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1. Introduction and statement of results. This paper is a continu-
ation of our paper [1]. We begin by stating a special case of what we prove
in the present paper.

THEOREM 1. Let k be any complex constant and (((s))*=>_"", di(n)n=*

ino > 2. Then n=1
T
(1) f\(§(1+zt 2dt = TZyd n=2% 4+ O((log T)**1),
1
e ’C i ‘ dt =73 3 (loap)*p " + O((1og T)?).
m>1 p
and
(3) f log C(1 +it)]*dt =T Z Z (mp™)~* + O(loglog T) .
m>1 p

Remark 1. In [1] we proved (1) with k¥ = 1 and studied the error term
in great detail.

Remark 2. The proof of this theorem and Theorem 3 to follow require
the use of the Hooley—Huxley contour as modified by K. Ramachandra in
[2] (for some explanations see [3]). We write m(HH ) for this contour.

Remark 3. We have an analogue of these results for ¢ and L-functions
of algebraic number fields. In fact, under somewhat general conditions on
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F(s) =37 ayn™ 5 (or even y >~ a,\,* and so on) we can show that

T [e%s)
(4) f\F(1+it)|2dt:TZ|an]2n_2+O<loglogT+ 3 |an\2n—1)
1 n=1

= n<TC
where C' (> 0) is a large constant.
The following theorem is fairly simple to prove.

THEOREM 2. Let 1 = Ay < Ay < ... be a sequence of real numbers with
C’O_1 < Ang1 — A < Cy where Cy (> 1) is a constant and let ai,aq,... be
any sequence of complex numbers satisfying the following conditions:

(i) Xp<planln™ = Oc(2%) for alle > 0 and x > 1.

(i) °0°, lan|*n*=2 converges for some constant A with 0 < A < 1.

(iii) F(s) = D071 an\,® (which converges in o > 1) is continuable ana-
lytically in (o0 > 1—08, t > to) and there |F(s)| < t4, where § (0 < 6 < 1/10),
to (>100) and A (> 2) are any constants.

Then
T
(5) [ |F(1 +it)|? dt
to+C1 loglog T

o
:TZ|an|2)\;2+O<loglogT—|— Z |an|2n*1)
n=1 n<TC2

where C1 and Cy are certain positive constants depending on other constants
which occur in the definition of F(s).

We sketch a proof of this theorem. We put s =1+ it, ¢t > o,

(6) R(w) = exp ((sm 1}‘;0)) ,

(M) Adw) = - 2700 R (> 0)
C2mi, O w ’
and
(8) ia a2y 2 L ZTOOF(S—i—w)XwR(w)dw (X = TC)
o o) 2mi, ) w B ’

C5 (> 0) being a large constant. In the integral just mentioned we cut off
the portion [Imw| > CyloglogT where Cy (> 0) is a large constant and in
the remaining part we move the line of integration to Rew = —4J. Observe
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that in |[Rew| < 3 we have

o) =0 (exwesn ([ 25)) )

Without much difficulty we obtain
- X

(9) F(s) = Zan/\nsA<>\) +O0(T7%) = A(s) + E(s) say.
n=1 n

Using a well-known theorem of H. L. Montgomery and R. C. Vaughan we
have

T
(10) |/ |A(1 + it)|? dt

to+C1 loglog T
00
X
2y—2
=2l A(A
n=1 n

Now A(u) = O(u?) always but it is also 1 + O(u~2) and using these we are
led to the theorem.

However, the proof of Theorem 1 (and also that of Theorem 3) is not
simple. It has to use the density results N(o,T) = O(TP1~=)(log T)?)
and N(0,T) = O(TB/(l_U)B/2 (log T)B") (the former is a consequence of the
latter if we are not particular to have a small value of B) where B (> 0)
and B’ (> 0) are constants and 1 — ¢ < o < 1. Also it has to use the zero
free region o > 1 —Cs(logt)~2/3(loglogt)~1/3 (t > ty) for the Riemann zeta
function (and more general functions). Since the constant B is unimportant
in our proof, Remark 3 below Theorem 1 holds. (In fact, as will be clear from
our proof, only the portion o > 1—0 of the m(HH ) contour will be enough for
our purposes.) Also if only the density result N (o, T) = O(T21~9) (log T')?)
and the zero free region 0 > 1 — C5(logT) ™! are available then we end up

with
O(loglogT + Z \an|2n_1)
n<exp((log T')?)
for the error term and it is not hard to improve this to some extent. We
now proceed to state our general result.
Consider the set S of all abelian L-series of all algebraic number fields.
We can define log L(s, x) in the half plane Re s > 1 by the series

(11) DN xe™)mpm) !

where the sum is over all positive integers m > 1 and p runs over all primes
(in the case of algebraic number fields p runs over the norm of all prime
ideals). More generally, we can (by analytic continuation) define log L(s, x)

2
(T — CyloglogT 4+ O(n)) .
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in any simply connected domain containing Re s > 1 which does not contain
any zero or pole of L(s,x). For any complex constant z we can define
(L(s,x))* as exp(zlog L(s,x)). Let Sy consist of the derivatives of L(s, x)
for all L-series and let S5 consist of the logarithms as defined above for all
L-series.

