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1. Introduction and statement of results. This paper is a continu-
ation of our paper [1]. We begin by stating a special case of what we prove
in the present paper.

Theorem 1. Let k be any complex constant and (ζ(s))k=
∑∞
n=1 dk(n)n−s

in σ ≥ 2. Then

T∫
1

|(ζ(1 + it))k|2 dt = T
∞∑
n=1

|dk(n)|2n−2 +O((log T )|k
2|),(1)

T∫
1

∣∣∣∣ζ ′(1 + it)
ζ(1 + it)

∣∣∣∣2 dt = T
∑
m≥1

∑
p

(log p)2p−2m +O((log T )2),(2)

and

(3)
T∫

1

|log ζ(1 + it)|2 dt = T
∑
m≥1

∑
p

(mpm)−2 +O(log log T ) .

R e m a r k 1. In [1] we proved (1) with k = 1 and studied the error term
in great detail.

R e m a r k 2. The proof of this theorem and Theorem 3 to follow require
the use of the Hooley–Huxley contour as modified by K. Ramachandra in
[2] (for some explanations see [3]). We write m(HH ) for this contour.

R e m a r k 3. We have an analogue of these results for ζ and L-functions
of algebraic number fields. In fact, under somewhat general conditions on
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F (s) =
∑∞
n=1 ann

−s (or even
∑∞
n=1 anλ

−s
n and so on) we can show that

(4)
T∫

1

|F (1 + it)|2 dt = T

∞∑
n=1

|an|2n−2 +O
(

log log T +
∑
n≤TC

|an|2n−1
)

where C (> 0) is a large constant.

The following theorem is fairly simple to prove.

Theorem 2. Let 1 = λ1 < λ2 < . . . be a sequence of real numbers with
C−1

0 ≤ λn+1 − λn ≤ C0 where C0 (≥ 1) is a constant and let a1, a2, . . . be
any sequence of complex numbers satisfying the following conditions:

(i)
∑
n≤x |an|n−1 = Oε(xε) for all ε > 0 and x ≥ 1.

(ii)
∑∞
n=1 |an|2nλ−2 converges for some constant λ with 0 < λ < 1.

(iii) F (s) =
∑∞
n=1 anλ

−s
n (which converges in σ > 1) is continuable ana-

lytically in (σ ≥ 1−δ, t ≥ t0) and there |F (s)| < tA, where δ (0 < δ < 1/10),
t0 (≥ 100) and A (≥ 2) are any constants.

Then

(5)
T∫

t0+C1 log log T

|F (1 + it)|2 dt

= T
∞∑
n=1

|an|2λ−2
n +O

(
log log T +

∑
n≤TC2

|an|2n−1
)

where C1 and C2 are certain positive constants depending on other constants
which occur in the definition of F (s).

We sketch a proof of this theorem. We put s = 1 + it, t ≥ t0,

R(w) = exp
((

sin
w

100

)2)
,(6)

∆(u) =
1

2πi

2+i∞∫
2−i∞

uwR(w)
dw

w
(u > 0) ,(7)

and

(8)
∞∑
n=1

anλ
−s
n ∆

(
X

λn

)
=

1
2πi

2+i∞∫
2−i∞

F (s+ w)XwR(w)
dw

w
(X = TC3) ,

C3 (> 0) being a large constant. In the integral just mentioned we cut off
the portion |Imw| ≥ C4 log log T where C4 (> 0) is a large constant and in
the remaining part we move the line of integration to Rew = −δ. Observe
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that in |Rew| ≤ 3 we have

R(w) = O

((
exp exp

(∣∣∣∣ Im
w

100

∣∣∣∣))−1)
.

Without much difficulty we obtain

(9) F (s) =
∞∑
n=1

anλ
−s
n ∆

(
X

λn

)
+O(T−2) = A(s) + E(s) say.

Using a well-known theorem of H. L. Montgomery and R. C. Vaughan we
have

(10)
T∫

t0+C1 log log T

|A(1 + it)|2 dt

=
∞∑
n=1

|an|2λ−2
n

∣∣∣∣∆(
X

λn

)∣∣∣∣2(T − C1 log log T +O(n)) .

