Squares in products from a block of consecutive integers

by

R. Balasubramanian (Madras) and T. N. Shorey (Bombay)

1. Let $k \geq t \geq 2, m \geq 0, y \geq 1$ be integers and write d_{1}, \ldots, d_{t} for distinct positive integers not exceeding k. The letter b denotes a positive integer such that the greatest prime factor of b is less than or equal to k. We put

$$
F(k)=k(\log k) /(\log \log k) \quad \text { for } k \geq 3 .
$$

For a real number θ and $k \geq 27$, we define

$$
\mu_{k}(\theta)=k\left(1-\frac{\log \log k}{\log k}+\frac{\log \log \log k}{\log k}+\frac{\theta}{\log k}\right) .
$$

Finally, we recall that γ is Euler's constant.
We consider the equation

$$
\begin{equation*}
\left(m+d_{1}\right) \ldots\left(m+d_{t}\right)=b y^{2} . \tag{1}
\end{equation*}
$$

It follows from a theorem of Baker [1] that equation (1) with $t \geq 3$ implies that $\max (b, m, y)$ is bounded by an effectively computable number depending only on k. Erdős [2] and Rigge [8], independently, proved in 1939 that equation (1) with $t=k$ and $b=1$ is not possible. Thus, the product of two or more consecutive positive integers is never a square. In fact, Erdős [3, p. 88] observed in 1955 that his method allows to show that there exists an absolute constant $C_{1}>0$ such that equation (1) with $b=1$ and

$$
m>k^{2}, \quad t \geq k-C_{1} k /(\log k)
$$

implies that k is bounded by an effectively computable absolute constant. Further, Erdős [3, p. 88] stated in 1955 that he had no proof of the following sharpening of the preceding result:

Let $\varepsilon>0$. The equation (1) with $b=1$ and

$$
\begin{equation*}
m>k^{2}, \quad t \geq k-(1-\varepsilon) k \frac{\log \log k}{\log k} \tag{2}
\end{equation*}
$$

implies that k is bounded by an effectively computable number depending only on ε.

Shorey [9] applied in 1986 Brun's sieve and an estimate of Sprindžuk [12] on the magnitude of integral solutions of a hyperelliptic equation to prove that equation (1) with

$$
\begin{equation*}
m>k^{2}, \quad t \geq k-(1-\varepsilon) k \frac{\log \log \log k}{\log k} \tag{3}
\end{equation*}
$$

implies that k is bounded by an effectively computable number depending only on ε. Further, Shorey [10] relaxed in 1987 the assumption (3) to (2). In this paper, we combine the arguments for the proofs of the preceding results of Shorey to obtain a further relaxation of the assumption (2).

Theorem 1. Let $k \geq 27$. There exist effectively computable absolute constants θ_{0} and C_{2} such that equation (1) with

$$
\begin{equation*}
m>k^{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
t \geq \mu_{k}\left(\theta_{0}\right) \tag{5}
\end{equation*}
$$

implies that

$$
k \leq C_{2} .
$$

Since $\mu_{k}(\theta)$ is an increasing function of θ, we observe that the assumption (5) can be replaced by $t \geq \mu_{k}(\theta)$ for any $\theta>\theta_{0}$. For an integer $\nu>1$, we define $P(\nu)$ to be the greatest prime factor of ν and we write $P(1)=1$. If equation (1) with $P(y)>k$ is valid, we can find an integer i with $1 \leq i \leq k$ such that $m+d_{i} \geq(k+1)^{2}$, which implies that $m>k^{2}$. Consequently, we observe that the assumptions (4) and (5) in Theorem 1 can be replaced by

$$
P(y)>k, \quad t \geq \mu_{k}\left(\theta_{0}\right) .
$$

If $P(y) \leq k$, we observe from (1) that

$$
P\left(m+d_{i}\right) \leq k \quad \text { for } 1 \leq i \leq t,
$$

which implies that

$$
\begin{equation*}
t \leq \frac{k \log k}{\log m}+\pi(k) \tag{6}
\end{equation*}
$$

by a well-known argument of Erdős [3, Lemma 3]; see also [4, Lemma 2.1]. In (6), we write $\pi(k)$ for the number of distinct primes not exceeding k. From now onward, we shall always understand that θ_{0} is an effectively computable absolute constant given by Theorem 1. Now, we combine Theorem 1 and (6) to derive the following result.

Corollary 1. Let $\varepsilon>0$ and $k \geq 27$. The equation (1) with

$$
\begin{equation*}
m \geq e^{1-\theta_{0}+\varepsilon} F(k) \tag{7}
\end{equation*}
$$

and (5) implies that k is bounded by an effectively computable number depending only on ε.

