Values of linear recurring sequences of vectors over finite fields

by

GARY L. MULLEN (University Park, Penn.) and IGOR SHPARLINSKI (Sydney, N.S.W.)

Consider the finite field \mathbb{F}_q of $q = p^r$ elements where p is a prime, $r \ge 1$. For an *n*-tuple (v_1, \ldots, v_n) of vectors

$$v_i = (v_{i,1}, \dots, v_{i,n})^T$$

from the *n*-dimensional vector space \mathbb{F}_q^n over \mathbb{F}_q and a polynomial

$$f(x) = x^n - \sum_{i=0}^{n-1} a_i x^i \in \mathbb{F}_q[x],$$

we consider the linear recurring sequence $S = \{s(k)\}$ defined by

(1)
$$s(k) = \begin{cases} v_k & \text{if } k \le n \,, \\ \sum_{i=0}^{n-1} a_i s(k-n+i) & \text{if } k > n \,. \end{cases}$$

We note that the elements of the sequence S can be considered as elements of the field \mathbb{F}_{q^n} which is an *n*-dimensional vector space over \mathbb{F}_q .

It is easy to see that without loss of generality we can suppose that $f(0) \neq 0$. Thus, it is possible to define the order of f, denoted by τ , as the least positive integer t for which f(x) divides $x^t - 1$. It is known from [4] that the period of the sequence S does not exceed τ . For other details concerning polynomials and linear recurring sequence over \mathbb{F}_q , see [4].

In this paper we improve and generalize some results from the papers [1], [2], [6], [7] which are also devoted to studying the distribution of values of linear recurring sequences over finite fields. For some applications of such sequences see [1], [2].

It is easy to check that if $\alpha, \mu \in \mathbb{F}_{q^n}$ then for any fixed basis of \mathbb{F}_{q^n} over \mathbb{F}_q , the coordinate-vectors $\{c_k\}$ of the powers $\alpha \mu^k$, $k = 1, 2, \ldots$, satisfy such

The first author would like to thank the National Security Agency for partial support under grant agreement $\#\rm MDA904\text{-}92\text{-}H\text{-}3044.$

an equation corresponding to the minimal polynomial of α over \mathbb{F}_q . More generally, for an $n \times n$ matrix A and a vector **a** over \mathbb{F}_q the sequence $\{\mathbf{a}A^k\}$ satisfies such an equation corresponding to the minimal polynomial of Aover \mathbb{F}_q .

Thus, results on the distribution of values of such linear recurring sequences are related to the well-known discrete logarithm problem and to the orbit problem in finite fields (see [3] and [5] for background and references).

For an integer P > 1 denote by V(P) the set of all possible values which occur among the first P elements s_1, \ldots, s_P of the sequence S, and by V the set of all possible vectors which occur among elements of the sequence S. In [1], some sufficient conditions were stated under which such a sequence consists of all nonzero elements of \mathbb{F}_q^n , i.e. when $V = \mathbb{F}_q^n \setminus \{(0, \ldots, 0)\}$ (or $V = \mathbb{F}_{q^n}^*$ if we consider S as a sequence of elements of \mathbb{F}_{q^n}).

Denote by m the dimension of the vector space generated by the initial vectors (v_1, \ldots, v_n) . It has been shown in [1] that in this case

$$|V| \le \min\{q^m, \tau\}$$

where |V| denotes the cardinality of the set V.

It is clear that the $n \times n$ matrix (v_1, \ldots, v_n) contains $m \leq n$ linearly independent rows which we denote by $w_i = (w_{i,1}, \ldots, w_{i,n}), i = 1, \ldots, m$. Thus we can define m linear recurring sequences $W_i = \{w_i(k)\}$ by

$$w_i(k) = \begin{cases} w_{i,k} & \text{if } k \le n ,\\ \sum_{j=0}^{n-1} a_j w_i(k-n+j) & \text{if } k > n \end{cases}$$

(with the same characteristic polynomial f(x)) which are linearly independent over \mathbb{F}_q .

Note that the sequence of vectors $(w_1(k), \ldots, w_m(k))^T$, $k = 1, 2, \ldots$, is periodic with the minimal period T dividing τ . Moreover, if f(x) is an irreducible polynomial then $T = \tau$.

Denote by $M_m(P)$ the number of different vectors which occur among

$$(w_1(k), \dots, w_m(k))^T, \quad k = 1, \dots, P,$$

so that $|V(P)| = M_m(P)$.

$$M_m = M_m(\tau), \quad M(P) = M_1(P), \quad M = M(\tau).$$

Then it has been shown in Theorem 3.2 of [1] that if f(x) is a primitive polynomial of degree n (i.e. $\tau = q^n - 1$) and m < n then $M_m = q^m$. Furthermore, when m = 1 it has been noted in [1] that there is an asymptotic formula for the number of solutions of certain equations with a linear recurring sequence which enables the authors to prove that M = q whenever $\tau > (q - 1)q^{n/2}$.

