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Proof of a conjecture of Selmer
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1. Introduction. The following definitions, results, and conjecture are
taken from [7], to which the reader is referred for background.

Let k ≥ 1 be an integer. Consider a basis Ak = {a1, . . . , ak}, where
1 = a1 < . . . < ak are integers (“stamp denominations”). Let h ≥ 1 be an
integer (“size of the envelope”). Consider all combinations

(1.1) x1a1 + . . .+ xkak, where xi ≥ 0 are integers and
k∑

i=1

xi ≤ h.

Let Nh(Ak) = smallest positive integer not represented by (1.1) and let
nh(Ak) = Nh(Ak) − 1 = the h-range of Ak. To emphasize the role of h
in these considerations, we will call Ak an h-basis in this paper. Let h0 =
h0(Ak) = min{h | nh(Ak) ≥ ak}.

R e m a r k 1.1. The importance of h0 stems from the fact that we are
(basically) interested only in the case h ≥ h0. For if h < h0, then in the
representations (1.1) of the integers n, 1 ≤ n ≤ nh(Ak), we cannot use ak
at all.

The “local” problem: given h and Ak, determine nh(Ak). The “global”
problem: given h and k, find the extremal h-range nh(k) = max{nh(Ak)}
and extremal h-bases A∗k such that nh(A∗k) = nh(k).

If, in addition to (1.1), we have

(1.2) x1a1 + . . .+ xjaj < aj+1 for j = 1, . . . , k − 1,

then we have a regular representation, introduced by Hofmeister [1]. Think-
ing of stamps, (1.2) means that we use first the largest stamp ak as often as
possible, then the next stamp ak−1 as often as possible, etc.

We can then define analogously the regular h-range gh(Ak), h̃0 = h̃0(Ak)
= min{h | gh(Ak) ≥ ak}, extremal regular h-range gh(k) and extremal regu-
lar h-bases Ã∗k: gh(Ã∗k) = gh(k). In this paper, only regular representations
will be considered.
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Since the case k = 1 is trivial, and also the case k = 2 is under control
(see [7, p. 9.1]), we suppose, in this section, that k ≥ 3. We denote by bxc the
greatest integer ≤ x and by dxe the least integer ≥ x (so that dxe = −b−xc
for all x ∈ R).

The following result of Hofmeister [1] (see [7, p. 9.1]) solves the local
problem in the regular case.

Theorem 1.2 (Hofmeister). If h ≥ h̃0, then

(1.3) gh(Ak) = µ1a1 + . . .+ µkak,

where the coefficients µj are given recursively by

(1.4) µj =
⌊
aj+1 − 2−∑j−1

i=1 µiai
aj

⌋
for j = 1, . . . , k − 1,

(1.5) µk = h−
k−1∑

i=1

µi.

The representation (1.3) is regular. We also have

(1.6) h̃0 =
k−1∑

i=1

µi + 1.

It follows immediately from (1.5) and (1.6) that

(1.7) h = h̃0 if and only if µk = 1.

Suppose now that we are given a sequence (ν1, . . . , νk) of nonnegative
integers with νk ≥ 1 and

(1.8) ν1 + . . .+ νk = h.

We can define a basis Ak = {a1, . . . , ak} by

(1.9) ai+1 = (νi + 2)ai − ai−1 for i = 1, . . . , k − 1 (a0 = 0).

It is then easy to prove by induction that

µi = νi for i = 1, . . . , k − 1.

In fact, if we suppose that µi = νi for i = 1, . . . , j − 1, then we have, by
(1.9) and (1.4),

µj =
⌊

(νj + 2)aj − aj−1 − 2−∑j−1
i=1 νiai

aj

⌋
=
⌊

(νj + 1)aj − a1

aj

⌋

= (νj + 1)−
⌈
a1

aj

⌉
= νj .

By (1.6) and (1.8) with νk ≥ 1, we have h ≥ h̃0, and using Theorem 1.2 we
get µk = νk and (1.3).
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The following result (see [7, p. 9.5]), conjectured by Hofmeister [1] and
proved by Mrose [4, p. 68], solves the global problem completely in the
regular case.

Theorem 1.3 (Mrose). The two sets of coefficients

µ
(1)
i =





⌊
ih

k

⌋
−
⌊

(i− 1)h
k

⌋
for i = 1, . . . , k − 1,

⌈
h

k

⌉
for i = k,

(1.10)

µ
(2)
i =





⌈
h

k

⌉
− 1 for i = 1,

⌈
ih

k

⌉
−
⌈

(i− 1)h
k

⌉
for i = 2, . . . , k − 1,

⌊
h

k

⌋
+ 1 for i = k,

(1.11)

give the extremal regular h-bases Ã∗k through

(1.12) ai+1 = (µi + 2)ai − ai−1 for i = 1, . . . , k − 1 (a0 = 0),

and the extremal regular h-range through (1.3). The two bases are equal if
and only if gcd(h, k) = 1.

For ordinary h-ranges nh(Ak), the (“classical”) extremal problem is much
more difficult. It is simple only for k = 2, but very complicated already
for k = 3, a case which was settled by Hofmeister [3]. He also solved the
analogous problem, already suggested by Salié [6], of determining the bases
A3 for which nh0(A3) is extremal for given h0.

