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1. Introduction. Let ζ(s) be the Riemann zeta-function, and define
E(T ) by

T∫
0

|ζ( 1
2 + it)|2dt = T log T + (2γ − 1− log 2π)T + E(T )

for T ≥ 2, where γ is Euler’s constant. In 1949, Atkinson [1] proved the
following now famous formula for E(T ). For any positive number ξ, let

e(T, ξ) =
(

1 +
πξ

2T

)−1/4(2T
πξ

)−1/2(
arsinh

√
πξ

2T

)−1

,

f(T, ξ) = 2T arsinh

√
πξ

2T
+ (π2ξ2 + 2πξT )1/2 − π

4
,

and

g(T, ξ) = T log
T

2πξ
− T +

π

4
.

Then Atkinson’s formula asserts that for any positive numberX withX � T
(i.e. T � X � T ), the relation

(1.1) E(T ) = Σ1(T,X)−Σ2(T,X) +O(log2 T )

holds, where

Σ1(T,X) =
√

2
(
T

2π

)1/4 ∑
n≤X

(−1)nd(n)n−3/4e(T, n) cos(f(T, n)) ,

Σ2(T,X) = 2
∑

n≤B(T,
√

X)

d(n)n−1/2

(
log

T

2πn

)−1

cos(g(T, n)) ,
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d(n) is the number of positive divisors of the integer n, and

B(T, ξ) =
T

2π
+

1
2
ξ2 − ξ

(
T

2π
+

1
4
ξ2

)1/2

.

The analogue of Atkinson’s formula in the strip 1/2 < σ = Re(s) < 1
was first investigated by Matsumoto [9]. Define Eσ(T ) by

T∫
0

|ζ(σ + it)|2dt = ζ(2σ)T + (2π)2σ−1 ζ(2− 2σ)
2− 2σ

T 2−2σ + Eσ(T ) .

Matsumoto proved that if 1/2 < σ < 3/4 and X � T , then

(1.2) Eσ(T ) = Σ1,σ(T,X)−Σ2,σ(T,X) +O(log T ) ,

where

Σ1,σ(T,X)

=
√

2
(
T

2π

)3/4−σ ∑
n≤X

(−1)nσ1−2σ(n)nσ−5/4e(T, n) cos(f(T, n)) ,

Σ2,σ(T,X)

= 2
(
T

2π

)1/2−σ ∑
n≤B(T,

√
X)

σ1−2σ(n)nσ−1

(
log

T

2πn

)−1

cos(g(T, n)) ,

with the notation σa(n) =
∑

d|n d
a, and the implied constant depends only

on σ.
The reason of the restriction 1/2 < σ < 3/4 in [9] is as follows. Define

D1−2σ(ξ) =
∑
n≤ξ

′
σ1−2σ(n) ,

where the symbol
∑′ means that the last term is to be halved if ξ is an

integer. In case σ = 1/2, the classical formula of Voronöı asserts

D0(ξ) = ξ log ξ + (2γ − 1)ξ + 1/4 +∆0(ξ)

with

(1.3) ∆0(ξ) =
1

π
√

2
ξ1/4

∞∑
n=1

d(n)n−3/4

{
cos(4π

√
nξ − π/4)

− 3
32π

(nξ)−1/2 sin(4π
√
nξ − π/4)

}
+O(ξ−3/4).

This formula is one of the essential tools in the proof of Atkinson’s formula.
Analogously, Matsumoto’s proof of (1.2) depends on the following Voronöı-
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type formula of Oppenheim [16]:

(1.4) D1−2σ(ξ) = ζ(2σ)ξ +
ζ(2− 2σ)
2− 2σ

ξ2−2σ − 1
2
ζ(2σ − 1) +∆1−2σ(ξ)

with

(1.5) ∆1−2σ(ξ) =
1

π
√

2
ξ3/4−σ

∞∑
n=1

σ1−2σ(n)nσ−5/4

{
cos(4π

√
nξ − π/4)

−16(1− σ)2 − 1
32π

(nξ)−1/2 sin(4π
√
nξ − π/4)

}
+O(ξ−1/4−σ) .

However, the series in (1.5) converges only for σ < 3/4, which gives rise to
the restriction 1/2 < σ < 3/4 in [9]. Therefore a new method is required to
obtain an analogue of Atkinson’s formula beyond the line σ = 3/4.

In this paper we shall prove

Theorem 1. For any σ and X satisfying 1/2 < σ < 1 and X � T , the
formula (1.2) holds.

Our starting point is the Voronöı-type formula for

D̃1−2σ(ξ) =
ξ∫

0

∑
n≤t

σ1−2σ(n) dt ,

given in the next section. The crucial point is that the Voronöı series for
D̃1−2σ(ξ) converges for any σ satisfying 1/2 < σ < 1. The basic principle of
the proof of Theorem 1 is similar to the proofs of (1.1) and (1.2), but the
details are more complicated.

In [9], as an application of (1.2), the upper bound estimate

(1.6) Eσ(T ) = O(T 1/(1+4σ) log2 T )

has been proved for 1/2 < σ < 3/4. Now it follows easily from Theorem 1
that (1.6) holds for 1/2 < σ < 1. We should mention that already in 1990,
in a different way, Motohashi [15] proved (1.6) for 1/2 < σ < 1, and Ivić
[6, Ch. 2] gave an improvement by using the theory of exponent pairs. (See
also Ivić [7].) (1)

Another application of Theorem 1 is the mean square result for Eσ(T ).
In [9] it has been shown that

(1) Added in proof (June 1993). In [6] there is an error on top of p. 89 invalidating
Theorem 2.11 and its Corollary 1 but not its Corollary 2. However, Professor Ivi/c has
informed us that he can now recover his corollaries.
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(1.7)
T∫

2

Eσ(t)2 dt

=
2

5− 4σ
(2π)2σ−3/2 ζ

2(3/2)
ζ(3)

ζ

(
5
2
− 2σ

)
ζ

(
1
2

+ 2σ
)
T 5/2−2σ + Fσ(T )

with Fσ(T ) = O(T 7/4−σ log T ) for 1/2 < σ < 3/4, and in [10], the im-
provement Fσ(T ) = O(T ) has been proved. In case 3/4 ≤ σ < 1, by using
Heath-Brown’s [4] method and Theorem 1, it can be shown easily that

(1.8)
T∫

2

Eσ(t)2 dt� T log2 T .

This can be slightly improved. In particular, for σ = 3/4 we get an asymp-
totic formula.