Now we are going to show that the result of [6] for systems of equations with linear recurring sequences allows us to extend this result to any $m \ge 1$.

Set $t = \tau / \operatorname{gcd}(\tau, q - 1)$.

THEOREM 1. Let the dimension of the vector space generated by the initial vectors (v_1, \ldots, v_n) be m and let f(x) be an irreducible polynomial over \mathbb{F}_q of order τ . Then there exists an absolute constant C > 0 such that if $P > C q^{m+(n-1)/2} \log \tau$ then $M_m(P) = M_m$.

Proof. For $\theta_1, \ldots, \theta_m \in \mathbb{F}_q$ denote by $N_P(\theta_1, \ldots, \theta_m)$ the number of solutions of the system of equations

$$w_i(k) = \theta_i, \quad i = 1, \dots, m, \ 1 \le k \le P$$

It follows from [6] that

(2)
$$N_P(0,...,0) = P/q^m + O(q^{n/2-1}\log \tau)$$

for $P \leq t$ and that

(3)
$$N_P(\theta_1, \dots, \theta_m) = P/q^m + O(q^{(n-1)/2} \log \tau)$$

for $P \leq \tau$, for any non-zero tuple $(\theta_1, \ldots, \theta_m)$, with absolute implied constants in the *O*-symbol (see Theorems 1 and 2 of [6], respectively). From (2) and (3) we get that

$$N_P(\theta_1, \dots, \theta_m) = \frac{P}{\tau} N_\tau(\theta_1, \dots, \theta_m) + O(q^{(n-1)/2} \log \tau)$$

for any P and any tuple $(\theta_1, \ldots, \theta_m)$.

It has been noted in [6] that in the cases P = t and $P = \tau$ the logarithmic factor in the error terms of (2) and (3) respectively can be omitted. Thus, there is some absolute constant C > 0 such that if $t > Cq^{m+n/2-1}$ and $\tau > Cq^{m+(n-1)/2}$ then $M_m = q^m$. This result together with Theorem 1 allows us to easily formulate conditions under which $M_m(P) = q^m$. If we do not consider the zero tuple $(0, \ldots, 0)$, then similarly we get $M_m(P) \ge q^m - 1$ and $M_m \ge q^m - 1$ for $\tau \ge P > Cnq^{m+(n-1)/2} \log q$ and $\tau > Cnq^{m+(n-1)/2}$, respectively.

Moreover, it is an easy matter to explicitly compute constants in all of the above mentioned bounds (in fact, they are quite reasonable, about 1).

Since $t \geq \tau/q$ the condition $\tau > Cnq^{m+n/2}$ guarantees that $M_m = q^m$. This is a generalization (up to the constant C) of the above mentioned result concerning the case m = 1. An evident deficiency of Theorem 1 is that it can be utilized only if the period is sufficiently large.

The following results give other lower bounds for $M_m(P)$ that are nontrivial for any τ . First we get new lower bounds for the number M(P). It is easy to prove that $M > \tau^{1/n}$ and $M(P) > (P - n)^{1/n}$ (see the proof of Theorem 3 below). We show that for fields \mathbb{F}_q of small characteristic p this bound can be improved. We need the following refinement of Theorem 1 of [7]:

(4)
$$M(P) \ge \min\left\{M, P\binom{n+p-2}{p-1}^{-l}\right\}$$

where l is the least integer with $M(P) \leq p^l$.

In order to obtain this result we can replace the trivial bound $M(P) \le q = p^r$ in the proof of Theorem 1 of [7] with the inequality $M(P) \le p^l$.

THEOREM 2. We have the bound

 $M(P) \ge \min\{M, p^{-1}P^{\log p/(\log p + p\log n)}\}.$

Proof. It follows from (4) that M(P) < M implies

$$P \le M(P) \binom{n+p-2}{p-1}^{l} \le M(P) n^{pl} = M(P) p^{lp \log n/\log p} < (pM(P))^{p \log n/\log p+1}$$

since, by definition, $p^{l-1} < M(P)$.

The next theorem generalizes the above result to the *m*-dimensional case.

THEOREM 3. Let f(x) be an irreducible polynomial over \mathbb{F}_q of order τ . Then we have the bounds

$$M_m(P) \ge (P - n + m)^{1/(n - m + 1)}$$

and

$$M_m(P) \ge \min\{\tau^{1/(n-m+1)}, p^{-1}P^{\log p/(\log p + p\log(n-m+1))}\}\$$