Inspired by this, Selmer [7, p. 9.7] raised the analogous problem for
regular h-ranges. That is, given h and k, we define

A = {Ak | h̃0(Ak) = h} and gh̃0=h(k) = max{gh(Ak) | Ak ∈ A}.
Supported by extensive computer calculations by Svein Mossige, Selmer
formulated the following

Conjecture 1.4 (Selmer). If h ≥ k ≥ 3, then the problem of finding
gh̃0=h(k) is uniquely solved by

(1.13) µi =





⌊
i(h− 1)
k − 1

⌋
−
⌊

(i− 1)(h− 1)
k − 1

⌋
for i = 1, . . . , k − 2,

⌈
h− 1
k − 1

⌉
for i = k − 1,

1 for i = k,

in connection with (1.12) and (1.3).
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R e m a r k 1.5.

• If h < k, then the problem is solved by Theorem 1.3. This follows from
(1.7) because then µ

(1)
k = µ

(2)
k = 1.

• If h = k, then (1.13) gives µi = 1 for i = 1, . . . , k. Then also µ(1)
i = 1

for i = 1, . . . , k while µ(2)
k = 2. It follows that Conjecture 1.4 is true in the

case h = k. We note that in this case ai = F2i for i = 1, . . . , k, where the
F2i are Fibonacci numbers, defined by F1 = F2 = 1, Fn+2 = Fn+1 + Fn,
n = 1, 2, . . .
• If h > k, then µ(1)

k > 1 and µ(2)
k > 1, so that, by (1.7), we have h > h̃0

for both h-bases coming from Theorem 1.3. These bases, therefore, do not
solve Selmer’s problem.

In this paper we prove Selmer’s Conjecture 1.4. The proof is based on
Mrose’s thesis [4]. In Section 2 we introduce certain determinants and indi-
cate how the problem can be reformulated. The proof is then carried out in
two steps, in Sections 3 and 4. Finally, some asymptotic estimates are given
in Section 5.

2. Continuants and reformulation of the conjecture. The following
definitions and results are taken from [4].

Definition 2.1. If (x1, . . . , xk) is a sequence of real numbers, then by
a continuant C(x1, . . . , xk) we mean the determinant

C(x1, . . . , xk) =

∣∣∣∣∣∣∣∣∣

x1 −1 0 0 . . . 0 0
−1 x2 −1 0 . . . 0 0
0 −1 x3 −1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . −1 xk

∣∣∣∣∣∣∣∣∣
.

We also define

C(xr, . . . , xs) =
{

1 when s = r − 1,
0 when s ≤ r − 2.

The following result [4, p. 2] follows immediately.

Lemma 2.2. For k ≥ 1 and real numbers x1, . . . , xk we have

C(x1, . . . , xk) = x1C(x2, . . . , xk)− C(x3, . . . , xk)(2.1)

= xkC(x1, . . . , xk−1)− C(x1, . . . , xk−2),

C(x1, . . . , xk) = C(xk, . . . , x1).(2.2)

R e m a r k 2.3. In what follows, the elements x1, . . . , xk of a continuant
C(x1, . . . , xk) will always be integers ≥ 2.
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R e m a r k 2.4. The continuants are connected with continued fractions.
If we denote by

〈a0, a1, a2, . . .〉 = a0 − 1

a1 −
1

a2 − . . .

a reduced-regular (“reduziert-regelmässig” [5, p. 163]) continued fraction,
then (see [4, p. 1] and also [5, p. 8])

〈a0, a1, . . . , an〉 =
C(a0, a1, . . . , an)
C(a1, . . . , an)

.

Definition 2.5. A continuant C(x1, . . . , xk) with xi integers ≥ 2 is
called extremal if for any continuant C(y1, . . . , yk) with yi integers ≥ 2 and∑k
i=1 xi =

∑k
i=1 yi, we have C(y1, . . . , yk) ≤ C(x1, . . . , xk).

Definition 2.6. A sequence (x1, . . . , xk) of positive integers is called
homogeneous if the following conditions are satisfied.

(a) There exists a positive integer x such that xi ∈ {x, x + 1} for
i = 1, . . . , k.

(b1) If xi = x and xi+1 = x + 1 and if there exists a positive integer
t such that xi−t 6= xi+1+t, then for the smallest such t we have
xi−t = x+ 1 and xi+1+t = x.

(b2) If there is no such t, then i ≤ k/2.
(c1) If xi = x + 1 and xi+1 = x and if there exists a positive integer

t such that xi−t 6= xi+1+t, then for the smallest such t we have
xi−t = x and xi+1+t = x+ 1.

(c2) If there is no such t, then i ≥ k/2.
R e m a r k 2.7. The condition (c) above is equivalent with the require-

ment that the sequence (xk, . . . , x1) satisfies (b). A sequence (x1, . . . , xk) is
therefore homogeneous if and only if (xk, . . . , x1) is homogeneous.

The following remarkable result [4, pp. 33 and 44] plays a key role in the
proof of Theorem 1.3 and occupies a central position also in this paper.