Theorem 2. We have
T∫

2

E3/4(t)2 dt =
ζ2(3/2)ζ(2)

ζ(3)
T log T +O(T (log T )1/2) ,

and for 3/4 < σ < 1, we have

T∫
2

Eσ(t)2 dt� T .

Corollary. E3/4(T ) = Ω((log T )1/2).

Comparing Theorem 2 with (1.7), we can observe, as has already been
pointed out in [9], that the line σ = 3/4 is a kind of “critical line” in the
theory of the Riemann zeta-function, or at least for the function Eσ(T ).

It might be possible to reduce the error term O(T (log T )1/2) to O(T ) in
Theorem 2 without any new idea but only with a lot of extra work.

We also prove in this paper the following result, which has been an-
nounced in [10].

Theorem 3. For any fixed σ satisfying 1/2 < σ < 3/4, we have

Eσ(T ) = Ω+(T 3/4−σ(log T )σ−1/4).

Corollary. Fσ(T ) = Ω(T 9/4−3σ(log T )3σ−3/4).

We can deduce Theorem 3 from (1.2). The problem of deducing a certain
Ω+-result in case 3/4 ≤ σ < 1 seems to be much more difficult. This
situation also suggests the critical property of the line σ = 3/4.
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2. A Voronöı-type formula. Hereafter, except for the last section,
we assume 3/4 ≤ σ < 1. Let ξ ≥ 1, and define ∆̃1−2σ(ξ) by

D̃1−2σ(ξ) =
1
2
ζ(2σ)ξ2 +

ζ(2− 2σ)
(2− 2σ)(3− 2σ)

ξ3−2σ − 1
2
ζ(2σ − 1)ξ(2.1)

+
1
12
ζ(2σ − 2) + ∆̃1−2σ(ξ) .

Then the following Voronöı-type formula holds.

Lemma 1. We have

(2.2) ∆̃1−2σ(ξ) = c1ξ
5/4−σ

∞∑
n=1

σ1−2σ(n)nσ−7/4 cos(c2
√
nξ + c3)

+ c4ξ
3/4−σ

∞∑
n=1

σ1−2σ(n)nσ−9/4 cos(c2
√
nξ + c5) +O(ξ1/4−σ) ,

where the two infinite series on the right-hand side are uniformly convergent
on any finite closed subinterval in (0,∞), and the values of the constants
are c1 = −1/(2

√
2π2), c2 = 4π, c3 = π/4, c4 = (5− 4σ)(7− 4σ)/(64

√
2π3)

and c5 = −π/4.

Voronöı-type formulas are studied in Hafner [3] in a fairly general situa-
tion. We can prove the formula (2.2) as a special case of Hafner’s theorem.
In fact, let F (s) = π−sζ(s)ζ(s−1+2σ) and G(s) = Γ (s/2)Γ ((s−1+2σ)/2).
Then the functional equation

G(s)F (s) = G(2− 2σ − s)F (2− 2σ − s)

holds, which agrees with Hafner’s Definition 1.1 with a(n)=b(n)=σ1−2σ(n),
λn = µn = πn, φ(s) = ψ(s) = F (s), σ∗a = σa = 1, ∆(s) = G(s), N = 2,
α1 = α2 = 1/2, β1 = 0, β2 = σ− 1/2, S = {1− 2σ, 0, 2− 2σ, 1}, D = C−S,
χ(s) = G(s)F (s) and r = 2− 2σ. Also we choose % = 1, b = 3, c = 3/2 and
R = 2 in Hafner’s notation. In this case Hafner’s A%(x) is equal to

∑
πn≤x

σ1−2σ(n)(x− πn) = π

x/π∫
0

∑
n≤t

σ1−2σ(n) dt ,

which is obviously continuous in (0,∞). Therefore, (2.2) and the claim of
uniform convergence in Lemma 1 follow from Theorem B and Lemma 2.1
(with m = 1) of Hafner [3]. Hafner does not give the values of the constants
c1, . . . , c5 explicitly, but the values of c1, c2, c3 and c5 can be determined
by combining Lemma 2.1 of Hafner [3] with the explicit values of µ and h
given in Lemma 1 of Chandrasekharan–Narasimhan [2]. (There is a minor
misprint in Hafner’s paper. The right-hand side of (2.3) in [3] should be
multiplied by

√
2.) The value of c4 may also be determined by tracing the
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proof of Lemma 1 in Chandrasekharan–Narasimhan [2] carefully, but the
value of c4 is not necessary for the purpose of the present paper.

Meurman [13] gives a considerably simpler proof of (1.3). All the steps
of Meurman’s proof are explicit, and the same method can be applied to our
present case. Therefore we can obtain a different proof of Lemma 1, with
explicit values of all the constants c1, . . . , c5. The details, omitted here, are
given in a manuscript form [14].

By using Lemma 1, we can prove the following useful estimate.

Lemma 2. We have ∆̃1−2σ(ξ) = O(ξr log ξ), where

r =
−4σ2 + 7σ − 2

4σ − 1
≤ 1

2
.

P r o o f. We first note the elementary estimate

(2.3) ∆1−2σ(v) � v1−σ .

In fact, by the Euler–Maclaurin summation formula we have∑
m≤

√
v

m−2σ =
1

1− 2σ
v1/2−σ + ζ(2σ) +O(v−σ) ,

∑
m≤

√
v

m2σ−2 =
1

2σ − 1
vσ−1/2 + ζ(2− 2σ) +O(vσ−1) ,

and, for 1 ≤ n ≤
√
v,∑

m≤v/n

m1−2σ =
1

2− 2σ

(
v

n

)2−2σ

+ c(σ) +O(v1/2−σ) ,

where c(σ) is a constant depending on σ. By the well-known splitting up
argument of Dirichlet (see Titchmarsh [18, §12.1]), we get∑
n≤v

σ1−2σ(n)

= v
∑

m≤
√

v

m−2σ +
∑

n≤
√

v

( ∑
m≤v/n

m1−2σ −
∑

m≤
√

v

m1−2σ
)

+O(v1−σ) .

