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1. Introduction and main results. In this paper a Kloosterman-
type exponential sum is discussed and applied to the analysis of certain
nonlinear congruential pseudorandom numbers. During the last few years
several nonlinear congruential methods of generating uniform pseudorandom
numbers in the interval [0, 1) have been studied. A review of the development
of this area is given in the survey articles [2, 8, 9, 11] and in the monograph
[10]. One of these approaches is the inversive congruential method with
power of two modulus, which has been analysed in [1, 3, 4, 5, 7].

Let m = 2ω for an integer ω ≥ 6. Let Zn = {0, 1, . . . , n− 1} for integers
n ≥ 2 and write Z∗n for the set of all odd integers in Zn. For integers a, b ∈ Zm
with a ≡ 1 (mod 4) and b ≡ 2 (mod 4) an inversive congruential sequence
(yn)n≥0 of elements of Z∗m is defined by

yn+1 ≡ ay−1
n + b (mod m), n ≥ 0 ,

where y−1
n denotes the multiplicative inverse of yn modulo m. A sequence

(xn)n≥0 of inversive congruential pseudorandom numbers in the interval
[0, 1) is obtained by xn = yn/m for n ≥ 0. It follows from [1] that these se-
quences are purely periodic with maximal period length m/2, i.e., {y0, y1, . . .
. . . , ym/2−1} = Z∗m.

In the present paper the sequence (xn)n≥0 of nonoverlapping pairs of in-
versive congruential pseudorandom numbers is considered, which is given by

xn = (x2n, x2n+1), n ≥ 0 ,

and has period length m/4. In order to assess the uniformity of the distribu-
tion of the points x0,x1, . . . ,xm/4−1 in [0, 1)2, their discrepancy D

(2)
m/4 is

studied, which is defined by
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D
(2)
m/4 = sup

R
|Fm/4(R)−A(R)| ,

where the supremum is extended over all subrectangles R of [0, 1)2 with
sides parallel to the axes, Fm/4(R) is 4/m times the number of points among
x0,x1, . . . ,xm/4−1 falling into R, and A(R) denotes the area of R. In the

following main results upper and lower bounds for the discrepancy D(2)
m/4 are

established. Their proof is given in the third section. The method of proof re-
lies on the detailed analysis of a Kloosterman-type sum in the second section.

Theorem 1. The discrepancy D
(2)
m/4 satisfies

D
(2)
m/4 <

4
(23/2 − 1)π2

m−1/2(logm)2 + (0.841)m−1/2 logm+ (1.274)m−1/2

+ 4(
√

2 + 1)m−1

for any inversive congruential generator.

Theorem 2. The discrepancy D
(2)
m/4 satisfies

D
(2)
m/4 ≥

23/2

B(π + 2)
m−1/2

for any inversive congruential generator, where

B =
{

1 for a ≡ 1 (mod 8) ,
3 for a ≡ 5 (mod 8) .

Theorem 1 shows that D(2)
m/4 = O(m−1/2(logm)2) for any inversive con-

gruential sequence, where the implied constant is absolute. In particular,
this bound is independent of the specific choice of the parameters a, b, and
y0 in the inversive congruential method. Theorem 2 implies that the upper
bound is best possible up to the logarithmic factor, since the discrepancy
D

(2)
m/4 of any inversive congruential generator has an order of magnitude

at least m−1/2. It is in this range of magnitudes where one also finds the
discrepancy of m/4 independent and uniformly distributed random points
from [0, 1)2, which should be of an order of magnitude m−1/2(log logm)1/2

according to the law of the iterated logarithm for discrepancies (cf. [6]). In
this sense, inversive congruential pseudorandom numbers behave like true
random numbers. Similar results have been obtained for the set of all (over-
lapping) pairs in the inversive congruential method (cf. [5,7]).

2. Auxiliary results. First, some further notation is necessary. For
integers k ≥ 1 and q ≥ 2 let Ck(q) be the set of all nonzero lattice points
(h1, . . . , hk) ∈ Zk with −q/2 < hj ≤ q/2 for 1 ≤ j ≤ k. Define
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r(h, q) =

{ 1 for h = 0 ,

q sin
π|h|
q

for h ∈ C1(q) ,

and

r(h, q) =
k∏

j=1

r(hj , q)

for h = (h1, . . . , hk) ∈ Ck(q). For t ∈ R the abbreviation e(t) = e2πit is used,
and u · v stands for the standard inner product of u,v ∈ Rk.