Theorem 2.8 (Mrose). Let k ≥ 1 and s ≥ 2k be given positive inte-
gers. In case gcd(k, s + 1) = 1 there is exactly one homogeneous sequence
(x1, . . . , xk) and extremal continuant C(x1, . . . , xk) with

∑k
i=1 xi = s. In

case gcd(k, s + 1) > 1 there are exactly two homogeneous sequences
(x1, . . . , xk) and (y1, . . . , yk) and extremal continuants C(x1, . . . , xk) and
C(y1, . . . , yk) with

∑k
i=1 xi =

∑k
i=1 yi = s. Let x =

⌊
s/k
⌋
, m = s− ⌊s/k⌋k,

and n = k−m = k
⌈
(s+1)/k

⌉−s. The sequences (x1, . . . , xk) and (y1, . . . , yk)
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are given by

xi =





⌊
i(s+ 1)

k

⌋
−
⌊

(i− 1)(s+ 1)
k

⌋
for i = 1, . . . , k − 1,

s−
⌊

(k − 1)(s+ 1)
k

⌋
for i = k,

(2.3)

=





x for i =
⌈

(r − 1)k + 1
n− 1

⌉
(r = 1, . . . , n− 1) and i = k,

x+ 1 for i =
⌈

kr

m+ 1

⌉
(r = 1, . . . ,m),

yi =





⌈
s+ 1
k

⌉
− 1 for i = 1,

⌈
i(s+ 1)

k

⌉
−
⌈

(i− 1)(s+ 1)
k

⌉
for i = 2, . . . , k,

(2.4)

=





x for i = 1 and i =
⌈
k(r − 1)
n− 1

⌉
(r = 2, . . . , n),

x+ 1 for i =
⌈
kr + 1
m+ 1

⌉
(r = 1, . . . ,m).

The sequences (x1, . . . , xk) and (y1, . . . , yk) satisfy the conditions

(2.5) xk+1−i = yi for i = 1, . . . , k,

(2.6) (x1, . . . , xk) = (y1, . . . , yk) if and only if gcd(k, s+ 1) = 1.

Using Theorem 1.2 and other results of Hofmeister [1], Mrose [4, p. 68]
proved

Theorem 2.9 (Mrose). If h ≥ 1 and k ≥ 1 are given positive integers,
then Ak = {a1, . . . , ak} is an extremal regular h-basis Ã∗k if and only if there
exists a sequence (x1, . . . , xk) of integers ≥ 2 having the following properties.

(a)

(2.7) ai = C(x1, . . . , xi−1) for i = 1, . . . , k,

(b)

(2.8)
k∑

i=1

xi = h+ 2k − 1,

(c) the continuant C(x1, . . . , xk) is extremal.

If these conditions are satisfied , then

(2.9) gh(k) = gh(Ã∗k) = C(x1, . . . , xk)− 1.
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R e m a r k 2.10. Given a basis Ak = {a1, . . . , ak}, Mrose [4, p. 49] defined
recursively

(2.10) mj =
⌊
aj+1 −

∑j−1
i=2 miai

aj

⌋
for j = 1, . . . , k − 1.

Comparing (2.10) with (1.4), we easily deduce that µ1 = m1−2, µ2 = m2−1,
and µi = mi for i = 3, . . . , k − 1. From this it follows [4, p. 59] that for the
sequence (x1, . . . , xk) of Theorem 2.9 we have

xi = µi + 2 for i = 1, . . . , k − 1,(2.11)

xk = µk + 1.(2.12)

In preparation of our reformulation of Conjecture 1.4, we now briefly
sketch the proof of Theorem 1.3. If we use Theorem 2.8 with s = h+ 2k− 1
and associate, by (2.11) and (2.12), the µ(1)

i with the xi and the µ(2)
i with

the yi, we easily get (1.10) and (1.11). Using (2.11) and (2.1), (1.12) follows
from (2.7). Finally, (1.3) follows easily by induction from (2.9), using (2.11)
and (2.12). We have thus seen how Theorem 1.3 follows from Theorems 2.8
and 2.9.

We now turn our attention to Conjecture 1.4. We find it convenient to
introduce the following definitions (not to be found in [4]).

Definition 2.11. We call the sequences (x1, . . . , xk) and (y1, . . . , yk) of
Theorem 2.8 Mrose’s first and second sequence (for s), respectively.

Definition 2.12. We call a continuant C(x1, . . . , xk−1, 2) with xi inte-
gers ≥ 2 a 2-extremal continuant if for every continuant C(y1, . . . , yk−1, 2)
with yi integers ≥ 2 and

∑k−1
i=1 xi =

∑k−1
i=1 yi we have

C(y1, . . . , yk−1, 2) ≤ C(x1, . . . , xk−1, 2).

It follows from Theorem 2.9, (1.7), and (2.12) that the problem behind
Conjecture 1.4 can be reformulated in the following way.

Problem 2.13. If h ≥ k ≥ 3, find 2-extremal continuants C(x1, . . . ,

xk−1, 2) such that
∑k−1
i=1 xi = h+ 2k − 3 (and then use (2.7) and (2.9)).

Comparing (1.13) with (1.10), and taking the above sketch of the proof
of Theorem 1.3 into consideration, we see that Conjecture 1.4 is equivalent
with the following result.

Theorem 2.14. Let h ≥ k ≥ 3. There is exactly one 2-extremal con-
tinuant C(x1, . . . , xk−1, 2) with

∑k−1
i=1 xi = h + 2k − 3, and it satisfies the

condition that the sequence (x1, . . . , xk−2, xk−1−1) is Mrose’s first sequence
(2.3) (for s = h+ 2k − 4).