Applying the above summation formulas we get∑
n≤v

σ1−2σ(n) = ζ(2σ)v +
ζ(2− 2σ)
2− 2σ

v2−2σ +O(v1−σ) ,

which implies (2.3). Hence, by (1.4) and (2.1),

∆̃1−2σ(ξ)− ∆̃1−2σ(u) =
ξ∫

u

∆1−2σ(v) dv � |ξ − u|ξ1−σ
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for u � ξ. Hence

∆̃1−2σ(ξ) = Q−1
ξ+Q∫
ξ

∆̃1−2σ(u) du+O(Qξ1−σ)

for 0 < Q� ξ. Formula (2.2) gives trivially

∆̃1−2σ(u) = c1u
5/4−σ

∑
n>N

σ1−2σ(n)nσ−7/4 cos(4π
√
nu+ c3)

+O(u3/4−σ) +O(u5/4−σNσ−3/4 logN) ,

where N ≥ 1. It follows that

∆̃1−2σ(ξ) = c1Q
−1

∑
n>N

σ1−2σ(n)nσ−7/4
ξ+Q∫
ξ

u5/4−σ cos(4π
√
nu+ c3) du

+O(Qξ1−σ) +O(ξ5/4−σNσ−3/4 logN) .

The integral here is � ξ7/4−σn−1/2 by the first derivative test. Therefore
the series contributes

O(Q−1ξ7/4−σNσ−5/4) .
Choosing N = ξQ−2 and Q = ξ(2σ−1)/(4σ−1) completes the proof of
Lemma 2.

The following lemma gives the average order of ∆̃1−2σ(ξ). We shall need
it because the factor log ξ in Lemma 2 causes trouble when σ = 3/4.

Lemma 3. We have
x∫

1

∆̃1−2σ(ξ)2 dξ � x7/2−2σ .

P r o o f. By Lemma 1, for 1 ≤ ξ ≤ x we have

∆̃1−2σ(ξ)

= c1ξ
5/4−σ

∑
n≤N(x)

σ1−2σ(n)nσ−7/4 cos(4π
√
nξ + π/4) +O(ξ5/4−σ)

with a sufficiently large N(x) depending only on x (and σ). The rest of the
proof is standard and proceeds similarly to the proof of Theorem 13.5 in
Ivić [5].

It is not hard to refine Lemma 3 by showing that
x∫

1

∆̃1−2σ(ξ)2 dξ =
ζ2(5/2)ζ(7/2− 2σ)ζ(3/2 + 2σ)

8π4(7− 4σ)ζ(5)
x7/2−2σ +O(x3−2σ).

However, Lemma 3 is sufficient for our purpose.
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It should be noted that except for the inequality r ≤ 1/2 in Lemma 2, the
results in this section are also valid for 1/2 < σ < 3/4. However, estimate
(4.2) depends on the inequality r ≤ 1/2, and in §6 there are several estimates
which require the condition 3/4 ≤ σ < 1. Therefore the proof of Theorem 1
is valid only on this condition.

3. The basic decomposition. Now we start the proof of Theorem 1.
At first we assume X � T and X is not an integer. Let u be a complex
variable, ξ ≥ 1,

h(u, ξ) = 2
∞∫

0

y−u(1 + y)u−2σ cos(2πξy) dy ,

and define

g1(u) =
∑
n≤X

σ1−2σ(n)h(u, n) ,

g2(u) = ∆1−2σ(X)h(u,X) ,

g3(u) =
∞∫

X

(ζ(2σ) + ζ(2− 2σ)ξ1−2σ)h(u, ξ) dξ ,

g4(u) =
∞∫

X

∆1−2σ(ξ)
∂h(u, ξ)
∂ξ

dξ .

Since the integral h(u, ξ) is absolutely convergent for Re(u) < 1, g1(u) and
g2(u) can be defined in the same region. Also, Matsumoto [9, (4.2)] gives
the analytic continuation of g3(u) to the region Re(u) < 1. Hence, if g4(u)
can be analytically continued to Re(u) < 1, then we can define

Gj =
σ+iT∫

σ−iT

gj(u) du (1 ≤ j ≤ 4)

for 1/2 < σ < 1, and obtain (see [9, (4.3)])

(3.1) Eσ(T ) = −i(G1 −G2 +G3 −G4) +O(1).

Now we show the analytic continuation of g4(u). From (1.4) and (2.1) it
follows that

1
12
ζ(2σ − 2) + ∆̃1−2σ(ξ) =

ξ∫
0

∆1−2σ(t) dt .

Hence, by integration by parts we have

(3.2) g4(u) = −∆̃1−2σ(X)h′(u,X)−
∞∫

X

∆̃1−2σ(ξ)h′′(u, ξ) dξ,
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where h′ and h′′ mean ∂h/∂ξ and ∂2h/∂ξ2, respectively. Here we have used
Lemma 2 and the estimate

(3.3) h′(u, ξ) = O(ξRe(u)−2)

for Re(u) < 1 and bounded u, proved in Atkinson [1]. Differentiating the
expression

h(u, ξ) =
i∞∫
0

y−u(1 + y)u−2σe2πiξy dy +
−i∞∫
0

y−u(1 + y)u−2σe−2πiξy dy

with respect to ξ, and estimating the resulting integrals, we obtain (3.3).
One more differentiation gives

h′′(u, ξ) = − 4π2
i∞∫
0

y2−u(1 + y)u−2σe2πiξy dy(3.4)

− 4π2
−i∞∫
0

y2−u(1 + y)u−2σe−2πiξy dy ,

and from this formula we can deduce that

(3.5) h′′(u, ξ) = O(ξRe(u)−3).

It follows from (3.5) and Lemma 2 that the integral on the right-hand side
of (3.2) is absolutely convergent for Re(u) < 1. Hence (3.2) gives the desired
analytic continuation of g4(u). And we divide G4 as

G4 = − ∆̃1−2σ(X)
σ+iT∫

σ−iT

h′(u,X) du(3.6)

−
∞∫

X

∆̃1−2σ(ξ)
σ+iT∫

σ−iT

h′′(u, ξ) du dξ

= −G∗4 −G∗∗4 ,

say.
The integrals G1, G2 and G3 can be treated by the method described in

[9, §4–§5], and the results are

G1 = iΣ1,σ(T,X) +O(T 1/4−σ) ,(3.7)

G2 = O(T 1/2−σ) ,(3.8)
G3 = −2πiζ(2σ − 1) +O(T σ−1) .(3.9)

We note that the proof of (3.8) uses (2.3) instead of [9, Lemma 2].
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4. Evaluation of G∗4. We have

σ+iT∫
σ−iT

h′(u,X) du =
∂

∂X

σ+iT∫
σ−iT

h(u,X) du

=
∂

∂X

(
2i

∞∫
0

y−σ(1 + y)−σ cos(2πXy)
T∫

−T

(
1 + y

y

)it

dt dy

)

=
∂

∂X

(
4i

∞∫
0

cos(2πXy) sin(T log((1 + y)/y))
yσ(1 + y)σ log((1 + y)/y)

dy

)

=
∂

∂X

(
4i

∞∫
0

X2σ−1 cos(2πy) sin(T log((X + y)/y))
yσ(X + y)σ log((X + y)/y)

dy

)

= 4i(2σ − 1)X2σ−2
∞∫

0

cos(2πy) sin(T log((X + y)/y))
yσ(X + y)σ log((X + y)/y)

dy

+ 4iX2σ−1T
∞∫

0

cos(2πy) cos(T log((X + y)/y))
yσ(X + y)σ+1 log((X + y)/y)

dy

− 4iσX2σ−1
∞∫

0

cos(2πy) sin(T log((X + y)/y))
yσ(X + y)σ+1 log((X + y)/y)

dy

− 4iX2σ−1
∞∫

0

cos(2πy) sin(T log((X + y)/y))
yσ(X + y)σ+1 log2((X + y)/y)

dy .

