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1. Introduction. The Greek mathematician Diophantus of Alexandria
noted that the numbers 1

16 , 33
16 , 68

16 and 105
16 have the property that the

product of any two of them when increased by 1 is a square of a rational
number.

Let n be an integer. We say the set of natural numbers {a1, . . . , am} has
the property of Diophantus of order n, in brief D(n), if for all i, j = 1, . . . ,m,
i 6= j, the following holds: aiaj + n = b2ij , where bij is an integer. The first
set of four natural numbers with property D(1) was found by the French
mathematician Pierre de Fermat (1601–1665). That set is {1, 3, 8, 120}. Dav-
enport and Baker [3] show that one cannot add a fifth integer r to that set
and maintain the same property unless r = 0. For the rational number
r = 777480

8288641 the product of any two different members of that set increased
by 1 is the square of a rational number (see [1]).

In this paper we consider some problems of existence of sets of four
natural numbers with property D(n), for any integer n. We prove that, for
all e ∈ Z, there exist an infinite number of sets of four natural numbers with
property D(e2). Indeed, we show how a set {a, b} with property D(e2) can
be extended to a set {a, b, c, d} with the same property, if ab is not a perfect
square. That construction is applied to the identities

(k − e)(k + e) + e2 = k2 ,

F2nF2n+2m + F 2
m = F 2

2n+m ,

and some formulas are obtained for sets of four numbers with the property
of Diophantus. The general case is also considered: sets with property D(n)
when n need not be a perfect square. The main results are:

If n is an integer of the form n = 4k+2, k ∈ Z, then there does not exist
a set of four natural numbers with property D(n).

If n is an integer which is not of the form 4k+2 and n 6∈ S={3, 5, 8, 12, 20,
−1,−3,−4} then there exists at least one set of four natural numbers with
property D(n).
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2. Sets of four numbers with property D(e2). Let a, b ∈ N, a < b,
such that the set {a, b} has property D(e2), i.e. ab+e2 = k2, k ∈ N. Now we
want to find a natural number x such that {a, b, x} also has property D(e2).
Thus, the following must hold:

(1) ax+ e2 = y2 , bx+ e2 = z2 .

This implies

(2) by2 − az2 = e2(b− a) .

It is obvious that one solution of this Diophantine equation is y = e, z = e
and it is easy to verify that y = k ± a, z = k ± b are also solutions
of (2).

Now assume that ab is not a perfect square. Consider the Pellian equation
S2 − abT 2 = 1. Under the above assumption it has an infinite number of
solutions in natural numbers. Let s and t be the least solutions of that
equation in natural numbers. (You can see how to find the minimal solution
of S2 − pT 2 = 1 in [2].)

Let us now define two double sequences yn,m and zn,m, n,m ∈ Z, as
follows:

y0,0 = e, z0,0 = e, y1,0 = k + a, z1,0 = k + b ,

y−1,0 = k − a, z−1,0 = k − b ,
yn+1,0 =

2k
e
yn,0 − yn−1,0, zn+1,0 =

2k
e
zn,0 − zn−1,0, n ∈ Z ,

yn,1 = syn,0 + atzn,0, zn,1 = btyn,0 + szn,0, n ∈ Z ,
yn,m+1 = 2syn,m − yn,m−1, zn,m+1 = 2szn,m − zn,m−1, n,m ∈ Z .
Theorem 1.

by2
n,m − az2

n,m = e2(b− a), for all n,m ∈ Z .

Lemma 1.

by2
n,0 − az2

n,0 = e2(b− a) ,(3)

byn,0yn−1,0 − azn,0zn−1,0 = ek(b− a), for all n ∈ Z .(4)

P r o o f. We prove the lemma by induction. Let n ≥ 0. For n = 0 and
n = 1 relation (3) is obviously valid. If n = 0 is substituted in (4), we
obtain

by0,0y0,−1 − az0,0z0,−1 = be(k − a)− ae(k − b) = ek(b− a) ,

and if n = 1,

by1,0y0,0 − az1,0z0,0 = be(k + a)− ae(k + b) = ek(b− a) .

Assume that the assertion of the lemma is valid for all integers n, 0≤n<m,
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m ≥ 2. Now we get

bym,0ym−1,0 − azm,0zm−1,0

= bym−1,0

(
2k
e
ym−1,0 − ym−2,0

)
− azm−1,0

(
2k
e
zm−1,0 − zm−2,0

)

=
2k
e

(by2
m−1,0 − az2

m−1,0)− (bym−1,0ym−2,0 − azm−1,0zm−2,0)

=
2k
e
e2(b− a)− ek(b− a) = ek(b− a) (by assumption) .