On the other hand, we show that Corollary 1 with $b=1$ is close to best possible in each of the assumptions (7) and (5). For this, we prove the following more general result.

Theorem 2. Let $\varepsilon>0$. There exist effectively computable numbers C_{3}, C_{4} and C_{5} depending only on ε such that for every pair k, m with $k \geq C_{3}$ and

$$
\begin{equation*}
m \leq k^{17 / 12-\varepsilon}, \tag{8}
\end{equation*}
$$

we can find distinct integers d_{1}, \ldots, d_{t} in $[1, k]$ with
(9) $t \geq \min \left(k-C_{4} \frac{k}{\log k}, k-\frac{k}{\log k}\left(1+\frac{C_{5}}{\log k}\right)\left(\log \left(\frac{m+k}{k}\right)+1+\gamma+\varepsilon\right)\right)$
and

$$
\begin{equation*}
\left(m+d_{1}\right) \ldots\left(m+d_{t}\right) \tag{10}
\end{equation*}
$$

is a square.
If $m \leq k$, Erdős and Turk [4, p. 167] proved the assertion of Theorem 2 with (9) replaced by $t \geq k-4 k /(\log k)$. As an immediate consequence of Theorem 2, we obtain the following result.

Corollary 2. (a) Let $\varepsilon>0, k \geq 3$ and

$$
m<e^{-1-\gamma-\theta_{0}-\varepsilon} F(k) .
$$

There exists an effectively computable number C_{6} depending only on ε such that for $k \geq C_{6}$ there are distinct positive integers d_{1}, \ldots, d_{t} not exceeding k with t satisfying (5) and the product is a square.
(b) Let $\varepsilon>0, k \geq 3$ and

$$
m<e^{1-\theta_{0}-\varepsilon} F(k) .
$$

The assertion of Corollary 2(a) is valid with t satisfying

$$
\begin{equation*}
t \geq \mu_{k}\left(\theta_{0}\right)-(2+\gamma) k /(\log k) \tag{11}
\end{equation*}
$$

in place of (5).
By Corollary 2(a), we observe that the assumption (7) in Corollary 1 with $b=1$ cannot be replaced by

$$
m \geq e^{-1-\gamma-\theta_{0}-\varepsilon} F(k) .
$$

Further, we see from Corollary 2(b) that we cannot relax the assumption (5) to (11) in Corollary 1 with $b=1$.
2. Proof of Theorem 1. We shall choose later θ_{0}, a suitable absolute positive constant. We may suppose that $k \geq c_{1}$ where c_{1} is a sufficiently large effectively computable number depending only on θ_{0}. Thus

$$
\begin{equation*}
\varepsilon=: \frac{\theta_{0}}{\log \log k} \tag{12}
\end{equation*}
$$

satisfies $0<\varepsilon \leq 1 / 2$. By (1), we have

$$
\begin{equation*}
m+d_{i}=A_{i} X_{i}^{2} \quad \text { for } 1 \leq i \leq t \tag{13}
\end{equation*}
$$

where A_{i} and X_{i} are positive integers such that $P\left(A_{i}\right) \leq k$ and A_{i} is square free. Further, by (4), we observe that the elements of $S_{1}=:\left\{A_{1}, \ldots, A_{t}\right\}$ are pairwise distinct. By a well-known argument of Erdős [3, Lemma 3], we find a subset S_{2} of S_{1} with $\left|S_{2}\right| \geq t-\pi(k)$ such that

$$
\prod_{A_{i} \in S_{2}} A_{i} \leq k^{k}
$$

Then, we apply [10, Lemma 6] with $\eta=\varepsilon$ and

$$
g=\log \log k-\log \log \log k-\left(\theta_{0}-2\right)
$$

to conclude that there exists a subset S_{3} of S_{2} with

$$
\begin{equation*}
\left|S_{3}\right| \geq \varepsilon k / 2 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i} \leq 4 e^{2} F(k) \quad \text { if } A_{i} \in S_{3} \tag{15}
\end{equation*}
$$

By (13), (4) and (15), we derive that

$$
\begin{equation*}
X_{i}>k^{1 / 4} \quad \text { if } A_{i} \in S_{3} \tag{16}
\end{equation*}
$$

We write S_{4} for the set of all $A_{i} \in S_{3}$ with $A_{i} \leq 3 k$ and let S_{5} be the complement of S_{4} in S_{3}. Now, we follow the proof of [10, Theorem 2] to derive from Erdős [3, Lemma 4] and (15) that

$$
\begin{equation*}
\left|S_{5}\right| \leq \frac{12 e^{2} k}{\log \log k} \tag{17}
\end{equation*}
$$