We split up these four integrals at y = T . Then we estimate in each case∫∞
T

by the first derivative test and
∫ T

0
, after the further splitting up into

integrals over the intervals (2−kT, 2−k+1T ] (k = 1, 2, . . .), by the second
derivative test (see Ivić [5, (2.3), (2.5)]). This gives

(4.1)
σ+iT∫

σ−iT

h′(u,X) du� T−1/2 .

Together with Lemma 2 and the definition of G∗4 this gives

(4.2) G∗4 � log T .

The integral in (4.1) has already been calculated in Matsumoto [9, §4],
but there are some misprints in the formula stated between (4.6) and (4.7)
in [9]. The above calculation contains the correction.
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5. Evaluation of G∗∗4 (the first step). In this section we evaluate
the inner integral of G∗∗4 . Integrating (3.4) twice by parts, we have

h′′(u, ξ) = 2ξ−2
∞∫

0

{(2− u)(1− u)y−u(1 + y)u−2σ

+ 2(2− u)(u− 2σ)y1−u(1 + y)u−2σ−1

+ (u− 2σ)(u− 2σ − 1)y2−u(1 + y)u−2σ−2} cos(2πξy) dy .

Hence,

(5.1)
σ+iT∫

σ−iT

h′′(u, ξ) du = 2ξ−2
∞∫

0

(1 + y)−2σ−2I(y) cos(2πξy) dy ,

where

I(y) =
σ+iT∫

σ−iT

(u2 + P1(y)u+ P2(y))
(

1 + y

y

)u

du

and Pj(y) is a polynomial in y of degree j whose coefficients may depend
on σ. We have

σ+iT∫
σ−iT

xu du = 2ixσ sin(T log x)
log x

,

σ+iT∫
σ−iT

uxu du = 2ixσ σsin(T log x) + T cos(T log x)
log x

− 2ixσ sin(T log x)
log2 x

,

σ+iT∫
σ−iT

u2xu du = 2ixσ σ
2 sin(T log x) + 2σT cos(T log x)− T 2 sin(T log x)

log x

−4ixσ σ sin(T log x) + T cos(T log x)
log2 x

+ 4ixσ sin(T log x)
log3 x

.

Hence

I(y) = 2i
(

1 + y

y

)σ(
log

1 + y

y

)−1{
− T 2 sin

(
T log

1 + y

y

)
+H1(y)T cos

(
T log

1 + y

y

)
+H0(y) sin

(
T log

1 + y

y

)}
,

where H0(y) and H1(y) are linear combinations of terms of the form

yµ

(
log

1 + y

y

)−ν

with non-negative integers µ and ν satisfying µ+ ν ≤ 2. We substitute this
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expression for I(y) into (5.1). The method used in §4 gives
∞∫

0

exp(iT log((1 + y)/y)) cos(2πξy)
yσ−µ(1 + y)σ+2(log((1 + y)/y))ν+1

dy � T−1/2

for ξ ≥ X. Hence
σ+iT∫

σ−iT

h′′(u, ξ) du

= −4iT 2ξ−2
∞∫

0

cos(2πξy) sin(T log((1 + y)/y))
yσ(1 + y)σ+2 log((1 + y)/y)

dy +O(ξ−2T 1/2) .

Then we apply [9, Lemma 3] to estimate the integral on the right hand side.
Substituting the result into the definition of G∗∗4 we arrive at

G∗∗4 = (i
√
π)−1T 5/2J +O

(
T 1/2

∞∫
X

ξ−2|∆̃1−2σ(ξ)| dξ
)
,

where

J =
∞∫

X

∆̃1−2σ(ξ) sin(TV + 2πξU − πξ + π/4)
ξ3V U1/2(U − 1/2)σ(U + 1/2)σ+2

dξ

with

U =
(
T

2πξ
+

1
4

)1/2

, V = 2 arsinh

√
πξ

2T
.

Using Lemma 3 we get

(5.2) G∗∗4 = (i
√
π)−1T 5/2J +O(T 3/4−σ) .

6. Evaluation of G∗∗4 (the second step). Now our problem is reduced
to the evaluation of J. Consider the truncated integral

J(b) =
b∫

X

∆̃1−2σ(ξ) sin(TV + 2πξU − πξ + π/4)
ξ3V U1/2(U − 1/2)σ(U + 1/2)σ+2

dξ (b > X),

and substitute (2.2) into the right-hand side. By Lemma 1 the series in the
expression for ∆̃1−2σ(ξ) are uniformly convergent when b is finite, so that
in J(b) we can perform termwise integration to obtain

J(b) = c1

∞∑
n=1

σ1−2σ(n)nσ−7/4J1(n, b)(6.1)

+ c4

∞∑
n=1

σ1−2σ(n)nσ−9/4J2(n, b) +O(T−σ−7/4) ,
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where

J1(n, b) =
b∫

X

ξ−7/4−σ cos(4π
√
nξ + π/4) sin(TV + 2πξU − πξ + π/4)
V U1/2(U − 1/2)σ(U + 1/2)σ+2

dξ

and

J2(n, b) =
b∫

X

ξ−9/4−σ cos(4π
√
nξ − π/4) sin(TV + 2πξU − πξ + π/4)
V U1/2(U − 1/2)σ(U + 1/2)σ+2

dξ .

Hence our task is to evaluate the integral
b∫

X

exp(i(±4π
√
nξ − TV − 2πξU + πξ))

ξσ+µV U1/2(U2 − 1/4)σ(U + 1/2)2
dξ =

(
2π
T

)σ

Iµ(n, b;±) ,

where

Iµ(n, b;±) =

√
b∫

√
X

x1−2µ

(
arsinh

(
x

√
π

2T

))−1(
T

2πx2
+

1
4

)−1/4

×
((

T

2πx2
+

1
4

)1/2

+
1
2

)−2

exp
{
i

(
±4πx

√
n

−2T arsinh
(
x

√
π

2T

)
− (2πTx2 + π2x4)1/2 + πx2

)}
dx .