Also

by2
m,0 − az2

m,0

= b

(
2k
e
ym−1,0 − ym−2,0

)2

− a
(

2k
e
zm−1,0 − zm−2,0

)2

=
4k2

e2 (by2
m−1,0 − az2

m−1,0) + (by2
m−2,0 − az2

m−2,0)

− 4k
e

(bym−1,0ym−2,0 − azm−1,0zm−2,0)

= 4k2(b− a) + e2(b− a)− 4k2(b− a) = e2(b− a) (by assumption).

The assertion is thus proved for n ≥ 0. For n ≤ 0, the proof is completely
analogous.

Lemma 2. For n ∈ Z and m ∈ N ∪ {0},
yn,m+1 = syn,m + atzn,m, zn,m+1 = btyn,m + szn,m .

P r o o f. We proceed by induction on m. For m = 0, the assertion is
a consequence of the definition of yn,1 and zn,1. Let n be a fixed integer.
Assume that the assertion is valid for some m ∈ N ∪ {0}. Then

yn,m+2 = 2syn,m+1 − yn,m = syn,m+1 + s2yn,m + astzn,m − yn,m
= syn,m+1 + abt2yn,m + astzn,m = syn,m+1 + astzn,m+1 .

Similarly

zn,m+2 = szn,m+1 + btyn,m+1 .

P r o o f o f T h e o r e m 1. Let n be a fixed integer. We prove the theorem
by induction on m, first for m ≥ 0. For m = 0 the assertion follows from
Lemma 1. Assume that the hypothesis of Theorem 1 is true for some m ≥ 0.
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Then, by Lemma 2,

by2
n,m+1 − az2

n,m+1 = b(syn,m + atzn,m)2 − a(btyn,m + szn,m)2

= s2(by2
n,m − az2

n,m)− abt2(by2
n,m − az2

n,m)

= (s2 − abt2)(by2
n,m − az2

n,m) = e2(b− a) .

So, the theorem is proved in case m ≥ 0. The proof in case m ≤ 0 is anal-
ogous. We use the relations

yn,m−1 = syn,m − atzn,m, zn,m−1 = szn,m − btyn,m ,
which easily follow from Lemma 2.

By Theorem 1, the numbers xn,m = (y2
n,m − e2)/a satisfy (1) for all

n,m ∈ Z.

Theorem 2.

xn,mxn+1,m + e2 =
(
yn+1,myn,m + ek

a

)2

, for all n,m ∈ Z .

Lemma 3. For every integer m the following hold :

y2
0,m − y1,my−1,m = a2 + e2 − k2 ,

2y0,my0,m−1 − y−1,my1,m−1 − y1,my−1,m−1 = 2s(a2 + e2 − k2) .

P r o o f. We proceed by induction for m ≥ 0. The proof for m ≤ 0 is
analogous. For m = 0 we get

y2
0,0 − y1,0y−1,0 = e2 − (k + a)(k − a) = a2 + e2 − k2

and

2y0,0y0,−1 − y−1,0y1,−1 − y1,0y−1,−1

= 2e(se− ate)− (k − a)[s(k + a)− at(k + b)]

− (k + a)[s(k − a)− at(k − b)]
= 2se2 − 2ate2 − sk2 + sa2 + atk2 + abtk − a2tk − a2bt

− sk2 + sa2 + atk2 − abtk + a2tk − a2bt

= 2s(e2 − k2 + a2) + 2at(k2 − e2 − ab)
= 2s(a2 + e2 − k2) ,

and for m = 1,

y2
0,1 − y1,1y−1,1

= (se+ ate)2 − [s(k + a)− at(k + b)][s(k − a) + at(k − b)]
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= s2e2 + 2aste2 + a2t2e2 − s2k2 + s2a2 − a2t2k2 − 2astk2 + 2a2bst

= 2ast(e2 − k2 + ab) + (s2 + a2t2)(e2 − k2) + s2a2 + a2t2b2

= s2a2 + a2t2b2 − s2ab− a3bt2 = (a2 − ab)(s2 − abt2)

= a2 + e2 − k2 .