Let P;(s) be any finite power product (with complex exponents) of func-
tions in S;. Let P»(s) be any finite power product (with non-negative in-
tegral exponents) of functions in Sp. Also let Ps(s) be any finite power
product (with non-negative integral exponents) of functions in S3. Let
b, (n = 1,2,3,...) be complex numbers which are O.(exp((logn)¢)) for
every fixed £ > 0 and suppose that Fy(s) =Y > b,n~* is absolutely con-
vergent in Res > 1 — § where § (0 < § < 1/10) is a positive constant.
Finally, put

(12) F(s) = Py(s)Pa(s)Ps(s) Fo(s) = Y ann™".

Then we have

THEOREM 3. We have

T
(13)  [IF(1+it)| dt

o0
=T Z lan|?n=2 + O(loglogT + Z |an|2n_1)
n=1

n<TC6
where Cg (> 0) is a large constant.

Remark 1. It is possible to have a more general result. For example
we can replace F(s) in (12) and (13) by F/(s)+ > .- ; dm(n)(n+a)~* where
m is a positive integer constant and « is any constant with 0 < o < 1. Then
the right hand side of (13) has to be replaced by

T lan*n ™2+ T (dm(n))*(n+a) "% + O(loglog T)
n=1 n=1

+0( Y (aul + (dnm)?n ).

n<TC6

2. Proof of Theorem 3. We form the m(HH) contour (associated
with L-functions occurring in F'(s)) as in [2]. But we select a small constant
d (0 < d < 1) and treat the points 1 — § +iv (v = 0,4+1,£2,...) as though
they were zeros associated with L-functions occurring in F(s). We recall
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R(w) = exp((sin(w/100))?). Put s = 1 +it, To = CrloglogT <t < T,

(14) A(s) = iann—m@)

where A(u) and X are as in (8). Then

1 2+i00 dw
(15) o f F(s+w) X" R(w)-~ = A(s).

We write w = u + v and truncate the portion |v| > %TD and move the
w-line of integration so that s+ w lies in the portion of the m(HH) contour
pertaining to |v| < %To. We obtain

(16) F(s) = A(s) + E(s)

where for fixed t in (Tp <t <T),

(17) E(s)=—— | F(s+w)X"“R(w) o
P

where P is the path consisting of the m(HH ) contour in (u > —4, |v| < $T)
and the lines connecting it to 0 = 1 by lines perpendicular to it at the ends.
Notice that to the right of the m(HH) we have (by Lemma 5 of [2])

(18) |F (s +w)| < exp((logt)?)

with a certain constant 1 (satisfying 0 < ¢ < 1) for s+w on M; ; and M o
(we adopt the notation of [2]). Also

(19) |F(s +w)| < exp((log T)*")

with a small constant ¢' (0 < ¢’ < 1/5) for s +w on M; 3. With these we

have the following contributions to f;J/F;‘FO/z |E(s)|dt and f;:zJ/rQTO/Q |E(s)]? dt.
We handle the first integral and the treatment of the second is similar. We
have (denoting by P; the contour P with the horizontal lines connecting P

to o = 1 omitted)

T T
(20) [ |E(s)ldt < (logT)* [ [ [F(s+w)|X"|dw|dt+ T

TO TO Pl
< (logT)* [ |F(s)| X7 |ds| + T
Q

where @ is the portion of the m(HH) in (60 > 1—06,Tp/2 <t <T + Ty/2).
(Note that s is used as a variable on the m(HH) in the integral in (20).)
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(In the case of fT |E(s)|? dt we majorise it by

T
Gog 1) [ ([ F(s +w)X"\duw]) di + 7710
To Py

T
< (logT)? f f |F (s 4 w)|> X?"|dw| dt + T~°
T, P

by Holder’s inequality.)
The contribution to (20) from M, ; is

O((logT)* ~ max (N(o,T)X "= exp((log T)"))

—6<o<1l—7
and that from M, 5 is

O(QogT)*®  max  (N(o,T)X~ =) exp((logT)*"))

1-m<o<l—79
and that from M, 3 is

O((log T)P exp((log T)*") X )

where 7 and 7 are determined by M;,, M;2 and M;3 and 73 =
Cs(log T)~2/3(loglog T)~1/3. Here D (> 0) is some constant. (Note that X
is a large positive constant power of 7'.) Using the standard estimates (for
some details which are very much similar to what we need, see equations
(1)~(3) of [3]) we obtain

LEMMA 1. Both [, |E(s)|dt and [;, |E(s)| dt are O(exp(—(log T)*1)).
LEMMA 2. We have A(s) = O(exp((logT)%)).
Proof. Follows from the fact that
X
2l
n

0o
S <D lanln™!
n=1

LEMMA 3. The integral fT:Z |A(s)E(s)| dt is O(exp(—3(log T)%1)).

Proof. Follows from Lemmas 1 and 2.

LEMMA 4. We have

T T
(21> f ‘F(S)P dt = f |A(3)‘2 dt + O(exp(_%(log T)Ol)) .
To 7

Proof. Follows from Lemmas 2 and 3. Now the integral on the right

hand side of (21) is
- X
> (T = Ty + O(n))|an|*n~> A<n>
n=1
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by a well-known theorem of H. L. Montgomery and R. C. Vaughan, and so
Theorem 3 follows by a slight further work since a,, = O.(n®) for all € > 0.
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