Lemma 4. For b ≥ T 2 and for µ = 7/4 or µ = 9/4 we have

Iµ(n, b;±) = 2δn

(
2π
T

)2

nµ−σ−1

(
T

2π
− n

)7/2+2σ−2µ(
log

T

2πn

)−1

× exp
(
i

(
T − T log

T

2πn
+
π

4

))
+O

(
δnn

µ−σ−1

(
T

2π
− n

)2+2σ−2µ

T−3/2

)
+O(e−cT−c

√
nT )

+O

(
X1/2+σ−µ min

{
1,

∣∣∣∣±2
√
n+

√
X −

(
X +

2T
π

)1/2∣∣∣∣−1})
+O(b1/2+σ−µn−1/2) ,

where c is a positive constant and

δn =

{
1 if 1 ≤ n < T/(2π), nX ≤ (T/(2π)− n)2

and the double sign takes + ,
0 otherwise.

This is a slight modification of Lemma 3 of Atkinson [1], and we omit
the proof.
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We have δn = 1 if and only if 1 ≤ n ≤ B(T,
√
X) and the double sign

takes +. Apply the above lemma to J2(n, b), and substitute the result into
(6.1). The contribution of the error term including b vanishes as b tends
to infinity. Noting that B(T,

√
X) � T and T/2π − B(T,

√
X) � T , we

conclude that the total contribution of J2(n, b) to J is O(T−σ−7/4).
Next, applying Lemma 4 to J1(n, b) , we have

(6.2) J1(n, b) = −
(

2π
T

)σ{
δn

(
2π
T

)2

n3/4

(
log

T

2πn

)−1

× sin
(
T − T log

T

2πn
+
π

4

)
+O(R1 +R2 +R+

3 +R−3 +R4)
}
,

where

R1 = δnn
3/4

(
T

2π
− n

)−3/2

T−3/2 ,

R2 = e−cT−c
√

nT ,

R±3 = X−5/4 min
{

1,
∣∣∣∣±2

√
n+

√
X −

(
X +

2T
π

)1/2∣∣∣∣−1}
,

R4 = b−5/4n−1/2 .

The contribution of the error term R4 to J(b) vanishes as b tends to infinity.
The contribution of R1 and R2 can be easily estimated by O(T−3). The
contribution of R+

3 is

� T−σ−5/4
∞∑

n=1

σ1−2σ(n)nσ−7/4 min{1, |2(
√
n−

√
B(T,

√
X))|−1}

= T−σ−5/4
( ∑

n≤B/2

+
∑

B/2<n≤B−
√

B

+
∑

B−
√

B<n≤B+
√

B

+
∑

B+
√

B<n<2B

+
∑

2B≤n

)
= T−σ−5/4(R31 +R32 +R33 +R34 +R35) ,

say, where B = B(T,
√
X). Since B � T it is easy to see that R31 =

O(T σ−5/4 log T ) and R35 = O(T σ−5/4). Next,

R32 � B1/2
∑

B/2<n≤B−
√

B

σ1−2σ(n)nσ−7/4(B − n)−1(6.3)

� Bσ−5/4
∑

√
B≤n≤B/2

n−1σ1−2σ([B]− n) ,

where [B] means the greatest integer ≤ B. For any positive numbers x and
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y, the elementary estimate

(6.4)
∑

x<n≤x+y

σ1−2σ(n) � y +
√
x

holds (see Matsumoto–Meurman [10, (2.1)]). By using this inequality and
partial summation, the last sum in (6.3) can be estimated by O(log T ),
whence R32 = O(T σ−5/4 log T ). Quite similarly, we have R34 =
O(T σ−5/4 log T ). Also, since

R33 �
∑

B−
√

B<n≤B+
√

B

σ1−2σ(n)nσ−7/4 ,

the estimate R33 = O(T σ−5/4) follows by using (6.4) again. Hence, the
total contribution of R+

3 is O(T−5/2 log T ), and likewise for R−3 , because
R−3 ≤ R+

3 for any n. Therefore we now arrive at

J = −c1
(

2π
T

)σ+2 ∑
n≤B

σ1−2σ(n)nσ−1

×
(

log
T

2πn

)−1

sin
(
T − T log

T

2πn
+
π

4

)
+O(T−5/2 log T ) ,

which by (5.2) implies

G∗∗4 = −iΣ2,σ(T,X) +O(log T ) ,

since c1 = −1/(2π2
√

2). Combining this with (4.2) and (3.6) gives

G4 = iΣ2,σ(T,X) +O(log T ) .

Combining this with (3.7)–(3.9) and (3.1), we obtain (1.2) when X is not
an integer. This last condition can be removed, because we can easily show
that Σj,σ(T,X)−Σj,σ(T,X ′) � 1 (j = 1, 2) if X−X ′ �

√
T , by using (6.4)

and the fact that B(T,
√
X) − B(T,

√
X ′) �

√
T . The proof of Theorem 1

is, therefore, now complete.

7. An averaged formula. Now we consider the mean square of Eσ(T ).
To prove the weak estimate (1.8), Theorem 1 is enough. But the proof of
Theorem 2 requires the following ideas: the averaging technique introduced
in Meurman [12]; the application of Montgomery–Vaughan’s inequality as
Preissmann [17] did; the application of the mean value theorem for Dirichlet
polynomials similarly to Matsumoto–Meurman [10]. In this section we prove
an averaged formula for Eσ(T ).

From (3.1) and (3.6)–(3.9) we get

Eσ(T ) = Σ1,σ(T,X)− iG∗4 − iG∗∗4 +O(1)
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for X � T . We average with respect to X. Let X = (L + µ)2, where
L �

√
T , 0 ≤ µ ≤M and M �

√
T .

We note that in Matsumoto–Meurman [10] we chose M � T 1/4. This
was necessary to get O(T−1/4) in [10, (3.29)]. In the present situation O(1)
is enough (and in fact the best we can get for σ = 3/4), and hence we may
choose M �

√
T .

We have

1
M

M∫
0

Σ1,σ(T, (L+ µ)2) dµ = Σ∗
1,σ(T,L,M) ,

where Σ∗
1,σ(T,L,M) is the same as Σ1,σ(T, (L+M)2) except that its terms

are multiplied by the function

w1(n) =

{
1 if n ≤ L2 ,

1 +
L

M
−
√
n

M
if L2 < n ≤ (L+M)2 .