Theorem 2.14, that is, Selmer’s Conjecture 1.4, will be proved in two
steps, as Theorems 2.15 and 2.16 below.
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Theorem 2.15. Let h ≥ k ≥ 3. If C(x1, . . . , xk−1, 2) is a 2-extremal
continuant with

∑k−1
i=1 xi = h + 2k − 3, then the sequence (x1, . . . , xk−2,

xk−1 − 1) is homogeneous.

This first step leaves us, according to Theorem 2.8, at most two possi-
bilities for a 2-extremal continuant of the desired kind. The second step is
then

Theorem 2.16. Let k ≥ 3. If (x1, . . . , xk−1) and (y1, . . . , yk−1) are
Mrose’s first and second sequence, respectively (for s ≥ 2(k − 1)), then,
if (x1, . . . , xk−1) 6= (y1, . . . , yk−1), we have

C(x1, . . . , xk−2, xk−1 + 1, 2) > C(y1, . . . , yk−2, yk−1 + 1, 2).

Example 2.17. Let h = 15, k = 9. Calculating the coefficients µi of
Conjecture 1.4 we get

µ1 = 1, µ2 = 2, µ3 = 2, µ4 = 2, µ5 = 1, µ6 = 2, µ7 = 2, µ8 = 2, µ9 = 1.

Using (1.10) and (1.3) we get the regular h-basis

(2.13) Ak = {1, 3, 11, 41, 153, 418, 1519, 5658, 21113}
and the regular h-range

(2.14) gh(Ak) = 36567.

Now s = h + 2k − 4 = 29 and denoting by (x1, . . . , x8) and (y1, . . . , y8)
Mrose’s first and second sequence, respectively (for s = 29), we find

(x1, . . . , x8) = (3, 4, 4, 4, 3, 4, 4, 3),

(y1, . . . , y8) = (3, 4, 4, 3, 4, 4, 4, 3).

Using (2.7) with the sequence (x1, . . . , x7, x8 + 1, 2) = (3, 4, 4, 4, 3, 4, 4, 4, 2)
we get (2.13) and using (2.9) we get (2.14), since C(3, 4, 4, 4, 3, 4, 4, 4, 2) =
36568. Note that

C(y1, . . . , y7, y8 + 1, 2) = C(3, 4, 4, 3, 4, 4, 4, 4, 2) = 36567,

illustrating Theorem 2.16.

3. First step: proof of Theorem 2.15. The first step is taken on a
well-trodden path, since we can take as a model Mrose’s Satz 3.1 [4, p. 19]
(which says that an extremal continuant is homogeneous).

R e m a r k 3.1. Leaving now [7] and staying with [4] for the rest of this
paper, we find it convenient to make a slight change in the notation: the
letter k, which from now on will denote an integer ≥ 2, will lose its former
meaning.

Theorem 2.15 will be proved in the following form. Let

(3.1) h ≥ k + 1
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and let C(x1, . . . , xk, 2) be a 2-extremal continuant with

(3.2)
k∑

i=1

xi = h+ 2k − 1.

Then

(3.3) (x1, . . . , xk−1, xk − 1) is homogeneous.

The proof of (3.3) will be preceded by a series of lemmas. Before starting
with the proofs, we introduce the following

Definition 3.2. If a sequence (x1, . . . , xk) satisfies the conditions (a),
(b1), and (c1) of Definition 2.6, we say that it is weakly homogeneous.

Lemma 3.3. Suppose that C(x1, . . . , xk, 2) is a 2-extremal continuant.
Then the sequence (x1, . . . , xk) is weakly homogeneous.

P r o o f. The proof is similar to the proof of Satz 3.1 in [4, p. 19] (see
Remark 3.4 below).

R e m a r k 3.4. Mrose was able to make certain short cuts, using the
symmetry of the situation (our (2.2) and Remark 2.7). Note that while the
analogue of Remark 2.7 clearly holds for weakly homogeneous sequences,
we do not have the full symmetry of the situation here, caused by the last
element 2 of the continuant. We therefore define, for 1 ≤ p < q ≤ k,

(3.4) yi =




xi if i 6= p, q,
xp − 1 if i = p,
xq + 1 if i = q.

Then we have, analogously to (9) in [4, p. 20],

(3.5) C(x1, . . . , xk, 2)− C(y1, . . . , yk, 2)

= (1− xp + xq)C(x1, . . . , xp−1)C(xp+1, . . . , xq−1)C(xq+1, . . . , xk, 2)

− C(x1, . . . , xp−1)C(xp+1, . . . , xq−2)C(xq+1, . . . , xk, 2)

− C(x1, . . . , xp−1)C(xp+1, . . . , xq−1)C(xq+2, . . . , xk, 2)

+ C(x1, . . . , xp−2)C(xp+1, . . . , xq−1)C(xq+1, . . . , xk, 2)

+ C(x1, . . . , xp−1)C(xp+2, . . . , xq−1)C(xq+1, . . . , xk, 2).

Lemma 3.5. If C(x1, . . . , xk, 2) is a 2-extremal continuant satisfying
(3.1) and (3.2), then xi ≥ 3 for i = 1, . . . , k.

P r o o f. According to Lemma 3.3, we have, for some integer x, xi ∈
{x, x+ 1} for i = 1, . . . , k. If, for some j ∈ {1, . . . , k}, we have xj = 2, then
x = 2 and so h+ 2k − 1 =

∑k
i=1 xi < 3k, contradicting (3.1).
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Lemma 3.6. If x1, . . . , xj are any integers ≥ 2 and xj ≥ 3, then

(3.6) C(x1, . . . , xj) > 2C(x1, . . . , xj−1).