By taking $\theta_{0}>48 e^{2}$, we observe from (14), (17) and (12) that

$$
\begin{equation*}
\left|S_{4}\right|>\varepsilon k / 4 \tag{18}
\end{equation*}
$$

Let C be as in the proof of [9, Theorem 2] to which we refer in this paragraph without explicit mention. We write b_{1}, \ldots, b_{s} for all the integers between $k /(\log k)^{2 C}$ and $3 k$ such that every proper divisor of b_{i} is less than or equal to $k /(\log k)^{2 C}$. By Brun's sieve, we derive that

$$
\begin{equation*}
s \leq \frac{c_{2} k}{\log \log k} \tag{19}
\end{equation*}
$$

where c_{2} is an effectively computable absolute constant. By taking θ_{0} sufficiently large, we derive from (18), (19) and (12) that

$$
\begin{equation*}
B_{2} B_{3}\left(X_{2} X_{3}\right)^{2}=\left(B_{1} X_{1}^{2}+R\right)\left(B_{1} X_{1}^{2}+R^{\prime}\right) \tag{20}
\end{equation*}
$$

where B_{1}, B_{2}, B_{3} and R, R^{\prime} are integers of absolute values not exceeding $(\log k)^{3 C}$. For this assertion, we may permute the subscripts of d_{1}, \ldots, d_{t} and this involves no loss of generality. Finally, we apply a theorem of Sprindžuk [12] (see also [9, Lemma 4]) to equation (20) to conclude from (16) that k is bounded by an effectively computable absolute constant. Finally, we fix θ_{0} sufficiently large so that the arguments of the proof of Theorem 1 are valid.
3. In this section, we shall prove Theorem 2. For this, we require the following lemmas.

Lemma 1. For $x \geq 2$, we have

$$
\sum_{n \leq x} n^{-1}=\log x+\gamma+O\left(x^{-1}\right) .
$$

Proof. See Nagell [6, p. 276]. In particular, there is an effectively computable absolute constant $c_{3}>0$ satisfying

$$
\begin{equation*}
\sum_{n \leq x} n^{-1} \leq \log x+\gamma+c_{3} x^{-1} . \tag{21}
\end{equation*}
$$

Let \mathcal{G} be a set of positive integers and denote by $\omega(\mathcal{G})$ the number of prime divisors of all the elements of \mathcal{G}. Then, we have

Lemma 2. There is a subset \mathcal{G}^{\prime} of \mathcal{G} with

$$
\left|\mathcal{G}^{\prime}\right| \geq|\mathcal{G}|-\omega(\mathcal{G})
$$

such that the product of all elements of \mathcal{G}^{\prime} is a square.
Proof. See Erdős and Turk [4, Lemma 6.2].
Finally, we state the following well-known result on the number of prime factors in short intervals.

Lemma 3. Let $\varepsilon>0$. There exists $x_{0} \geq 2$ depending only on ε such that for every $x \geq x_{0}$ and $h \geq x^{7 / 12+\varepsilon}$, we have

$$
\begin{equation*}
\pi(x+h)-\pi(x)=\frac{h}{\log x}+O\left(\frac{h}{(\log x)^{2}}\right) . \tag{22}
\end{equation*}
$$

Proof. This is due to Huxley [5]; an upper bound given by (22) is enough for our purpose. For the error term in (22), see Ramachandra [7].

Proof of Theorem 2. We put $S_{6}=\{m+1, \ldots, m+k\}$. Let

$$
\begin{equation*}
\varepsilon_{1}=\left(2 c_{3}\right)^{-1} \varepsilon \tag{23}
\end{equation*}
$$

where c_{3} is the absolute positive constant appearing in (21). We write c_{4}, c_{5} and c_{6} for effectively computable positive numbers depending only on ε. We may assume that $k \geq c_{4}$ with c_{4} sufficiently large. If $m \leq k / \varepsilon_{1}$, we observe that

$$
\omega\left(S_{6}\right) \leq c_{5} k /(\log k)
$$

and we apply Lemma 2 with $\mathcal{G}=S_{6}$ to obtain the assertion of Theorem 2. Thus, we may suppose that

$$
\begin{equation*}
m>k / \varepsilon_{1} \tag{24}
\end{equation*}
$$

We write S_{7} for the set of all $\nu \in S_{6}$ such that $P(\nu) \leq k$. Further, we denote by S_{8} the complement of S_{7} in S_{6}. An element of S_{8} is of the form λp where $p>k$ is a prime number and λ is an integer satisfying $1 \leq \lambda \leq(m+k) / k$. For an integer λ with $1 \leq \lambda \leq(m+k) / k$, we write T_{λ} for all the elements of S_{8} of the form λp where $p>k$ is a prime number. Further, we write

$$
t_{\lambda}=\left|T_{\lambda}\right| \quad \text { for } 1 \leq \lambda \leq(m+k) / k
$$