Subsequently, three known results are stated. The first two lemmas are
special versions of [10, Theorem 3.10 and Corollary 3.17] and the third
lemma follows from [7, Lemma 4 and its proof].

Lemma 1. The discrepancy D
(2)
m/4 satisfies

D
(2)
m/4 ≤

2
m

+
4
m

∑

h∈C2(m)

1
r(h,m)

∣∣∣
m/4−1∑
n=0

e(h · xn)
∣∣∣ .

Lemma 2. The discrepancy D
(2)
m/4 satisfies

D
(2)
m/4 ≥

2
(π + 2)|h1h2|m

∣∣∣
m/4−1∑
n=0

e(h · xn)
∣∣∣

for any lattice point h = (h1, h2) ∈ Z2 with h1h2 6= 0.

Lemma 3. Let t ≥ 6 be an integer and c ∈ Z∗8. Then
∑

k∈C1(2t)
k≡c (mod 8)

1
r(k, 2t)

<
1

4π
log 2t +

{
0.2676 for c ∈ {1, 7} ,
0.0341 for c ∈ {3, 5} .

Lemmas 1 and 2 show that the exponential sums
∑m/4−1
n=0 e(h · xn) are

of interest in estimating the discrepancy D(2)
m/4. Since {y0, y2, . . . , ym/2−2} =

{y ∈ Zm | y ≡ y0 (mod 4)}, it follows at once that

∣∣∣
m/4−1∑
n=0

e(h · xn)
∣∣∣ =

∣∣∣
m/4−1∑
n=0

e((h1y2n + h2y2n+1)/m)
∣∣∣

=
∣∣∣
m/4−1∑
n=0

e((h1y2n + h2ay
−1
2n )/m)

∣∣∣

=
∣∣∣

∑

y∈Zm
y≡y0 (mod 4)

e((h1y + h2ay
−1)/m)

∣∣∣



188 J. Eichenauer-Herrmann and H. Niederreiter

for h = (h1, h2) ∈ Z2. This motivates the following definition. For integers
u, v ∈ Z, ξ ∈ {1, 3}, and α ≥ 2 the Kloosterman-type sum

S(u, v, ξ; 2α) =
∑

y∈Z2α

y≡ξ (mod 4)

e((uy + vy−1)/2α)

is introduced. In order to evaluate these exponential sums in Lemma 5, the
mapping

Φ = (φ1, φ2) : Z2 → Z2 with Φ(y, z) = (yz, y − z)
is studied in the subsequent lemma. For integers α ≥ 3 let

Nα = {(s, t) ∈ Z2
2α | t ≡ 0 (mod 4), s ≡ t+ 1 (mod 8)} .

Observe that Φ(y, z) (mod 2α) ∈ Nα for all y, z ∈ Z with y ≡ z ≡ ξ
(mod 4).

Lemma 4. Let (s, t) ∈ Nα for some integer α ≥ 3. Then there exists
exactly one (y, z) ∈ Z2α−1 × Z2α with y ≡ z ≡ ξ (mod 4) and

Φ(y, z) ≡ (s, t) (mod 2α) .

P r o o f. For integers α ≥ 3 and (s, t) ∈ Nα let

Mα(s, t) = {(y, z) ∈ Z2
2α | y ≡ z ≡ ξ (mod 4), Φ(y, z) ≡ (s, t) (mod 2α)} .

Subsequently, it is proved by induction on α ≥ 3 that for any (s, t) ∈ Nα
the set Mα(s, t) contains exactly two elements, say (y, z) and (y′, z′), which
satisfy (y′, z′) ≡ (y+2α−1, z+2α−1) (mod 2α). This statement is equivalent
to the assertion of Lemma 4, since Φ(y+2α−1, z+2α−1) ≡ Φ(y, z) (mod 2α)
for odd integers y and z.

