# Sums of distinct residues mod $p$ 

by

Öystein J. Rödseth (Bergen)

1. Introduction. Given distinct residue classes $a_{1}, a_{2}, \ldots, a_{k}$ modulo a prime $p$, let $s$ denote the number of distinct residue classes of the form $a_{i}+a_{j}, i \neq j$. An old conjecture of Erdős and Heilbronn states that (cf. Erdős [7, p. 410] and Guy [11, p. 73])

$$
\begin{equation*}
s \geq \min (p, 2 k-3) \tag{1}
\end{equation*}
$$

Erdős and Graham [8, p. 95] refer this problem to the paper [9] of Erdős and Heilbronn, but the conjecture (1) is not explicitly stated in [9]. Erdős and Heilbronn are, however, considering closely related problems and it does seem reasonable that the problem (1) was raised during their work on the paper [9].

If $a_{i}=a+i d, i=0,1, \ldots, k-1$, for some residue classes $a$ and $d$, then (1) holds with equality. Hence, if (1) is true, it is certainly best possible. Some sufficient conditions for (1) to hold can be found in [1], [2], [15]. In particular, Rickert [15] shows that (1) holds if $k \leq 12$ or if $p \leq 2 k+3$. He also shows that (1) holds if $p>6 \cdot 4^{k-4}$.

In addition, it is a rather immediate consequence of the Cauchy-Davenport Theorem that (see Section 2)

$$
\begin{equation*}
s \geq \min \left(p, \frac{3}{2} k-2\right) \tag{2}
\end{equation*}
$$

In this note we show the two theorems below. Both are easy consequences of results in the literature. The first theorem follows from Pollard's (simple and elegant) extension [13] of the Cauchy-Davenport Theorem, the second from a (deep) result of Freiman [10].

Theorem 1. $s \geq \min \left(p, 2 k-(4 k+1)^{1 / 2}\right)$.
ThEOREM 2. There exists an absolute constant $c$ such that if $p>c k$, then $s \geq 2 k-3$.
2. Proof of Theorem 1. Let $A, B$ be non-empty sets of residue classes $\bmod p$. We use $|A|$ to denote the number of elements in $A$, and $A+B$ is the
set of sums $a+b, a \in A, b \in B$. Further, we write $x A$ for the set of elements $x a, a \in A, x$ an integer or a residue class. In particular, $-A=(-1) A$ and $A-B=A+(-B)$. For a residue class $y$ we also write $y$ for the singleton set $\{y\}$.

Let $\nu(x)=\nu_{A, B}(x)$ denote the number of distinct representations of the residue class $x$ as $x=a+b, a \in A, b \in B$. Then

$$
\begin{equation*}
\nu(x)=|A \cap(x-B)| . \tag{3}
\end{equation*}
$$

Further, for a positive integer $r$, let $N_{r}=N_{r}(A, B)$ denote the number of distinct residue classes $x$ satisfying $\nu(x) \geq r$. Then $N_{1}=|A+B|$, and

$$
\begin{equation*}
p \geq N_{1} \geq N_{2} \geq \ldots \tag{4}
\end{equation*}
$$

If $N_{r} \neq p$, then there is a residue class $x$ for which $\nu(x) \leq r-1$. Hence by (3),

$$
p \geq|A \cup(x-B)|=|A|+|x-B|-\nu(x) \geq|A|+|B|-r+1 ;
$$

that is,

$$
\begin{equation*}
p \geq|A|+|B|-r+1 \quad \text { if } N_{r} \neq p \tag{5}
\end{equation*}
$$

The theorem of Pollard [13] states that

$$
\begin{equation*}
N_{1}+N_{2}+\ldots+N_{r} \geq r \min (p,|A|+|B|-r) \tag{6}
\end{equation*}
$$

for $r=1,2, \ldots, \min (|A|,|B|)$. For $r=1$, this is the Cauchy-Davenport Theorem [3], [5], [6].

Now, let $a_{1}, \ldots, a_{k}$ be distinct residue classes $\bmod p$, and let $A=B=$ $\left\{a_{1}, \ldots, a_{k}\right\}$. Suppose that $k>1$, and consider the $k \times k$ matrix $M=\left(m_{i j}\right)$, where $m_{i j}=a_{i}+a_{j}$. Putting $t=N_{1}$, we have that $t$ is the number of distinct entries in $M$, and $N_{2}$ is the number of distinct residue classes which appear at least twice in $M$. Since $M$ is symmetric, $N_{2}$ thus equals the number of distinct residue classes outside the main diagonal; hence $N_{2}=s$.