Now ∆(u) = O(u2) always but it is also 1 +O(u−2) and using these we are
led to the theorem.

However, the proof of Theorem 1 (and also that of Theorem 3) is not
simple. It has to use the density results N(σ, T ) = O(TB(1−σ)(log T )B)
and N(σ, T ) = O(TB

′(1−σ)3/2
(log T )B

′
) (the former is a consequence of the

latter if we are not particular to have a small value of B) where B (> 0)
and B′ (> 0) are constants and 1 − δ ≤ σ ≤ 1. Also it has to use the zero
free region σ ≥ 1−C3(log t)−2/3(log log t)−1/3 (t ≥ t0) for the Riemann zeta
function (and more general functions). Since the constant B is unimportant
in our proof, Remark 3 below Theorem 1 holds. (In fact, as will be clear from
our proof, only the portion σ ≥ 1−δ of them(HH ) contour will be enough for
our purposes.) Also if only the density resultN(σ, T ) = O(TB(1−σ)(log T )B)
and the zero free region σ ≥ 1 − C5(log T )−1 are available then we end up
with

O
(

log log T +
∑

n≤exp((log T )3)

|an|2n−1
)

for the error term and it is not hard to improve this to some extent. We
now proceed to state our general result.

Consider the set S1 of all abelian L-series of all algebraic number fields.
We can define logL(s, χ) in the half plane Re s > 1 by the series

(11)
∑
m

∑
p

χ(pm)(mpms)−1

where the sum is over all positive integers m ≥ 1 and p runs over all primes
(in the case of algebraic number fields p runs over the norm of all prime
ideals). More generally, we can (by analytic continuation) define logL(s, χ)
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in any simply connected domain containing Re s > 1 which does not contain
any zero or pole of L(s, χ). For any complex constant z we can define
(L(s, χ))z as exp(z logL(s, χ)). Let S2 consist of the derivatives of L(s, χ)
for all L-series and let S3 consist of the logarithms as defined above for all
L-series.

Let P1(s) be any finite power product (with complex exponents) of func-
tions in S1. Let P2(s) be any finite power product (with non-negative in-
tegral exponents) of functions in S2. Also let P3(s) be any finite power
product (with non-negative integral exponents) of functions in S3. Let
bn (n = 1, 2, 3, . . .) be complex numbers which are Oε(exp((log n)ε)) for
every fixed ε > 0 and suppose that F0(s) =

∑∞
n=1 bnn

−s is absolutely con-
vergent in Re s ≥ 1 − δ where δ (0 < δ < 1/10) is a positive constant.
Finally, put

(12) F (s) = P1(s)P2(s)P3(s)F0(s) =
∞∑
n=1

ann
−s .

Then we have

Theorem 3. We have

(13)
T∫

1

|F (1 + it)|2 dt

= T
∞∑
n=1

|an|2n−2 +O
(

log log T +
∑

n≤TC6

|an|2n−1
)

where C6 (> 0) is a large constant.

R e m a r k 1. It is possible to have a more general result. For example
we can replace F (s) in (12) and (13) by F (s)+

∑∞
n=1 dm(n)(n+α)−s where

m is a positive integer constant and α is any constant with 0 < α < 1. Then
the right hand side of (13) has to be replaced by

T

∞∑
n=1

|an|2n−2 + T

∞∑
n=1

(dm(n))2(n+ α)−2 +O(log log T )

+O
( ∑
n≤TC6

(|an|2 + (dm(n))2)n−1
)
.

2. Proof of Theorem 3. We form the m(HH ) contour (associated
with L-functions occurring in F (s)) as in [2]. But we select a small constant
δ (0 < δ < 1) and treat the points 1− δ + iν (ν = 0,±1,±2, . . .) as though
they were zeros associated with L-functions occurring in F (s). We recall
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R(w) = exp((sin(w/100))2). Put s = 1 + it, T0 = C7 log log T ≤ t ≤ T ,

(14) A(s) =
∞∑
n=1

ann
−s∆

(
X

n

)
where ∆(u) and X are as in (8). Then

(15)
1

2πi

2+i∞∫
2−i∞

F (s+ w)XwR(w)
dw

w
= A(s) .