For α = 3 the above statement can be shown by inspection, since N3 =
{(1, 0), (5, 4)}, M3(1, 0) = {(ξ, ξ), (ξ + 4, ξ + 4)}, and M3(5, 4) = {(ξ, ξ +
4), (ξ+4, ξ)}. Now, assume that it is valid for some integer α ≥ 3. Let (s, t) ∈
Nα+1 be fixed. Then (s, t) (mod 2α) ∈ Nα, and the induction hypothesis
implies that there exists an element (yα, zα) ∈ Z2

2α with yα ≡ zα ≡ ξ
(mod 4) and Φ(yα, zα) ≡ (s, t) (mod 2α). Hence,

Φ(yα, zα) ≡ (s, t) + 2α(s̃, t̃ ) (mod 2α+1)

with suitable s̃, t̃ ∈ Z2. In the following let (y, z) ∈ Z2
2α+1 be an arbitrary

element. It suffices to consider the case (y, z) (mod 2α) ∈ Mα(s, t), since
otherwise (y, z) cannot belong to the set Mα+1(s, t). Therefore, by the in-
duction hypothesis, (y, z) ≡ (yα, zα) + 2α−1(λ, λ) (mod 2α) with a suitable
λ ∈ Z2. Hence, one obtains

(y, z) ≡ (yα, zα) + 2α−1(λ, λ) + 2α(ỹ, z̃) (mod 2α+1)
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with suitable ỹ, z̃ ∈ Z2. A short calculation shows that

Φ(y, z) ≡ Φ(yα + 2α−1λ+ 2αỹ, zα + 2α−1λ+ 2αz̃)

≡ Φ(yα, zα) + 2α(λ+ ỹ + z̃, ỹ + z̃)

≡ (s, t) + 2α(λ+ ỹ + z̃ + s̃, ỹ + z̃ + t̃ ) (mod 2α+1).

Therefore, an element (y, z) ∈ Z2
2α+1 belongs to Mα+1(s, t) if and only if

λ + ỹ + z̃ + s̃ ≡ ỹ + z̃ + t̃ ≡ 0 (mod 2) which is equivalent to z̃ ≡ ỹ + t̃

(mod 2) and λ ≡ s̃ + t̃ (mod 2). Hence, λ ≡ s̃ + t̃ + 2λ̃ (mod 4) with a
suitable λ̃ ∈ Z2 and

(y, z) ≡ (yα + 2α−1(s̃+ t̃ ), zα + 2α−1(s̃− t̃ )) + 2α(λ′, λ′) (mod 2α+1) ,

where λ′ ≡ λ̃ + ỹ (mod 2) ∈ Z2. Consequently, the set Mα+1(s, t) contains
exactly two elements which stand in the desired relation. This completes the
proof.

Lemma 5. Let u, v ∈ Z and ξ ∈ {1, 3}.
(a) If u+ v ≡ 1 (mod 2) and α ≥ 3, then

S(u, v, ξ; 2α) = 0 .

(b) If u ≡ v ≡ 0 (mod 2) and α ≥ 3, then

S(u, v, ξ; 2α) = 2S(u/2, v/2, ξ; 2α−1) .

(c) If u ≡ v ≡ 1 (mod 2), then

|S(u, v, ξ; 8)| = 2 ,

|S(u, v, ξ; 16)| =
{

4 for u ≡ v (mod 4) ,
0 for u 6≡ v (mod 4) ,

|S(u, v, ξ; 32)| =
{

8 for u ≡ 5v (mod 8) ,
0 for u 6≡ 5v (mod 8) ,

and for α ≥ 6

|S(u, v, ξ; 2α)| =
{

2(α+1)/2 for u ≡ v (mod 8) ,
0 for u 6≡ v (mod 8) .

P r o o f. (a) A short calculation shows that

S(u, v, ξ; 2α)

=
∑

y∈Z2α−1

y≡ξ (mod 4)

(e((uy + vy−1)/2α) + e((u(y + 2α−1) + v(y + 2α−1)−1)/2α))

=
∑

y∈Z2α−1

y≡ξ (mod 4)

e((uy + vy−1)/2α)(1 + e((u+ v)/2)) .
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Therefore the desired result follows at once from e((u + v)/2) = −1 for
u+ v ≡ 1 (mod 2).

(b) Since e((u + v)/2) = 1 for u + v ≡ 0 (mod 2), it follows from part
(a) of the proof that

S(u, v, ξ; 2α) = 2
∑

y∈Z2α−1

y≡ξ (mod 4)

e(((u/2)y + (v/2)y−1)/2α−1)

= 2S(u/2, v/2, ξ; 2α−1) .