Now assume that the assertion of the lemma is true for all nonnegative
integers which are less than or equal to m. Then

2y0,m+1y0,m − y−1,m+1y1,m − y1,m+1y−1,m

= 2y0,m(2sy0,m − y0,m−1)− y1,m(2sy−1,m − y−1,m−1)

− y−1,m(2sy1,m − y1,m−1)

= 4s(y2
0,m − y1,my−1,m)

− (2y0,my0,m−1 − y1,my−1,m−1 − y−1,my1,m−1)

= 4s(a2 + e2 − k2)− 2s(a2 + e2 − k2)

= 2s(a2 + e2 − k2) .

Also,

y2
0,m+1 − y1,m+1y−1,m+1

= (2sy0,m − y0,m−1)2 − (2sy1,m − y1,m−1)(2sy−1,m − y−1,m−1)

= 4s2(y2
0,m − y1,my−1,m) + (y2

0,m−1 − y1,m−1y−1,m−1)

− 2s(2y0,my0,m−1 − y1,my−1,m−1 − y1,m−1y−1,m)

= (a2 + e2 − k2)(4s2 − 2s · 2s+ 1)

= a2 + e2 − k2 ,

which completes the proof.

P r o o f o f T h e o r e m 2. By definition it follows by induction that

yn+1,m =
2k
e
yn,m − yn−1,m, for n,m ∈ Z .

Since

y2
n+1,m − yn,myn+2,m − (y2

n,m − yn−1,myn+1,m)

= yn+1,m(yn+1,m + yn−1,m)− yn,m(yn+2,m + yn,m)

=
2k
e
yn+1,myn,m − 2k

e
yn,myn+1,m = 0 ,
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we get

y2
n+1,m − yn,myn+2,m = y2

0,m − y1,my−1,m = a2 + e2 − k2 ,

for n,m ∈ Z. Therefore

xn,mxn+1,m + e2 = [(y2
n,m − e2)(yn+1,m − e2) + a2e2]/a2

= [y2
n,my

2
n+1,m − e2y2

n,m − e2y2
n+1,m + e2(a2 + e2)]/a2

= [y2
n,my

2
n+1,m − e2y2

n,m − e2y2
n+1,m

+ e2(y2
n+1,m − yn,myn+2,m + k2)]/a2

= [y2
n,my

2
n+1,m − e2yn,m(yn,m + yn+2,m) + e2k2]/a2

= (y2
n,my

2
n+1,m − 2ekyn,myn+1,m + e2k2)/a2

=
(
yn,myn+1,m − ek

a

)2

.

Now we consider the problem of existence of natural numbers in the
sequence xn,m. We have

xn,m+1 − xn,m =
y2
n,m+1 − e2

a
− yn,m − e2

a
(5)

= [(syn,m + atzn,m)2 − y2
n,m]/a

= [(s2 − 1)y2
n,m + 2astyn,mzn,m + a2t2z2

n,m]/a

= bt2y2
n,m + 2styn,mzn,m + at2z2

n,m .

Since yi,m and zi,m, for i = −1, 0, 1, are integers by definition and x−1,0 =
a + b − 2k ∈ Z, x0,0 = 0 ∈ Z, x1,0 = a + b + 2k ∈ Z, we conclude from (5)
that x−1,m, x0,m and x1,m are integers for all m ∈ Z. Furthermore,

(6) xn,m+3 − xn,m
=

1
a

(yn,m+3 + yn,m)(yn,m+3 − yn,m)

=
1
a

(2s− 1)(yn,m+2 + yn,m+1)(2s+ 1)(yn,m+2 − yn,m+1)

= (4s2 − 1)(xn,m+2 − xn,m+1) .

Since y0,1 = e(s+at) > e and y0,−1 = e(s−at) > e, we see that x0,1 > 0 and
x0,−1 > 0. From this fact, relation (6) and s ≥ 2, we deduce by induction that
x0,m+1 ≥ (4s2 − 3)x0,m for m > 0, and x0,m−1 ≥ (4s2 − 3)x0,m for m < 0.
Therefore x0,m > 0 for m 6= 0. Likewise, using the inequalities tk ≥ s,
(a+ b)t ≥ 2s, and s(k + a) ≥ at(k + b), we obtain x−1,m > 0 for m 6∈ {0, 1}
and x1,m > 0 for m 6= −1. Hence, it follows from Theorem 2 that the sets
{a, b, x1,m, x0,m}, m ∈ Z \ {0, 1}, and {a, b, x0,m, x−1,m}, m ∈ Z \ {−1, 0},
have property D(e2).
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R e m a r k 1. Let s′ and t′ be the least solutions of the equation S2 −
abT 2 = 4 in natural numbers. If we define