P r o o f. Let xj = 2 + tj , where tj ≥ 1. From (2.1) and Satz 1.7 [4, p. 7]
we get

C(x1, . . . , xj)− 2C(x1, . . . , xj−1)

= tjC(x1, . . . , xj−1)− C(x1, . . . , xj−2)

≥ C(x1, . . . , xj−1)− C(x1, . . . , xj−2) > 0.

Lemma 3.7. Let C(x1, . . . , xk, 2) be a 2-extremal continuant satisfying ,
for some integer x ≥ 3, the condition xi ∈ {x, x+ 1} for i = 1, . . . , k. If, for
some j ∈ {1, . . . , k}, we have xj = x+ 1, then xk = x+ 1.

P r o o f. Suppose that xk = x. Let p be the greatest number such that
xp = x + 1. We let q = k and define a sequence (y1, . . . , yk) by (3.4). Now
1− xp + xq = 0 and so (3.5) gives

(3.7) C(x1, . . . , xk, 2)− C(y1, . . . , yk, 2)

= − C(x1, . . . , xp−1)C(xp+1, . . . , xq−2)C(2)

− C(x1, . . . , xp−1)C(xp+1, . . . , xq−1) · 1
+ C(x1, . . . , xp−2)C(xp+1, . . . , xq−1)C(2)

+ C(x1, . . . , xp−1)C(xp+2, . . . , xq−1)C(2).

By the definition of p, if p < i < q, then xi = x. It follows that C(xp+1, . . . ,
xq−2) = C(xp+2, . . . , xq−1), so that (3.7) and (3.6) give

C(x1, . . . , xk, 2)− C(y1, . . . , yk, 2)

= C(xp+1, . . . , xq−1)(2C(x1, . . . , xp−2)− C(x1, . . . , xp−1)) < 0,

which contradicts the fact that C(x1, . . . , xk, 2) is a 2-extremal continuant.

P r o o f o f (3.3). We suppose that C(x1, . . . , xk, 2) is a 2-extremal con-
tinuant satisfying (3.1) and (3.2). We have to prove that the sequence
(x1, . . . , xk−1, xk − 1) satisfies the conditions (a), (b1), (b2), (c1), and (c2)
of Definition 2.6.

(a) It follows immediately from Lemmas 3.3, 3.5, and 3.7 that (x1, . . . ,
xk−1, xk − 1) satisfies (a).

If xi = x for i = 1, . . . , k, then the sequence (x1, . . . , xk−1, xk − 1) is
clearly homogeneous. For the rest of the proof, we may therefore suppose
that for an integer x ≥ 3, we have xi ∈ {x, x+ 1} for i = 1, . . . , k and that

(3.8) xk − 1 = x.

Moreover, since the sequence (x, x, . . . , x) is clearly homogeneous, we may
suppose that for some j ∈ {1, . . . , k − 1}, xj = x+ 1.
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(b1) We know from Lemma 3.3 that (x1, . . . , xk) satisfies (b1). It follows
immediately from (3.8) that also (x1, . . . , xk−1, xk − 1) satisfies (b1).

(b2) Suppose that (b2) fails. Then there exists an integer r, k/2 < r <
k−1, such that xr = x, xr+1 = x+1, xr−i = xr+1+i for i = 1, . . . , k− r−2,
and

(3.9) x2r−k+1 = xk − 1.

We define a sequence (y1, . . . , yk) by (8) in [4, p. 19] with p = r, q = r + 1.
Using (10) in [4, p. 23], (3.9), and (3.8), we obtain

C(x1, . . . , xk, 2)− C(y1, . . . , yk, 2)

= 2C(x1, . . . , x2r−k+1)− C(x1, . . . , x2r−k)C(xk, 2)

= −2C(x1, . . . , x2r−k−1)− C(x1, . . . , x2r−k) < 0,

a contradiction. This proves (b2).
(c1) and (c2) can be proved in a similar manner, using (3.4).
We have proved Theorem 2.15.

4. Second step: proof of Theorem 2.16. In this section we take a
closer look at Mrose’s sequences (2.3) and (2.4). First of all, we have to
consider the following question: If Mrose’s two sequences are different , how
do they differ from each other?

Let (x1, . . . , xk) and (y1, . . . , yk) be Mrose’s first and second sequence,
respectively (for s ≥ 2k), and let x = bs/kc. Theorem 2.8 implies

Lemma 4.1 (Mrose). (a) If s ≡ −1 (mod k), we have

(4.1)
(x1, . . . , xk) = (x+ 1, x+ 1, . . . , x+ 1, x),

(y1, . . . , yk) = (x, x+ 1, x+ 1, . . . , x+ 1).

(b) If s 6≡ −1 (mod k), we have

(4.2) x1 = y1 = xk = yk = x.

Lemma 4.2. We have

C(x1, . . . , xk−1, xk + 1, 2)− C(y1, . . . , yk−1, yk + 1, 2)

= C(x1, . . . , xk−1, xk + 1)− C(y1, . . . , yk−1, yk + 1)

= C(x1, . . . , xk−1)− C(y1, . . . , yk−1).

P r o o f. This can easily be proved using (2.1), (2.2), (2.5), and Lemma
4.1.