(c) Subsequently, the cases 3 ≤ α ≤ 5 are considered. A straightforward
calculation shows that (4η + ξ)−1 ≡ 12η + ξ−1 (mod 2α) for η ∈ Z, and
hence

|S(u, v, ξ; 2α)| =
∣∣∣
∑

η∈Z2α−2

e((u(4η + ξ) + v(4η + ξ)−1)/2α)
∣∣∣

=
∣∣∣
∑

η∈Z2α−2

e((u+ 3v)η/2α−2)
∣∣∣

=
{

2α−2 for u+ 3v ≡ 0 (mod 2α−2) ,
0 for u+ 3v 6≡ 0 (mod 2α−2) ,

which yields the desired results. Now, the case α ≥ 6 is considered. First,
one obtains

|S(u, v, ξ; 2α)|2 = S(u, v, ξ; 2α)S(u, v, ξ; 2α)

=
∑

y,z∈Z2α

y≡z≡ξ (mod 4)

e((u(y − z) + v(y−1 − z−1))/2α)

=
∑

y,z∈Z2α

y≡z≡ξ (mod 4)

e((u− v(φ1(y, z))−1)φ2(y, z)/2α) ,

where the mapping Φ = (φ1, φ2) is defined as above. Since Φ(y + 2α−1, z +
2α−1) ≡ Φ(y, z) (mod 2α) for odd integers y and z, it follows together with
Lemma 4 that

|S(u, v, ξ; 2α)|2 = 2
∑

(y,z)∈Z2α−1×Z2α

y≡z≡ξ (mod 4)

e((u− v(φ1(y, z))−1)φ2(y, z)/2α)

= 2
∑

(s,t)∈Nα
e((u− vs−1)t/2α) = 2

(∑
1

+
∑

2

)
,

where the abbreviations∑
1

=
∑

s∈Z2α

s≡1 (mod 8)

∑

t∈Z2α

t≡0 (mod 8)

e((u− vs−1)t/2α)
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and ∑
2

=
∑

s∈Z2α

s≡5 (mod 8)

∑

t∈Z2α

t≡4 (mod 8)

e((u− vs−1)t/2α)

are used. Straightforward calculations show that
∑

1
=

∑

s∈Z2α

s≡1 (mod 8)

∑

τ∈Z2α−3

e((u− vs−1)τ/2α−3)

= 2α−3 ·#{s ∈ Z2α | s ≡ 1 (mod 8), us ≡ v (mod 2α−3)}

=
{

2α for u ≡ v (mod 8) ,
0 for u 6≡ v (mod 8)

and∑
2

=
∑

s∈Z2α

s≡5 (mod 8)

∑

τ∈Z∗
2α−2

e((u− vs−1)τ/2α−2)

= 4
∑

s∈Z2α−3

s≡5 (mod 8)

∑

τ∈Z∗
2α−2

(e((u− vs−1)τ/2α−2)

+ e((u− v(s+2α−3)−1)τ/2α−2))

= 4
∑

s∈Z2α−3

s≡5 (mod 8)

∑

τ∈Z∗
2α−2

e((u− vs−1)τ/2α−2)(1 + e(vτ/2)) = 0 ,

since e(vτ/2) = −1 for any τ ∈ Z∗2α−2 . This completes the proof.

3. Proof of the main results

Proof of Theorem 1. First, Lemma 1 is applied, which yields

D
(2)
m/4 ≤

2
m

+
4
m

∑

h∈C2(m)

1
r(h,m)

|S(h1, h2a, ξ;m)| ,

where ξ ≡ y0 (mod 4) ∈ {1, 3}. Now, Lemma 5 can be used in order to
obtain

D
(2)
m/4 ≤

2
m

+
4
m

∑

h∈C2(m)
h≡0 (mod 2ω−2)

1
r(h,m)

|S(h1, h2a, ξ;m)|

+
4
m

ω−3∑
γ=0

∑

h∈C2(m)
gcd(h1,h2,m)=2γ

1
r(h,m)

|S(h1, h2a, ξ;m)|
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=
2
m

+
∑

h∈C2(m)
h≡0 (mod 2ω−2)

1
r(h,m)

+
4
m

ω−3∑
γ=0

2γ
∑

h∈C2(m)
gcd(h1,h2,m)=2γ

1
r(h,m)

|S(h1/2γ , h2a/2γ , ξ; 2ω−γ)|

=
2
m

+
( ∑

k∈C1(4)

1
r(2ω−2k,m)