y′n,0 = yn,0, z′n,0 = zn,0 ,

y′n,1 = (s′yn,0 + at′zn,0)/2, z′n,1 = (bt′yn,0 + s′zn,0)/2 ,

y′n,m+1 = s′y′n,m − y′n,m−1, z′n,m+1 = s′z′n,m − z′n,m−1 ,

then the assertions of Theorems 1 and 2 hold for the sequences y′n,m, z′n,m.
If t′ is even, the sequences y′n,m, z′n,m are identical to yn,m, zn,m. Otherwise,
these modified sequences give us some solutions which cannot be obtained
by means of yn,m, zn,m.

R e m a r k 2. If ab is a perfect square then there exist natural numbers
p, q, r such that a = pq2, b = pr2. So, equation (2) can be represented in the
form

(qy)2 − (rz)2 = e2(q2 − r2) .
It is obvious that this equation has at most a finite number of integer solu-
tions, which means that there exist only finitely many sets {a, b, c, d} with
property D(e2). For some values of a, b and e (e.g. a = 2, b = 8, e = 3) that
set does not exist at all, unless we allow 0 to be a member of the set.

Example 1.
1 · 7 + 32 = 42 .

In this case, x−2,m, x−1,m, x0,m, x1,m ∈ Z and the following sets have prop-
erty D(9):

{1, 7, 40, 216}, {1, 7, 216, 1080},
{1, 7, 1080, 5320}, {1, 7, 11440, 56160}, . . .

Example 2.
1 · 13 + 62 = 72 .

Also, x−2,m, x−1,m, x0,m, x1,m ∈ Z and the least solution obtained by our
construction is {1, 13, 2534428, 79188560}. The least solution of the equation
S2 − 13T 2 = 1 is 6492 − 13 · 1802 = 1. If Remark 1 and the equality 112 −
13 · 32 = 4 are used, then we get some other sets with property D(36), e.g.

{1, 13, 160, 540}, {1, 13, 540, 1728},
{1, 13, 1728, 5440}, {1, 13, 21280, 66528}, . . .

3. Cases e = 1 and e = 2. If e = 1 then all the xn,m are integers.
Indeed, x0,0 = 0 ∈ Z, x1,0 = a+ b+ 2k ∈ Z, x−1,0 = a+ b− 2k ∈ Z and

xn+3,0 = (4k2 − 1)(xn+2,0 − xn+1,0) + xn,0

(see the proof of relation (6)). Hence, xn,0 ∈ Z for all n ∈ Z. In fact, xn,0 ∈ N
for n ∈ Z \ {0,−1}. Note that in this case s = k and t = 1. The relation
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xn,m = xn+m,0, n,m ∈ Z, which is easy to prove by induction, implies that
xn,m ∈ Z for all n,m ∈ Z.

Example 3.

1 · 3 + 12 = 22 .

We have a = 1, b = 3, k = 2; x0,0 = 0, x1,0 = 8, x−1,0 = 0 and xn+3,0 =
15(xn+2,0 − xn+1,0) + xn,0. Thus, x2,0 = 120, x3,0 = 1680, x4,0 = 23408, . . .
Hence, the sets {1, 3, 8, 120}, {1, 3, 120, 1680} and {1, 3, 1680, 23408} have
property D(1).

If e = 2 then all the xn,m are also integers. This follows from the relation

xn+3,0 = (k2 − 1)(xn+2,0 − xn+1,0) + xn,0 .

We are also able to obtain y′n,m = yn+m,0 by applying the construction
from Remark 1. Consequently, we see that the use of double sequences was
unnecessary in the cases e = 1 and e = 2.

Example 4.

1 · 5 + 22 = 32 .

By the above construction, we obtain the following sequence of sets with
property D(4):

{1, 5, 12, 96}, {1, 5, 96, 672}, {1, 5, 672, 4620}, . . .

4. Connection with polynomials and with Fibonacci numbers.
We will now apply our construction to the identity

(k − e)(k + e) + e2 = k2 .