Using Lemma 4.2 (and keeping Remark 3.1 in mind), we prove Theorem
2.16 in the following form. If (x1, . . . , xk) and (y1, . . . , yk) are Mrose’s first
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and second sequence, respectively (for s ≥ 2k), then

(4.3) C(x1, . . . , xk−1) > C(y1, . . . , yk−1).

If s ≡ −1 (mod k), then we see immediately from Lemma 4.1 that (4.3)
holds. (Alternatively, we could use Lemma 3.3 and note that as the sequence
(y1, . . . , yk−1, yk+1) does not satisfy the condition (a) of Definition 2.6, then
C(y1, . . . , yk−1, yk + 1, 2) is not a 2-extremal continuant.) From now on, we
will therefore suppose that

(4.4) s 6≡ −1 (mod k).

The following result provides a fundamental tool for our investigations.

Lemma 4.3. Let s ≥ 2k, assume (4.4), and let (x1, . . . , xk) and
(y1, . . . , yk) be Mrose’s first and second sequence, respectively. Let gcd(k, s+
1) = d and x = bs/kc. Consider the box

(4.5) x1, . . . , xk
y1, . . . , yk

This box has the following form.
(a) At both ends of the box (4.5) there are subboxes of the form

x
x

(b) There are d− 1 subboxes

(4.6) x+ 1 x
x x+ 1

where the corresponding elements of (x1, . . . , xk) and (y1, . . . , yk) differ from
each other.

(c) The boxes in (a) and (b) are separated by (possibly empty) identical ,
symmetrical subboxes with the same corresponding elements.

Example 4.4. We take k = 21, s = 74 (see [4, p. 71]) to illustrate the
situation. In this case d = gcd(21, 75) = 3 and (4.5) is

3 4 3 4 3 4 4 3 4 3 4 3 4 4 3 4 3 4 3 4 3
3 4 3 4 3 4 3 4 4 3 4 3 4 3 4 4 3 4 3 4 3

The following proof was suggested by Veikko Ennola. It has the merit of
being simpler and shorter than the author’s original proof, which proceeded
by induction on d.

P r o o f o f L e m m a 4.3. We note that (a) follows immediately from
(4.2). To prove (b) and (c), we use (2.3) and (2.4) in connection with the
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obvious formula

(4.7) dξe − bξc =
{

1 if ξ 6∈ Z,
0 if ξ ∈ Z.

We write s+ 1 = da and k = db, so that gcd(a, b) = 1 and, by (4.4), b > 1.
If 1 < i < k, then we have

xi − yi =
⌊
ia

b

⌋
−
⌈
ia

b

⌉
−
⌊

(i− 1)a
b

⌋
+
⌈

(i− 1)a
b

⌉
,

so that, by (4.7),

(4.8) xi − yi =





0 if i 6≡ 0, 1 (mod b),
1 if i ≡ 0 (mod b),
−1 if i ≡ 1 (mod b).

In a similar fashion,

xi − xi+b =
⌊
ia

b

⌋
−
⌊

(i− 1)a
b

⌋
−
⌊

(i+ b)a
b

⌋
+
⌊

(i+ b− 1)a
b

⌋
(4.9)

= 0 if i 6≡ 0, 1 (mod b),

xi − xb+1−i =
⌊
ia

b

⌋
−
⌈
ia

b

⌉
+
⌈

(i− 1)a
b

⌉
−
⌊

(i− 1)a
b

⌋
(4.10)

= 0 if i 6≡ 0, 1 (mod b).

(b) and (c) now follow immediately from (4.8)–(4.10).

We introduce the following notation.

Definition 4.5. If (x1, . . . , xj) and (y1, . . . , yj) are any sequences with
xi, yi integers ≥ 2 for i = 1, . . . , j, we write

(4.11) C(x1, . . . , xj) = uj , C(y1, . . . , yj) = vj , dj = uj − vj .
According to this notation, if (x1, . . . , xk) and (y1, . . . , yk) are Mrose’s

first and second sequence, respectively, then (4.3) can be stated as

(4.12) dk−1 > 0.

We find it convenient to prove a little more than (4.12). In fact, if t ≥ 0 is
the length of the symmetrical subbox in Lemma 4.3, and if (x1, . . . , xk) 6=
(y1, . . . , yk), we show that

(4.13) d1 = . . . = dt+1 = 0,

(4.14) dt+2 > 0, . . . , dk−1 > 0, and

(4.15) dk = 0.

Here (4.13) is clear from Lemma 4.3, and (4.15) follows from (2.5) and (2.2).
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R e m a r k 4.6. If s ≡ −1 (mod k), then it follows immediately from (4.1)
that

(4.16) d1 > 0, . . . , dk−1 > 0, dk = 0.

Our goal now is to prove (4.14). The proof is based on Lemma 4.3.

R e m a r k 4.7. Actually, we get the result for a little wider class of pairs
of sequences than just for Mrose’s sequences, since from the elements of
the symmetrical subboxes we need, indeed, only the fact that they form a
symmetrical sequence. Their actual values do not concern us. In particular,
they do not have to be in the set {x, x+ 1}.

Lemma 4.8. Let
(x1, . . . , xk) = (z∗, z1, . . . , zt, z + 1, z, zt, . . . , z1),

(y1, . . . , yk) = (z∗, z1, . . . , zt, z, z + 1, zt, . . . , z1),

with t ≥ 0, z∗, z, zi integers ≥ 2 for i = 1, . . . , t. Then

(4.17) di = 0 for i = 1, . . . , t+ 1, and

(4.18) dk−i = ui for i = 0, . . . , t+ 1.