+ 1
)2

− 1

+
4
m

ω−3∑
γ=0

2γ
∑

k∈C2(2ω−γ)
gcd(k1,k2,2)=1

1
r(2γk,m)

|S(k1, k2a, ξ; 2ω−γ)|

=
2
m

+
(

1
m

(2
√

2 + 1) + 1
)2

− 1

+
4
m

ω−3∑
γ=0

2γ
∑

k∈C2(2ω−γ)
k1≡k2≡1 (mod 2)

1
r(2γk,m)

|S(k1, k2a, ξ; 2ω−γ)|

=
4(
√

2 + 1)
m

+
4
√

2 + 9
m2

+
4
m

ω−3∑
γ=0

2−γ
∑

k∈C2(2ω−γ)
k1≡k2≡1 (mod 2)

1
r(k, 2ω−γ)

|S(k1, k2a, ξ; 2ω−γ)|

=
4(
√

2 + 1)
m

+
4
√

2 + 9
m2 +

64
m2

∑

k∈C2(8)
k1≡k2≡1 (mod 2)

1
r(k, 8)

+
256
m2

∑

k∈C2(16)
k1≡k2≡1 (mod 2)
k1≡k2 (mod 4)

1
r(k, 16)

+
1024
m2

∑

k∈C2(32)
k1≡k2≡1 (mod 2)
k1≡5k2a (mod 8)

1
r(k, 32)

+
4
m

ω−6∑
γ=0

2−γ+(ω−γ+1)/2
∑

k∈C2(2ω−γ)
k1≡k2≡1 (mod 2)
k1≡k2a (mod 8)

1
r(k, 2ω−γ)

=
4(
√

2 + 1)
m

+
4
√

2 + 9
m2

+
64
m2

( ∑

k∈C1(8)
k≡1 (mod 2)

1
r(k, 8)

)2

+
512
m2

( ∑

k∈C1(16)
k≡1 (mod 4)

1
r(k, 16)

)2
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+
2048
m2

∑

d∈{1,3}

( ∑

k∈C1(32)
k≡5ad (mod 8)

1
r(k, 32)

)( ∑

k∈C1(32)
k≡d (mod 8)

1
r(k, 32)

)

+
8
√

2
m1/2

ω−6∑
γ=0

2−3γ/2

×
∑

d∈{1,3}

( ∑

k∈C1(2ω−γ)
k≡ad (mod 8)

1
r(k, 2ω−γ)

)( ∑

k∈C1(2ω−γ)
k≡d (mod 8)

1
r(k, 2ω−γ)

)
.

Hence, straightforward computations and an application of Lemma 3 show
that

D
(2)
m/4 <

4(
√

2 + 1)
m

+
236.66
m2 +

2048
m2

∑

d∈{1,3}

( ∑

k∈C1(32)
k≡d (mod 8)

1
r(k, 32)

)2

+
8
√

2
m1/2

ω−6∑
γ=0

2−3γ/2
∑

d∈{1,3}

( ∑

k∈C1(2ω−γ)
k≡d (mod 8)

1
r(k, 2ω−γ)

)2

<
4(
√

2 + 1)
m

+
753
m2

+
8
√

2
m1/2

ω−6∑
γ=0

2−3γ/2
(

1
8π2 (log 2ω−γ)2 +

0.15085
π

log 2ω−γ + 0.072773
)

<
4(
√

2 + 1)
m

+
8
√

2
m1/2

ω−5∑
γ=0

2−3γ/2
(

1
8π2 (log 2ω−γ)2 +

0.15085
π

log 2ω−γ + 0.072773
)

<
4(
√

2 + 1)
m

+
8
√

2
m1/2

( ∞∑
γ=0

2−3γ/2
)( 1

8π2 (logm)2 +
0.15085

π
logm+ 0.072773

)

=
4(
√

2 + 1)
m

+
32

(23/2 − 1)m1/2

(
1

8π2 (logm)2 +
0.15085

π
logm+ 0.072773

)
.

Proof of Theorem 2. First, Lemma 2 is applied with h =
(B, (−1)(B−1)/2) ∈ Z2, which yields
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D
(2)
m/4 ≥

2
B(π + 2)m

|S(B, (−1)(B−1)/2a, ξ;m)| ,

where ξ ≡ y0 (mod 4) ∈ {1, 3}. Since B ≡ (−1)(B−1)/2a (mod 8), it follows
from Lemma 5(c) that

|S(B, (−1)(B−1)/2a, ξ;m)| = (2m)1/2 ,

which completes the proof.
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