From (3.6) and (4.1) we have

G∗4 � T−1/2|∆̃1−2σ(X)| .
Hence, using Lemma 3, we obtain

1
M

M∫
0

G∗4 dµ� 1 .

From (5.2) we have

1
M

M∫
0

G∗∗4 dµ = (i
√
π)−1T 5/2 1

M

M∫
0

J dµ+O(1)

and

1
M

M∫
0

J dµ = c1

(
2π
T

)σ ∞∑
n=1

σ1−2σ(n)nσ−7/4Kn +O(T−7/4−σ) ,

where

Kn =
1
M

M∫
0

∞∫
L+µ

x−5/2

(
arsinh

(
x

√
π

2T

))−1(
T

2πx2
+

1
4

)−1/4

×
((

T

2πx2
+

1
4

)1/2

+
1
2

)−2

sin(f(T, x2)− πx2 + π/2)

×
{

cos(4πx
√
n+ π/4) + c−1

1 c4
1

x
√
n

cos(4πx
√
n− π/4)

}
dx dµ .

This is obtained by applying Lemma 1, and the constants c1 and c4 are as
in Lemma 1. The change of the summation and the integrations can be
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justified as in Matsumoto–Meurman [10]. We can evaluate Kn by Jutila
[8, Theorem 2.2]. The saddle point is x0 = n−1/2(T/(2π) − n). Note that
c0 = 1 in Jutila’s theorem. We get

Kn =− w2(n, T )
(

2π
T

)2

n3/4

(
log

T

2πn

)−1

cos(g(T, n))

+O
(
M−1T−5/4

1∑
j=0

min{1, (
√
n−

√
B(T,L+ jM))−2}

)
+O(R(n)T−5/2n3/4) ,

where

w2(n, T ) =


1 if n < B(T,L+M) ,
1
M

(
T

2π
√
n
−
√
n− L

)
if B(T,L+M) ≤ n < B(T,L) ,

0 if n ≥ B(T,L)
and

R(n) =

T−1/2 if n < B(T,L+M) ,
1 if B(T,L+M) ≤ n < B(T,L) ,
0 if n ≥ B(T,L) .

Hence

1
M

M∫
0

J dµ = −c1
(

2π
T

)σ+2 ∞∑
n=1

σ1−2σ(n)nσ−1w2(n, T )

×
(

log
T

2πn

)−1

cos(g(T, n)) +O(T−5/2) .

Collecting the above results, we now obtain

(7.1) Eσ(T ) = Σ∗
1,σ(T,L,M)−Σ∗

2,σ(T,L,M) +O(1),

where Σ∗
2,σ(T,L,M) is the same as Σ2,σ(T,B(T,L)) except that its terms

are multiplied by w2(n, T ).

8. Proof of Theorem 2. Let T ≤ t ≤ 2T . From (7.1) with L = M =
1
2

√
T we have

Eσ(t) = Σ∗
1,σ(t, 1

2

√
T , 1

2

√
T )−Σ∗

2,σ(t, 1
2

√
T , 1

2

√
T ) +O(1) .

We shall prove that
(8.1)

2T∫
T

(Σ∗
1,σ(t, 1

2

√
T , 1

2

√
T ))2 dt =


ζ2

(
3
2

)
ζ(2)
ζ(3)

T log T +O(T ) if σ =
3
4
,

O(T ) if σ >
3
4
,
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and that

(8.2)
2T∫

T

(Σ∗
2,σ(t, 1

2

√
T , 1

2

√
T ))2 dt = O(T ) .

Theorem 2 then follows easily.
Consider the left-hand side of (8.1). We square out and integrate term

by term. The non-diagonal terms give O(T ), as in Matsumoto–Meurman
[10]. The diagonal terms contribute

1
2

∑
n≤T

w1(n)2n2σ−2σ1−2σ(n)2

×
2T∫

T

(
t

2π

)1−2σ(
arsinh

√
πn

2t

)−2( 2t
πn

+ 1
)−1/2

dt

+
1
2

∑
n≤T

w1(n)2n2σ−2σ1−2σ(n)2

×
2T∫

T

(
t

2π

)1−2σ(
arsinh

√
πn

2t

)−2( 2t
πn

+ 1
)−1/2

cos(2f(t, n)) dt .

Here we have used the formula cos2 z = 1
2 + 1

2 cos(2z). The second sum is
O(T 2−2σ), which we can see by estimating the integral by Ivić [5, Lemma
15.3]. For the first sum we use

(arsinh z)−2 = z−2 +O(1) (z → 0)
and

(z + 1)−1/2 = z−1/2 +O(z−3/2) (z →∞)
to deduce that it is equal to

1
2

∑
n≤T

w1(n)2n2σ−2σ1−2σ(n)2
2T∫

T

(
t

2π

)1−2σ(
2t
πn

)1/2

dt+O(T ) .

For σ > 3/4 this is O(T ), proving the second part of (8.1). For σ = 3/4 the
above is equal to

T
∑
n≤T

w1(n)2n−1σ−1/2(n)2 +O(T ) = T
∑

n≤T/4

n−1σ−1/2(n)2 +O(T ) ,

because the terms with T/4 < n ≤ T contribute O(T ) and for n ≤ T/4 we
have w1(n) = 1. By Titchmarsh [18, (1.3.3)] and Perron’s formula we get∑

n≤T/4

n−1σ−1/2(n)2 =
ζ2(3/2)ζ(2)

ζ(3)
log T +O(1) ,

which proves the first part of (8.1).
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Next we prove (8.2). The left-hand side of (8.2) is

(8.3) � T 1−2σ
2T∫

T

∣∣∣∣ ∑
n

w2(n, t)σ1−2σ(n)nσ−1+it

(
log

t

2πn

)−1∣∣∣∣2 dt .
We proceed to remove the factor w2(n, t)/ log(t/(2πn)) in the above sum
by partial summation. We have B(t,

√
T ) ≥ αT for some sufficiently small

positive α. Consequently, w2(n, t) = 1 for n ≤ αT . For n > αT we have
w2(n+ 1, t)− w2(n, t) � T−1. It follows that

(8.4) w2(n+ 1, t)
(

log
t

2π(n+ 1)

)−1

− w2(n, t)
(

log
t

2πn

)−1

�
(
n log2 t

2πn

)−1

�
(
n log2 T

n

)−1

.