P r o o f. (4.17) is trivial. Note that, by Definitions 2.1 and 4.5, u0 = 1.
It follows immediately from (2.1) that

(4.19) di = xiui−1 − yivi−1 − di−2 for i = 1, . . . , k

(with d0 = d−1 = 0). Using (4.19) and (4.17) we easily obtain

(4.20) dt+2 = ut+1 and dt+3 = ut.

We now prove (4.18) in the form

(4.21) dt+2+i = ut+1−i for i = 0, . . . , t+ 1,

using induction on i.
1. If i = 0 or i = 1, (4.21) follows from (4.20).
2. The general induction step (for t > 0) follows easily from the obvious

formulas

ui = zi−1ui−1 − ui−2 for i = 2, . . . , t+ 1,

dt+2+i = zt−i+2dt+i+1 − dt+i for i = 2, . . . , t+ 1.

Lemma 4.9. Let x, xi be integers ≥ 2 for i = 1, . . . , n. Let

br = C(x1, . . . , xn, x, x1, . . . , xn, x, . . . , x, x1, . . . , xn),

where r is the number of occurrences of the symbol x in the continuant. Let
a = C(x1, . . . , xn). Then a | br for r = 0, 1, . . .

P r o o f. Easy by induction on r using Satz 1.2 (2) in [4, p. 3].



Proof of a conjecture of Selmer 131

Lemma 4.10. Let
(x1, . . . , xk) = (x1, . . . , xn, x+ 1, x),

(y1, . . . , yk) = (y1, . . . , yn, x, x+ 1),

where x, xi, yi are integers ≥ 2 for i = 1, . . . , n. If dn−1 = xdn, then we have

(4.22) dk−1 = un,

(4.23) dk = un−1 − dn.
P r o o f. Easy calculation.

Our goal, (4.14), will finally be reached by the next result (see Re-
mark 4.7).

Lemma 4.11. Let t ≥ 0, let x, zi be integers ≥ 2 for i = 1, . . . , t, and let
(z1, . . . , zt) be a symmetrical sequence. Let

(x1, . . . , xk) = (x, z1, . . . , zt, x+ 1, x, z1, . . . , zt, x+ 1,

x, . . . , x+ 1, x, z1, . . . , zt, x),

(y1, . . . , yk) = (x, z1, . . . , zt, x, x+ 1, z1, . . . , zt, x,

x+ 1, . . . , x, x+ 1, z1, . . . , zt, x)

be two sequences such that their box (4.5) contains g subboxes (4.6). (If
(x1, . . . , xk) and (y1, . . . , yk) are Mrose’s first and second sequence, respec-
tively (for s ≥ 2k, s 6≡ −1 (mod k)), then, by Lemma 4.3, g = d − 1,
where d = gcd(k, s + 1).) Then d1 = . . . = dt+1 = 0, dk = d(g+1)(t+2) = 0,
and

(4.24) dj(t+2)+i = rjut+1−i for j = 1, . . . , g, i = 0, . . . , t+ 1,

where

(4.25) rj =
uj(t+2)−1

ut+1
are integers, and

(4.26) 1 = r1 < . . . < rg.

P r o o f. Again, the claim about the zero values of the di’s is trivial. We
note first that (4.25) follows from Lemma 4.9 and (4.26) follows from Satz
1.7 [4, p. 7]. We prove (4.24) by induction on g.

1. If g = 1, then (4.24) follows from Lemma 4.8.
2. Suppose now that g > 1. We may assume that (4.24) holds for j =

1, . . . , g − 1, i = 0, . . . , t + 1. Since u0 = 1 and u1 = x, it follows from our
induction hypothesis, and formulas (4.22) and (4.23), that

dg(t+2) = ug(t+2)−1,(4.27)

dg(t+2)+1 = ug(t+2)−2 − dg(t+2)−1.(4.28)

We have to prove that
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(4.29) dg(t+2)+i = rgut+1−i for i = 0, . . . , t+ 1.

We prove (4.29) by induction on i.
(A) If i = 0, then (4.29) follows immediately from (4.27) and the defini-

tion of rg.
If i = 1, we use (4.28) and the induction hypothesis for g, and get

dg(t+2)+1 = u(g−1)(t+2)+t −
u(g−1)(t+2)−1

ut+1
.

It follows that (4.29) holds for i = 1 if we have

(4.30) ut+1u(g−1)(t+2)+t − u(g−1)(t+2)−1 = ug(t+2)−1ut.

But if we apply Satz 1.3 [4, p. 3] to the sequence (x1, . . . , xk), and use the
symmetry of the subsequence (z1, . . . , zt), we get (4.30) without difficulty
(taking m = n − 1 = k − t − 2, j = t + 1 in Satz 1.3). So (4.29) holds for
i = 1.

(B) If t > 0 we continue easily by induction on i in a similar manner to
the proof of Lemma 4.8.

This completes the proof of (4.24) by induction on g.

Our goal, (4.14), now follows immediately from (4.24) and (4.26) since,
by Satz 1.7 [4, p. 7], the numbers uj are positive. (4.14) implies (4.12), which,
in turn, implies (4.3). Theorem 2.16 is now proved. As Theorem 2.15 was
proved in the previous section, we have proved Theorem 2.14. This means
that we have proved Selmer’s Conjecture.

