof of Theorem 6 is easily completed. Let
h be the index whose existence is guaranteed by Lemma 12.

Assume first that a; > \/%/8 Let Ay =LU{ap} and Ag = A— Ay =
KU {ap, 11, am} —{an}. Then o(A;) > n ++/2n/8, so o(As) < n, and
son ¢ X(Ay). However, by Lemma 11, n ¢ X(A;). This contradicts our
assumption on the set A.

Let us assume then that a, < v2n/8. Then > .i", a; > v/2n/8. In-
deed, otherwise let 47 = LU {ap,...,an} and A9 = A — A3 = KU
{ak,+1,-..,an—1}. Lemmas 10 and 11 imply that n ¢ X (A;). However,
by Lemma 12,

h—1
o(Az) =o(K) + Z a; <mn,
i=ky+1
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so n € Y(As), contradicting our assumption. Therefore > 7", a; > v/2n/8,
as claimed.

Since aj, < \/ﬂ/& 0<s(k)—n< \/%/8 and ap > app1 > .. > G,
there exists an index [, h < < m, such that

l
nAVon/8 —s(k) <Y a; <n+V2n/4— s(k) < n+ag, — s(ke).
i=h

Let Q = {an,ant1,...,a;} so that o(Q) <n +ax, —s(kt). Set Ay =LUQ
and

A=A — A4 :KU{akt_H,...,ah_l}U{aH_l,...,am}.
Then, by Lemma 10, n ¢ X(A;). However, by the definition of [,

l
o(Ar) = s(ke) + > a; > n++2n/8,
i=h
so 0(A2) < n and hence n ¢ X' (Asz), contradicting our assumption on A and
completing the proof of the theorem. m

It is tempting to conjecture that go(n) = fo(n)(f2(n)+1)/2 but, if true,
this seems to be rather difficult. It may be easier to show that, as we suspect,

(92(n) —2n)/v/n — oo.
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