We have a = k − e, b = k + e; x0,0 = 0, x−1,0 = 0, x1,0 = 4k.
For e = 1 we obtain a sequence of solutions:

{k−1, k+1, 4k, 16k3−4k}, {k−1, k+1, 16k3−4k, 64k5−48k3 +8k}, . . .

Jones (in [6]) showed that there is no set of five polynomials with the above
property. But there are some other sets of four polynomials with property
D(1), e.g. {k + 1, 4k + 8, 9k + 15, 144k3 + 672k2 + 1036k + 528}.

For e = 2 we also obtain a sequence of solutions:

{k− 2, k+ 2, 4k, 4k3 − 4k}, {k− 2, k+ 2, 4k3 − 4k, 4k5 − 12k3 + 8k}, . . .

Moreover, {k − 4, k + 4, 4k, k3 − 4k} has property D(16) for all k ≥ 5.

Consider now the Fibonacci numbers Fn, i.e. F1 = 1, F2 = 1, Fn+2 =
Fn+1 + Fn, n ∈ N. The following relation is valid:

F2nF2n+2m + F 2
m = F 2

2n+m
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(see [8], p. 28). By applying our construction to this identity, we get e = Fm,
a = F2n, b = F2n+2m, k = F2n+m. By taking m = 1, 2, 3, 4, 6 and using the
properties of Fibonacci and Lucas numbers (Ln = Fn−1 +Fn+1), we obtain

Theorem 3. For all natural numbers n, the sets {F2n, F2n+2, F2n+4,
4F2n+1F2n+2F2n+3} and {F2n, F2n+4, 5F2n+2, 4L2n+1F2n+2L2n+3} have
property D(1), the sets {F2n, F2n+6, 4F2n+2, 4F2n+1F2n+3F2n+4} and
{F2n, F2n+6, 4F2n+4, 4F2n+2F2n+3F2n+5} have property D(4), the set
{F2n, F2n+8, 9F2n+4, 4F2n+2F2n+4F2n+6} has property D(9) and {F2n,
F2n+12, 16F2n+6, F2n+3F2n+6F2n+9} has property D(64).

The assertions of Theorem 3 can also be proved directly, e.g.

F2n+4 · 4F2n+1F2n+2F2n+3 + 1 = (2F2n+2F2n+3 + 1)2

or

5F2n+2 · 4L2n+1F2n+2L2n+3 + 1 = (10F 2
2n+2 − 1)2

(see [4]).

5. General case. Consider now the problem of existence of sets of four
natural numbers with property D(n) in the general case, i.e. in the case
where n need not be a perfect square.

First we prove

Theorem 4. If n is an integer of the form n = 4k+ 2, k ∈ Z, then there
is no set of four natural numbers with property D(n).

P r o o f. Let n = 4k+ 2, k ∈ Z, and suppose that {a1, a2, a3, a4}, ai ∈ N,
has property D(n). This means that aiaj +(4k+2) = b2ij , for i, j = 1, 2, 3, 4,
i 6= j, bij ∈ Z. Observe that the square of an integer is 0 or 1 (mod 4). This
implies that aiaj ≡ 2 or 3 (mod 4). This, first of all, means that none of
the ai is divisible by 4. Hence, for some two of them, say as and at, we have
as ≡ at (mod 4) so that asat ≡ a2

t (mod 4). This leads to a contradiction
because the left side of this congruence is 2 or 3 (mod 4) while the right
side is 0 or 1.

What can we get if n 6= 4k + 2? It is known that every integer which is
not of the form 4k + 2 can be represented as the difference of two squares.
Hence, n = k2 − a2. Now, the four numbers a, a, 2a+ 2k, 5a+ 4k have the
property that the product of any two of them increased by n is a perfect
square. In fact,

a · a+ n = k2 ,

a(2a+ 2k) + n = (a+ k)2 ,

a(5a+ 4k) + n = (2a+ k)2 ,

(2a+ 2k)(5a+ 4k) + n = (3a+ 3k)2 .
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The numbers a, a, (s2 + 1)a+ 2sk, (s2 + 2s+ 2)a+ 2(s+ 1)k have the same
property for every integer s. Note that in any of these quadruples we have
two equal numbers, so they are not solutions of our problem.

There remains the following question: for which integers n do there exist
four distinct natural numbers such that the product of any two of them
increased by n gives the square of an integer? Until now, we proved that
there are an infinite number of solutions when n is a perfect square and that
no solution exists in the case that n = 4k+ 2, k ∈ Z. If n is not of the form
4k + 2, then necessarily n can be represented in one of the forms

4k + 3, 8k + 1, 8k + 5, 8k, 16k + 4, 16k + 12 .