R e m a r k 4.12. (4.13), (4.14), and (4.16) give also information, using
(2.7), about the size relations of the corresponding basis elements of the two
extremal regular h-bases in Theorem 1.3 (in case the bases are different).

R e m a r k 4.13. Keeping in mind our question from the beginning of
this section, we note that if (x1, . . . , xk) and (y1, . . . , yk) are Mrose’s first and
second sequence, respectively (for s ≥ 2k), and if (x1, . . . , xk) 6= (y1, . . . , yk),
then Remark 2.4, (2.5), (2.2), and (4.3) imply that

〈x1, . . . , xk〉 > 〈y1, . . . , yk〉.

We conclude this section by giving an example of Lemma 4.11 (and
Remark 4.12).

Example 4.14. We use the sequences of our earlier Example 4.4 (see
[4, p. 71]). In this case we have g = 2, t = 5, r1 = 1, r2 = u13

u6
= 3909217

1079 =
3623. We give below a table of values of ui, vi, and di for i = 1, . . . , 21.
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Table

i ui vi di
1 3 3 0
2 11 11 0
3 30 30 0
4 109 109 0
5 297 297 0
6 1079 1079 0
7 4019 2940 1079
8 10978 10681 297
9 39893 39784 109

10 108701 108671 30
11 394911 394900 11
12 1076032 1076029 3
13 3909217 3909216 1
14 14560836 10651619 3909217
15 39773291 38697260 1076031
16 144532328 144137421 394907
17 393823693 393715003 108690
18 1430762444 1430722591 39853
19 3898463639 3898452770 10869
20 14163092112 14163088489 3623
21 38590812697 38590812697 0

5. Asymptotic estimates. As suggested by Gerd Hofmeister, we
round off the discussion by giving some asymptotic estimates of the number
gh̃0=h(k), defined in Section 1 (just before Conjecture 1.4). We start by pre-
senting some results of Hofmeister [1], [2] on the extremal regular h-range
gh(k), from which the results on gh̃0=h(k) then easily follow.

Theorem 5.1 (Hofmeister). We have

gh(k) ∼
(
k

h

)h
for fixed h and k →∞,(a)

gh(k) ∼
(
h

k

)k
for fixed k and h→∞,(b)

gk(k) ∼ τ√
5

(τ2)k for k →∞, where τ =
1 +
√

5
2

.(c)

P r o o f. (a) and (b) follow from formulas (37b) and (37a) in [1, p. 56],
respectively.

(c) Using, in the case h = k, the h-basis coming from (1.10), together
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with results in [2, p. 65], we get

gk(k) =
⌊
τ√
5

(τ2)k
⌋
.

Corollary 5.2. We have

gh̃0=h(k) ∼
(
k

h

)h
for fixed h and k →∞,(a)

gh̃0=h(k) ∼ 2
(

h

k − 1

)k−1

for fixed k and h→∞,(b)

gh̃0=k(k) ∼ τ√
5

(τ2)k for k →∞.(c)

P r o o f. (a) If h < k, then, by Remark 1.5, gh̃0=h(k) = gh(k).
(b) Suppose that h > k. Let Ak = {a1, . . . , ak} be the h-basis associated

with the coefficients µ(1)
i of (1.10). We show that

(5.1) gh̃0=h+1(k + 1) = 2gh(k) + ak + 1.

Let Bk+1 = {b1, . . . , bk+1} be the basis for which gh+1(Bk+1) =
gh̃0=h+1(k+1). This means that we replace h by h+1 and k by k+1 in (1.13).

Comparing (1.10) and (1.13) we then immediately obtain µ
(1)
i = µi for

i = 1, . . . , k and µk+1 = 1, from which it follows that ai = bi for i = 1, . . . , k
and

(5.2) gh̃0=h+1(k + 1) = gh(k) + bk+1.

We have

bk+1 = (µk + 2)bk − bk−1 = (µ(1)
k + 2)ak − ak−1

and therefore, using (2.9), (2.7), (2.11), and (2.12),

gh(k) = (µ(1)
k + 1)ak − ak−1 − 1 = bk+1 − ak − 1 ,

which, together with (5.2), implies (5.1).

From (1.12) it follows that ai+1 ≤ (µ(1)
i + 2)ai for i = 1, . . . , k − 1, and

therefore ak ≤
∏k−1
i=1 (µ(1)

i + 2). It follows from this (see (2.10), (2.3), and
(2.8)) that

(5.3) ak ≤
(
h+ 3k − 1

k

)k−1

.

Using (5.1), (5.3), and Theorem 5.1(b), we complete the proof.
(c) We suppose, finally, that h = k. Using Remark 1.5 we see that there

is nothing to prove, since gh̃0=k(k) = gk(k). However, we would like to offer a
simple alternative proof. Using Remark 1.5 and (1.3) we immediately obtain
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(see formula (35) in [8, p. 178])

gh̃0=k(k) = F2k+1 − 1.

The desired asymptotic estimate then follows from (see formula (62) in [8,
p. 180])

Fn =
⌊
τn√

5
+

1
2

⌋
for n = 1, 2, . . .
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[1] G. Hofmeis ter, Über eine Menge von Abschnittsbasen, J. Reine Angew. Math. 213
(1963), 43–57.
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