In particular, since w2(n, t) = 0 for n ≥ B(t, 1
2

√
T ), we have

(8.5) w2(β, t)
(

log
t

2πβ

)−1

� T−1,

where β means the greatest integer ≤ B(t, 1
2

√
T ). Now using (8.4), (8.5)

and partial summation we see that the sum
∑

n in (8.3) is

� T−1
∣∣∣ β∑

n=1

σ1−2σ(n)nσ−1+it
∣∣∣ +

β−1∑
n=1

(
n log2 T

n

)−1∣∣∣ n∑
m=1

σ1−2σ(m)mσ−1+it
∣∣∣ .

The first sum here is trivially O(T σ), so its contribution to the left-hand
side of (8.2) is O(1). Hence it remains to show that

2T∫
T

( ∑
n≤T/2

(
n log2 T

n

)−1∣∣∣ n∑
m=1

σ1−2σ(m)mσ−1+it
∣∣∣)2

dt� T 2σ ,

since β − 1 ≤ T/2. Here we use Schwarz’s inequality, take the integration
under the summation and use the mean value theorem for Dirichlet polyno-
mials (see Ivić [5, Theorem 5.2]). We also need the elementary estimate∑

n≤x

σ1−2σ(n)2 � x

(see [10, §2]). Then (8.2) follows and the proof of Theorem 2 is complete.

9. Proof of Theorem 3. In this final section we assume 1/2 < σ < 3/4.
Let G be a parameter satisfying G = o(T ). Our first goal is to deduce from
(1.2) a suitable expression for Eσ(T + u), where |u| ≤ G. In (1.2) we take
X = T . For n ≤ T and |u| ≤ G we find by straightforward calculation that

e(T + u, n) = e(T, n)(1 +O(|u|T−1)) = O(1) ,
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(T + u)3/4−σ = T 3/4−σ(1 +O(|u|T−1)) ,

and

f(T + u, n) = f(T, n) + 2u arsinh
√
πn

2T
+ u2d(T, n) +O(|u|3T−2) ,

where d(T, n) is real and

(9.1) d(T, n) � T−1

(see Meurman [11, p. 363]). We have

B(T + u,
√
T ) = c6T +O(|u|) ,

where

(9.2) c6 =
1

4π2

(
1
2π

+
1
2

+
(

1
4

+
1
2π

)1/2)−1

<
1

4π2
.

For n ≤ B(T + u,
√
T ) and |u| ≤ G we have

(T + u)1/2−σ = T 1/2−σ(1 +O(|u|T−1)) ,(
log

T + u

2πn

)−1

=
(

log
T

2πn

)−1

+O(|u|T−1) ,

and

g(T + u, n) = g(T, n) + u log
T

2πn
+
u2

2T
+O(|u|3T−2) .

Using these facts and (6.4), it may be easily deduced from (1.2) that for
|u| ≤ G we have

(9.3) Eσ(T + u)

=
√

2
(
T

2π

)3/4−σ ∑
n≤T

a(n)e(T, n)

× cos
(
f(T, n) + 2u arsinh

√
πn

2T
+ u2d(T, n)

)

− 2
(
T

2π

)1/2−σ ∑
n≤c6T

σ1−2σ(n)nσ−1

(
log

T

2πn

)−1

× cos
(
g(T, n) + u log

T

2πn
+
u2

2T

)
+O(log T ) +O(G3T−3/2) +O(GT−1/2) ,

where
a(n) = (−1)nσ1−2σ(n)nσ−5/4 .
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Set Z =
√

2T/πY , and suppose that Y satisfies

(9.4) 1 ≤ Y ≤ T 1/4 .

Our next goal is to deduce from (9.3) an expression for

(9.5) Eσ(T, Y ) =
G/Z∫

−G/Z

Eσ(T + Zt)e−t2 dt .

For this purpose we have to consider the integrals

(9.6) I1(n) =
G/Z∫

−G/Z

exp
(

2iZ
(

arsinh
√
πn

2T

)
t− (1− id(T, n)Z2)t2

)
dt

(n ≤ T )

and

(9.7) I2(n) =
G/Z∫

−G/Z

exp
(
iZ

(
log

T

2πn

)
t−

(
1− iZ2

2T

)
t2

)
dt

(n ≤ c6T ) .

By the general formula
∞∫

−∞
exp(At−Bt2) dt = (π/B)1/2 exp(A2/4B) (Re(B) > 0)

(see Ivić [5, (A.38)]) we get

I1(n) =
(

π

1− id(T, n)Z2

)1/2

exp
(
−

(Z arsinh
√
πn/2T )2

1− id(T, n)Z2

)
+O(e−(G/Z)2)

and

I2(n) =
(

π

1− iZ2/2T

)1/2

exp
(
− (Z log(T/2πn))2

4− 2iZ2/T

)
+O(e−(G/Z)2) .

Suppose now thatG ≥ T 1/2+ε for some fixed positive ε. Then exp(−(G/Z)2)
� exp(−T ε). In case n ≤ Y 2 we have(

π

1− id(T, n)Z2

)1/2

= π1/2 +O(Z2T−1) = π1/2 +O(Y −1)

by (9.1), since d(T, n) is real. Also, using (9.4) and the formula arsinhx =
x+O(x3), we have

−
(Z arsinh

√
πn/2T )2

1− id(T, n)Z2
= −Z2 πn

2T
+O

((
Zn

T

)2)
+O(Z4T−2n)

= −nY −1 +O(nY −2) .
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Hence it follows that, for n ≤ Y 2,

I1(n) = π1/2e−n/Y (1 +O(Y −1) +O(nY −2)) +O(exp(−T ε))(9.8)
= π1/2e−n/Y +O(n−1) .

In case Y 2 < n ≤ T we have

I1(n) � exp(−c7Z2n/T ) + exp(−T ε)(9.9)
= exp(−2c7n/πY ) + exp(−T ε)

with some positive c7. For any n ≤ c6T we have

(9.10) I2(n) � exp
(
− c8

(
Z log

T

2πc6T

)2)
+ exp(−T ε) � exp(−T ε)

with some positive c8. By (9.3) and (9.5)–(9.7) we get

Eσ(T, Y ) =
√

2
(
T

2π

)3/4−σ ∑
n≤T

a(n)e(T, n) Re(eif(T,n)I1(n))

− 2
(
T

2π

)1/2−σ ∑
n≤c6T

σ1−2σ(n)nσ−1

(
log

T

2πn

)−1

× Re(eig(T,n)I2(n)) +O(G3T−3/2) .