Thus

$$
\begin{equation*}
\left|S_{8}\right| \leq \sum_{1 \leq \lambda \leq(m+k) / k} t_{\lambda} \tag{25}
\end{equation*}
$$

It is clear from the definition of T_{λ} that

$$
\begin{equation*}
t_{\lambda}=\pi\left(\frac{m+k}{\lambda}\right)-\pi\left(\frac{m}{\lambda}\right) \quad \text { for } 1 \leq \lambda \leq(m+k) / k \tag{26}
\end{equation*}
$$

For $1 \leq \lambda \leq(m+k) / k$, we derive from (8) that

$$
\begin{equation*}
\frac{k}{\lambda}>\left(\frac{m}{\lambda}\right)^{7 / 12+\varepsilon / 2} \tag{27}
\end{equation*}
$$

and, by (24),

$$
\begin{equation*}
\frac{m}{\lambda} \geq \frac{m k}{m+k}>\frac{k}{1+\varepsilon_{1}} \tag{28}
\end{equation*}
$$

Now, we apply Lemma 3 with $x=m / \lambda, h=k / \lambda$ to derive from (26)-(28) that

$$
\begin{equation*}
t_{\lambda} \leq\left(1+\frac{c_{6}}{\log k}\right) \frac{k}{\lambda(\log k)} \tag{29}
\end{equation*}
$$

Next, we combine (25), (29), (21), (24) and (23) to conclude that

$$
\left|S_{8}\right| \leq G(k)
$$

where

$$
G(k)=\left(1+\frac{c_{6}}{\log k}\right) \frac{k}{\log k}\left(\log \left(\frac{m+k}{k}\right)+\gamma+\frac{\varepsilon}{2}\right)
$$

Therefore, we obtain

$$
\left|S_{7}\right| \geq k-G(k) .
$$

Consequently, we apply Lemma 2 with $\mathcal{G}=S_{7}$ to conclude that there exists a subset S_{9} of S_{7} with

$$
\begin{equation*}
\left|S_{9}\right| \geq k-G(k)-\pi(k) \tag{30}
\end{equation*}
$$

such that the product of all the elements of S_{9} is a square. Finally, we observe that the right hand side of (30) is at least the right hand side of (9) with $C_{5}=c_{6}$ to complete the proof of Theorem 2.

Remarks. (i) Without applying Lemma 3, it is possible to obtain a slightly weaker estimate for $\left|S_{8}\right|$. By definition of S_{8}, we have

$$
k^{\left|S_{8}\right|} \leq \frac{(m+1) \ldots(m+k)}{k!} \leq\left(\frac{e(m+k)}{k}\right)^{k}
$$

which implies that

$$
\left|S_{8}\right| \leq \frac{k}{\log k}\left(\log \left(\frac{m+k}{k}\right)+1\right)
$$

(ii) Slight improvements of the exponent $7 / 12$ in Lemma 3 are known. Consequently, the assumption (8) in Theorem 2 can be relaxed slightly.

References

[1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
[2] P. Erdős, Note on the product of consecutive integers (I), J. London Math. Soc. 14 (1939), 194-198.
[3] -, On the product of consecutive integers III, Indag. Math. 17 (1955), 85-90.
[4] P. Erdős and J. Turk, Products of integers in short intervals, Acta Arith. 44 (1984), 147-174.
[5] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170.
[6] T. Nagell, Introduction to Number Theory, Wiley, 1951.
[7] K. Ramachandra, Some problems of analytic number theory, Acta Arith. 31 (1976), 313-324.
[8] O. Rigge, Über ein diophantisches Problem, in: 9th Congress Math. Scand. Helsingfors, 1938, Mercator, Helsingfors, 1939, 155-160.
[9] T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), 195-207.
[10] -, Perfect powers in products of integers from a block of consecutive integers, Acta Arith. 49 (1987), 71-79.
[11] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. 75 (1990), 307-344.
[12] V. G. Sprindžuk, Hyperelliptic diophantine equation and class numbers of ideals, Acta Arith. 30 (1976), 95-108 (in Russian).

INSTITUTE OF MATHEMATICAL SCIENCES
MADRAS 600113
INDIA

TATA INSTITUTE
OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD BOMBAY 400005 INDIA