By (5) we thus have

$$
\begin{equation*}
p \geq 2 k-1 \quad \text { if } s \neq p . \tag{7}
\end{equation*}
$$

Moreover, since $s \geq\left|\left(a_{i}+A\right) \cup\left(a_{j}+A\right)\right|-2$ for all $i$ and $j$, we have

$$
s \geq 2 k-2-\left|\left(a_{i}+A\right) \cap\left(a_{j}+A\right)\right|=2 k-2-\nu_{A,-A}\left(a_{i}-a_{j}\right),
$$

so that

$$
\begin{equation*}
s \geq 2 k-2-m, \tag{8}
\end{equation*}
$$

where

$$
m=\min _{0 \neq x \in A-A} \nu_{A,-A}(x) .
$$

Suppose that $s \neq p$. By (7) and the Cauchy-Davenport Theorem, we then have $|A-A| \geq 2 k-1$. Since

$$
k(k-1)=\sum_{0 \neq x \in A-A} \nu_{A,-A}(x) \geq(|A-A|-1) m,
$$

we thus have $m \leq k / 2$ and (2) follows by (8).
Alternatively, since the diagonal in the matrix $M$ contains $k$ elements we have

$$
\begin{equation*}
k+s \geq t \tag{9}
\end{equation*}
$$

and (2) follows by (9), (6) with $r=2$, and (7).
We now prove Theorem 1. Suppose that $s \neq p$. By (6) and (7) we have $N_{1}+N_{2}+\ldots+N_{r} \geq r(2 k-r)$ for the integer $r=\left\lceil\left((4 k+1)^{1 / 2}-1\right) / 2\right\rceil$. Using (4) and (9), we get $k+r s \geq r(2 k-r)$, and an easy calculation gives Theorem 1.

We remark that some of the results in this section also hold for the additive group of residue classes mod $p$ replaced by more general structures. A result corresponding to (5) holds in an arbitrary quasi-group (cf. McWorter [12]). Also, if $p$ is replaced by an arbitrary positive integer $n$, then (2) holds if $\operatorname{gcd}\left(a_{i}-a_{j}, n\right)=1$ for some fixed $i$ and all $j \neq i$. For in this case we can use the Cauchy-Davenport-Chowla Theorem [4] instead of the Cauchy-Davenport Theorem in the argument above. Finally, Pollard's result (6) also hold if $\operatorname{gcd}\left(a_{i}-a_{j}, n\right)=1$ for all $i$ and $j, j \neq i$ (cf. [14]). Therefore Theorem 1 also holds $\bmod n$ as long as this condition is satisfied.
3. Proof of Theorem 2. For residue classes $x \neq 0$ and $y$, the set $x A+y$ is an affine image of $A$. The affine diameter of $A$ is the smallest positive integer $d=d(A)$ such that the interval $[0, d-1]$ contains representatives of all elements of some affine image of $A$.

Now, the corollary of Freiman [10, p. 93] can be stated as follows: There exists an absolute constant $c$ such that if $t<3 k-3$ and $p>c k$, then $d(A) \leq t-k+1$.

By (9) we have $s \geq 2 k-3$ if $t \geq 3 k-3$. To prove Theorem 2 we may therefore assume that $t<3 k-3$. By Freiman's result there then exists an absolute constant $c \geq 4$ such that if $p>c k$, then $d(A) \leq 2 k-3$. Since $s=s(A)$ is an affine invariant, i.e. $s\left(A^{\prime}\right)=s(A)$ for all affine images $A^{\prime}$ of $A$, we can assume that each $a_{i}$ has an integer representative $r_{i}$ such that $0=r_{1}<r_{2}<\ldots<r_{k} \leq 2 k-4$. Then all the $2 k-3$ integers $r_{1}+r_{2}<r_{1}+r_{3}<\ldots<r_{1}+r_{k}<r_{2}+r_{k}<\ldots<r_{k-1}+r_{k}$ are distinct $\bmod p$, and the proof of Theorem 2 is complete.

Acknowledgments. This work was supported by the Norwegian Research Council for Science and the Humanities and by Alcatel Telecom Nor-
way A/S. We also thank the Johannes Gutenberg-Universität in Mainz, Germany for its hospitality.

## References

[1] W. Brakemeier, Ein Beitrag zur additiven Zahlentheorie, Dissertation, Tech. Univ. Braunschweig, 1973.
[2] -, Eine Anzahlformel von Zahlen modulo n, Monatsh. Math. 85 (1978), 277-282.
[3] A. L. Cauchy, Recherches sur les nombres, J. École Polytech. 9 (1813), 99-116.
[4] I. Chowla, A theorem on the addition of residue classes, Proc. Indian Acad. Sci. 2 (1935), 242-243.
[5] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32.
[6] -, A historical note, ibid. 22 (1947), 100-101.
[7] P. Erdős, Some problems in number theory, in: Computers in Number Theory, A. O. L. Atkin and B. J. Birch (eds.), Academic Press, 1971, 405-414.
[8] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Enseign. Math., Genève, 1980.
[9] P. Erdős and H. Heilbronn, On the addition of residue classes mod $p$, Acta Arith. 9 (1964), 149-159.
[10] G. A. Freiman, Foundations of a Structural Theory of Set Addition, Transl. Math. Monographs 37, Amer. Math. Soc., Providence, R.I., 1973.
[11] R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1981.
[12] W. A. McWorter, On a theorem of Mann, Amer. Math. Monthly 71 (1964), 285286.
[13] J. M. Pollard, A generalisation of the theorem of Cauchy and Davenport, J. London Math. Soc. 8 (1974), 460-462.
[14] -, Addition properties of residue classes, ibid. 11 (1975), 147-152.
[15] U.-W. Rickert, Über eine Vermutung in der additiven Zahlentheorie, Dissertation, Tech. Univ. Braunschweig, 1976.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BERGEN
ALLÉGT. 55
N-5007 BERGEN, NORWAY
E-mail: RODSETH@MI.UIB.NO