Here we have combined the error terms using G ≥ T 1/2+ε. Then we use
(9.8)–(9.10) to obtain

Eσ(T, Y ) =
√

2π
(
T

2π

)3/4−σ ∑
n≤Y 2

a(n)e(T, n)e−n/Y cos(f(T, n))

+O(G3T−3/2) +O(T 3/4−σ) .

Now we choose G = T 3/4−σ/3 whence T 1/2+ε ≤ G = o(T ) with ε = 1/4 −
σ/3, as required. Then, since e(T, n) = 1 +O(n/T ) and

f(T, n) =
√

8πnT − π/4 +O(n3/2T−1/2)

(see [5, (15.74), (15.75)]), and noting (9.4), we get easily

(9.11) Eσ(T, Y ) =
√

2π
(
T

2π

)3/4−σ

(S(T, Y ) +O(1)) ,

where

(9.12) S(T, Y ) =
∑

n≤Y 2

a(n)e−n/Y cos(
√

8πnT − π/4) .

From (9.5) and (9.11) it is clear that Theorem 3 follows from
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Lemma 5. For any positive T1 we can choose T ≥ T1 and Y satisfying
(9.4) for which

(9.13) S(T, Y ) ≥ 10−11ζ(2σ)−2(log T )σ−1/4 .

To prove Lemma 5, we shall first obtain a lower bound for the sum

%(x) =
∑
n≤x

(−1)nσ1−2σ(n) .

Lemma 6. There exists a constant c9 = c9(σ) ≥ 1 such that %(x) ≥ x/12
for any x ≥ c9.

P r o o f. Since

σ1−2σ(2n) ≥ 1 + 21−2σσ1−2σ(n)

and ∑
n≤x

σ1−2σ(n) ∼ ζ(2σ)x

(see (1.4)), it follows that

%(x) = 2
∑

n≤x/2

σ1−2σ(2n)−
∑
n≤x

σ1−2σ(n)

≥ 2[x/2] + 22−2σ
∑

n≤x/2

σ1−2σ(n)−
∑
n≤x

σ1−2σ(n)

∼ (1 + (21−2σ − 1)ζ(2σ))x .

By Titchmarsh [18, (2.2.1)], the coefficient of x equals

1−
∞∑

n=1

(−1)n−1n−2σ ≥ 2−2σ − 3−2σ ≥ 1
2
· 3−3/2 >

1
12
,

which completes the proof of Lemma 6.

We denote by q the greatest integer ≤ 108ζ(2σ)2. Clearly we may sup-
pose that T1 ≥ exp((c9q)4). Let Y = log T1. Then Y ≥ 1, as required in
(9.4). We apply Dirichlet’s theorem (see Ivić [5, Lemma 9.1]) to find a T
satisfying

T1 ≤ T ≤ T1q
2qY , ‖

√
2nT/π‖ ≤ q−1 (1 ≤ n ≤ qY ) ,

where ‖x‖ denotes the distance of x from the nearest integer. Then Y ≤
log T ≤ T 1/4 as required in (9.4). Moreover, it follows that

log T ≤ log T1 + 2qY log q ≤ q2Y

whence

(9.14) Y σ−1/4 ≥ q1/2−2σ(log T )σ−1/4 ≥ q−1(log T )σ−1/4 .
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Another consequence is that∣∣∣∣ 1√
2
− cos(

√
8πnT − π/4)

∣∣∣∣(9.15)

= | cos(−π/4)− cos(±2π‖
√

2nT/π‖ − π/4)|
≤ 2π‖

√
2nT/π‖ ≤ 2πq−1 (1 ≤ n ≤ qY ) .

By a simple elementary argument we have

(9.16)
∑
n≤x

σ1−2σ(n) ≤ ζ(2σ)x .

Hence ∑
n≤x

|a(n)| ≤ 4ζ(2σ)xσ−1/4

and ∑
n>x

|a(n)|n−1 ≤ 3ζ(2σ)xσ−5/4 .

Using the last two inequalities and (9.15) we get

(9.17) S(T, Y ) = S1(Y )− S2(Y )− S3(Y ) ,

where

S1(Y ) =
1√
2

∑
n≤qY

a(n)e−n/Y ,

S2(Y ) =
∑

n≤qY

a(n)e−n/Y

(
1√
2
− cos(

√
8πnT − π/4)

)
(9.18)

≤ 2πq−1
∑

n≤qY

|a(n)| ≤ 8πζ(2σ)q−1/2Y σ−1/4 ,

S3(Y ) = −
∑

qY <n≤Y 2

a(n)e−n/Y cos(
√

8πnT − π/4)(9.19)

≤ Y
∑

n>qY

|a(n)|n−1 ≤ 3ζ(2σ)q−1/2Y σ−1/4 .

Consider S1(Y ). We define φ(x) = xσ−5/4e−x/Y . Then

φ′(x) = −(( 5
4 − σ)x−1 + Y −1)φ(x) ,

which is negative, and for 1 ≤ x ≤ c9 we have |φ′(x)| ≤ 2/x. Using these
facts, (9.16) and partial summation we get

S1(Y ) =
1√
2

∑
n≤qY

(−1)nσ1−2σ(n)φ(n) = S11(Y )− S12(Y )− S13(Y ) ,
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where

S11(Y ) = − 1√
2

qY∫
c9

φ′(x)%(x) dx ,

S12(Y ) =
1√
2

c9∫
1

φ′(x)%(x) dx ≤
√

2ζ(2σ)c9 ≤ ζ(2σ)q−1/2Y σ−1/4 ,

S13(Y ) = − 1√
2
φ(qY )%(qY ) ≤ ζ(2σ)q−1/2Y σ−1/4 .

Consider S11(Y ). Since Y ≥ c9, we get, by Lemma 6,

S11(Y ) ≥ − 1√
2

qY∫
Y

φ′(x)%(x) dx ≥ − Y

12
√

2

qY∫
Y

φ′(x) dx

=
Y

12
√

2
(φ(Y )− φ(qY )) ≥ 1

100
Y σ−1/4 .

Hence

S1(Y ) ≥
(

1
100

− 2ζ(2σ)q−1/2

)
Y σ−1/4 .

Combined with (9.17)–(9.19) and (9.14) this gives

S(T, Y ) ≥ c10Y
σ−1/4 ≥ c10q

−1(log T )σ−1/4 ,

where c10 = 1
100 − (8π + 5)ζ(2σ)q−1/2. By the choice of q we have

c10q
−1 ≥ 1

200
q−1 > 10−11ζ(2σ)−2 ,

which completes the proof of Lemma 5, and hence of Theorem 3.
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