For all of these cases, we will give formulas for a set of four numbers which
has the property of Diophantus:

(7)

(8)

(9)

(10)

(11)

(12)

n = 4k+3 : {1, 9k2+8k+1, 9k2+14k+6, 36k2+44k+13},
n = 8k+1 : {4, 9k2−5k, 9k2+7k+2, 36k2+4k},
n = 8k+5 : {2, 18k2+14k+2, 18k2+26k+10, 72k2+80k+22},
n = 8k : {1, 9k2−8k, 9k2−2k+1, 36k2−20k+1},
n = 16k+4 : {4, 9k2−4k−1, 9k2+8k+3, 36k2+8k},
n = 16k+12 : {2, 18k2+16k+2, 18k2+28k+12, 72k2+88k+26}.

Our problem is almost completely solved by these formulas. The solution
is incomplete because from (7)–(12) we can get sets with nonpositive or
equal members for small values of k. More precisely, this happens for k = 0,
k = −1 in (7), (9) and (12), for k = 0, k = 1, k = −1 in (8) and (11),
and for k = 0, k = 1 in (10). In this way, there still remain 14 values of n
for which we do not know whether a solution exists (a set of four natural
numbers with property D(n)). However, among these numbers there are 0,
1, 4 and 9 for which we gave an affirmative answer to our question earlier.
Moreover, the set {1, 8, 11, 16} has property D(−7) and {1, 12, 28, 76} has
property D(−12). Consequently, we have proved

Theorem 5. If an integer n does not have the form 4k+ 2 and n 6∈ S =
{3, 5, 8, 12, 20,−1,−3,−4} then there exists a set of four natural numbers
with property D(n).

If n ∈ S then the question of existence of a set with the given property
is still unanswered.

R e m a r k 3. Note that the set in (12) is obtained from the set in (7)
by multiplication by 2. We will show that every set of four numbers with
property D(16k + 12) can be obtained from some set of four numbers with
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property D(4k+3) by multiplying its members by 2. It is sufficient to prove
that if {a1, a2, a3, a4} has property D(16k + 12) then all the ai are even.
Suppose that a1 is odd. It is easy to see that the square of an integer is 0, 1,
4 or 9 (mod 16). Therefore, aiaj ≡ 4, 5, 8 or 13 (mod 16), for i, j = 1, 2, 3, 4,
i 6= j. This implies that if some ai, i = 2, 3, 4, is even then it is divisible
by 4. Since aiaj cannot be divisible by 16, we conclude that there must be
at most one even number, i.e. at least three odd numbers, among the ai,
i = 1, 2, 3, 4. Let a1, a2, a3 be odd. We have

a1a2 ≡ 5 (mod 8), a1a3 ≡ 5 (mod 8), a2a3 ≡ 5 (mod 8) .

By multiplying these congruences, we obtain

(a1a2a3)2 ≡ 53 = 125 ≡ 5 (mod 8) ,

which is impossible, since the square of an integer is 0, 1 or 4 (mod 8).

Formulas (7)–(12) are consequences of two more general formulas: the
set

(13) {m, (3k + 1)2m+ 2k, (3k + 2)2m+ 2k + 2, 9(2k + 1)2m+ 8k + 4}
has property D(2(2k + 1)m+ 1), and

(14) {4m, (3k − 1)2m+ k − 1, (3k + 1)2m+ k + 1, 36k2m+ 4k}
has property D(8km+ 1).

Similarly, since

(15) {m, k2m− 2k − 2, (k + 1)2m− 2k, (2k + 1)2m− 8k − 4}
has property D(2(2k + 1)m+ 1) and

(16) {4m, (k − 1)2m− k − 3, (k + 1)2m+ k + 3, 4k2m+ 4k}
has property D(8km+ 9), we obtain the following sets with the property of
Diophantus:

(17)

(18)

(19)

(20)

(21)

(22)

n = 4k + 3 : {1, k2 − 2k − 2, k2 + 1, 4k2 − 4k − 3} ,
n = 8k + 1 : {4, k2 − 3k, k2 + k + 2, 4k2 − 4k} ,
n = 8k + 5 : {2, 2k2 − 2k − 2, 2k2 + 2k + 2, 8k2 − 2} ,
n = 8k : {1, k2 − 6k + 1, k2 − 4k + 4, 4k2 − 20k + 9} ,
n = 16k + 4 : {4, k2 − 4k − 1, k2 + 3, 4k2 − 8k} ,
n = 16k + 12 : {2, 2k2 − 4k − 4, 2k2 + 2, 8k2 − 8k − 6} .