We write w = u + iv and truncate the portion |v| ≥ 1
2T0 and move the

w-line of integration so that s+w lies in the portion of the m(HH ) contour
pertaining to |v| ≤ 1

2T0. We obtain

(16) F (s) = A(s) + E(s)

where for fixed t in (T0 ≤ t ≤ T ),

(17) E(s) = − 1
2πi

∫
P

F (s+ w)XwR(w)
dw

w

where P is the path consisting of the m(HH ) contour in (u ≥ −δ, |v| ≤ 1
2T0)

and the lines connecting it to σ = 1 by lines perpendicular to it at the ends.
Notice that to the right of the m(HH ) we have (by Lemma 5 of [2])

(18) |F (s+ w)| ≤ exp((log t)ψ)

with a certain constant ψ (satisfying 0 < ψ < 1) for s+w on M1,1 and M1,2

(we adopt the notation of [2]). Also

(19) |F (s+ w)| ≤ exp((log T )ψ
′
)

with a small constant ψ′ (0 < ψ′ < 1/5) for s+ w on M1,3. With these we
have the following contributions to

∫ T+T0/2

T0/2
|E(s)| dt and

∫ T+T0/2

T0/2
|E(s)|2 dt.

We handle the first integral and the treatment of the second is similar. We
have (denoting by P1 the contour P with the horizontal lines connecting P
to σ = 1 omitted)

T∫
T0

|E(s)| dt ≤ (log T )2
T∫

T0

∫
P1

|F (s+ w)|Xu|dw| dt+ T−10(20)

≤ (log T )3
∫
Q

|F (s)|Xσ−1|ds|+ T−10

where Q is the portion of the m(HH ) in (σ ≥ 1− δ, T0/2 ≤ t ≤ T + T0/2).
(Note that s is used as a variable on the m(HH ) in the integral in (20).)
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(In the case of
∫ T
T0
|E(s)|2 dt we majorise it by

(log T )4
T∫

T0

( ∫
P1

|F (s+ w)|Xu|dw|
)2

dt+ T−10

≤ (log T )5
T∫

T0

∫
P1

|F (s+ w)|2X2u|dw| dt+ T−10

by Hölder’s inequality.)
The contribution to (20) from M1,1 is

O((log T )20 max
1−δ≤σ≤1−τ1

(N(σ, T )X−(1−σ)) exp((log T )ψ))

and that from M1,2 is

O((log T )20 max
1−τ1≤σ≤1−τ2

(N(σ, T )X−(1−σ)) exp((log T )ψ
′
))

and that from M1,3 is

O((log T )D exp((log T )ψ
′
)X−τ3)

where τ1 and τ2 are determined by M1,1, M1,2 and M1,3 and τ3 =
C3(log T )−2/3(log log T )−1/3. Here D (> 0) is some constant. (Note that X
is a large positive constant power of T .) Using the standard estimates (for
some details which are very much similar to what we need, see equations
(1)–(3) of [3]) we obtain

Lemma 1. Both
∫ T
T0
|E(s)| dt and

∫ T
T0
|E(s)|2 dt are O(exp(−(log T )0.1)).

Lemma 2. We have A(s) = O(exp((log T )ε)).

P r o o f. Follows from the fact that

|A(s)| ≤
∞∑
n=1

|an|n−1

∣∣∣∣∆(
X

n

)∣∣∣∣ .
Lemma 3. The integral

∫ T
T0
|A(s)E(s)| dt is O(exp(− 1

2 (log T )0.1)).

P r o o f. Follows from Lemmas 1 and 2.

Lemma 4. We have

(21)
T∫

T0

|F (s)|2 dt =
T∫

T0

|A(s)|2 dt+O(exp(− 1
2 (log T )0.1)) .

P r o o f. Follows from Lemmas 2 and 3. Now the integral on the right
hand side of (21) is

∞∑
n=1

(T − T0 +O(n))|an|2n−2

∣∣∣∣∆(
X

n

)∣∣∣∣2
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by a well-known theorem of H. L. Montgomery and R. C. Vaughan, and so
Theorem 3 follows by a slight further work since an = Oε(nε) for all ε > 0.
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