It is obvious that for many integers n there exist more than one set with
property D(n). Indeed, formulas (7)–(12) and (17)–(22) together with the
fact that {2, 7, 19, 35}, {1, 8, 19, 208}, {12, 76, 150, 440} and {1, 24, 41, 129}
have properties D(11), D(17), D(33) and D(40) respectively, yield
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Theorem 6. If an integer n is not of the form 4k+2 and n 6∈ S∪T , where
T = {7, 13, 15, 21, 24, 28, 32, 48, 52, 60, 84,−7,−12,−15} then there exist at
least two different sets of four natural numbers with property D(n).

6. Some other formulas for sets with the property of Diophan-
tus. If we take some concrete values for m or k in (13)–(16) we obtain for-
mulas for sets with property D(n), where n is a member of one arithmetic
progression. In the first case, one member of the set is constant and the
other three are polynomials of degree two. In the second case, all members
of the set are polynomials of degree one.

For example (m = 5 in (15) and k = 2 in (14)): the set {5, 5k2 − 2k −
2, 5k2 + 8k + 5, 20k2 + 12k + 1} has property D(20k + 11) and {4m, 25m+
1, 49m+ 3, 144m+ 8} has property D(16m+ 1).

More formulas of this type can also be obtained by using the fact that
the set

(23) {m, k2m+ 2k − 2, (k + 1)2m+ 2k + 4, (2k + 1)2m+ 8k + 4}
has property D(2(2k + 1) + 9).

There are also formulas for sets of four polynomials of degree one which
are not consequences of (13)–(16) and (23). For example:

n = 16k + 9 : {k, 16k + 8, 25k + 14, 36k + 20} ,
n = 10k + 9 : {k, 9k + 8, 16k + 14, 25k + 20} ,
n = 14k + 11 : {4k + 2, 9k + 7, 25k + 19, 49k + 35} ,
n = 22k + 5 : {9k + 2, 16k + 2, 49k + 10, 121k + 22} ,
n = 34k + 19 : {9k + 5, 49k + 25, 100k + 54, 289k + 153} .

For more formulas see [5].
The question is which arithmetic progression ak + b allows formulas of

this type. Assume {aik+ bi : i = 1, 2, 3, 4} has property D(ak+ b). Without
losing generality, we can suppose that gcd(a1, a2, a3, a4, a) = 1 (otherwise
we put m = kd, where gcd(a1, a2, a3, a4, a) = d). We will also suppose that
gcd(a, b) = 1. Now we will prove that a is even and b is a quadratic residue
modulo a.

Suppose that a is odd. From

(aik + bi)(ajk + bj) + ak + b = (cijk + dij)2

it follows that aibj + biaj ≡ 1 (mod 2), i, j = 1, 2, 3, 4, i 6= j. This implies
that at most one ai is even. So we can suppose that a1, a2, a3 are odd.
Hence,

b1 + b2 ≡ 1 (mod 2), b2 + b3 ≡ 1 (mod 2), b3 + b1 ≡ 1 (mod 2)

and 2(b1 + b2 + b3) ≡ 3 (mod 2). Contradiction.
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Let j ∈ {1, 2, 3, 4}. The set {ajaik + ajbi : i = 1, 2, 3, 4} has property
D(a2

jak+a2
jb) and so {aik+ajbi : i = 1, 2, 3, 4} has property D(ajak+a2

jb).
For k = −bj we obtain

−ajbja+ a2
jb = x2

j , xj ∈ Z .
Let a = 2αpα1

1 pα2
2 . . . pαss . For m ∈ {1, . . . , s} there exists n ∈ {1, 2, 3, 4}

such that gcd(pm, an) = 1. Now we have a2
nb ≡ x2

n (mod pm) and
(
b
pm

)
= 1

(Legendre’s symbol). If α ≥ 2 then there exists t ∈ {1, 2, 3, 4} such that at is
odd. This implies that b ≡ 1 (mod 4). If α ≥ 3 that implies b ≡ 1 (mod 8).
Hence, we conclude (see [9], p. 94) that b is a quadratic residue modulo a.
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