Proof. Let $\lambda_1, \ldots, \lambda_n$ be the roots of f(x) (lying in \mathbb{F}_{q^n}). Then we have the representations

$$w_i(k) = \sum_{j=1}^n \alpha_{i,j} \lambda_j^k, \quad i = 1, \dots, m, \ k = 1, 2, \dots,$$

for some $\alpha_{i,j} \in \mathbb{F}_{q^n}, i = 1, \dots, m, j = 1, \dots, n.$

Let $\beta_1, \ldots, \beta_m \in \mathbb{F}_{q^n}$ be any nonzero solution of the following system of m-1 linear homogeneous equations

$$\sum_{i=1}^{m} \alpha_{i,j} \beta_i = 0, \quad j = n - m + 2, \dots, n$$

Define the sequence

$$\omega(k) = \sum_{i=1}^{m} \beta_i w_i(k) \,.$$

Then for some γ_j , $j = 1, \ldots, n - m + 1$, we have

$$\omega(k) = \sum_{j=1}^{n-m+1} \gamma_j \lambda_j^k, \quad k = 1, 2, \dots$$

It is evident that the sequences W_i , i = 1, ..., m are linearly independent over \mathbb{F}_{q^n} as well. Thus $\Omega = \{\omega(k)\}$ is a nonzero linear recurring sequence of elements of the field \mathbb{F}_{q^n} of order at most n - m + 1. Now we are going to show that the period of the sequence Ω equals τ .

Since f(x) is irreducible, the condition $f(x) \mid (x^{\tau} - 1)$ is equivalent to $\lambda_j^{\tau} - 1 = 0, j = 1, ..., n$, and moreover all of these equalities are equivalent. Therefore, if $\omega(k + T) = \omega(k), k = 1, 2, ..., \text{ and } \lambda_j^T - 1 \neq 0, j = 1, ..., n$ then we see that the system

$$\sum_{j=1}^{n-m+1} \psi_j \lambda_j^k = 0, \quad k = 1, \dots, n-m+1,$$

has a nonzero solution $\psi_j = \gamma_j (\lambda_j^T - 1), \ j = 1, \dots, n - m + 1$, which is impossible.

Evidently, $M_m(P)$ is greater than or equal to the number of different values which occur among $\omega(1), \ldots, \omega(P)$. On the other hand, taking into account that Ω is a linear recurring sequence of order n - m + 1 and of period τ , we conclude that for $P \leq \tau$ all tuples

$$(\omega(k),\ldots,\omega(k+n-m)), \quad k=1,\ldots,P-n+m,$$

are pairwise different. Thus $M_m(P)^{n-m+1} \ge P$ and we obtain the first bound.

It is easy to note that for $P=\tau$ we could consider τ pairwise different tuples

$$(\omega(k),\ldots,\omega(k+n-m)), \quad k=1,\ldots,\tau,$$

rather than $\tau - n + m$. Then the sequence Ω takes at least $\tau^{1/(n-m+1)}$ different values. Hence

$$M_m \ge \tau^{1/(n-m+1)}$$

and applying Theorem 2 we get the second bound.

The following theorem is a generalization and an improvement of Theorem 1 of [7]. It is nontrivial for all q but is especially effective when p is a fixed prime.

THEOREM 4. For $P > (pM_m)^{p \log n / \log p + 1}$ we have $M_m(P) = M_m$.

Proof. Let $\theta_1, \ldots, \theta_m$ be a basis of the field \mathbb{F}_{q^m} over \mathbb{F}_q . Applying Theorem 2 to the linear recurring sequence

$$u(k) = \theta_1 w_1(k) + \ldots + \theta_m w_m(k), \quad k = 1, 2, \ldots,$$

over \mathbb{F}_{q^m} we get

$$M_m(P) \ge \min\{M_m, p^{-1}P^{\log p/(\log p + p \log n)}\},\$$

and the result follows.

Since $M_m \le q^m$ the statement of the theorem holds for $P > (pq)^{m(p \log n / \log p + 1)}.$

Thus, for p fixed, $M_m(P) = M_m$ for some $P = \exp(O(m \log q \log n))$. In particular, if m and q are fixed, then the number of vectors $(w_1(k), \ldots, w_m(k))$ that we need to compute in order to determine the set of all possible distinct values, is bounded by $n^{O(1)}$, i.e. the computation can be done in polynomial time.

In fact, when q is fixed, for an arbitrary m the number of vectors which we need to compute can be estimated by $\exp(O(\log M_m \log n))$ which is a quasi-polynomial function $\exp(\log^2 L)$ in the total size $L = L_i + L_o$ of the input $L_i = O(n)$ and of the output $L_o = O(mM_m)$. However, we do not know any upper bounds for M_m (excepting $M_m \leq q^m$).

Acknowledgement. We would like to thank the referee for several help-ful comments.

References

- W.-S. Chou and G. L. Mullen, Generating linear spans over finite fields, Acta Arith. 61 (1992), 183–191.
- R. Fitzgerald and J. Yucas, On generating linear spans over GF(p), Congr. Numer. 69 (1989), 55-60.
- R. Kannan and R. J. Lipton, Polynomial-time algorithm for the orbit problem, J. Assoc. Comput. Mach. 33 (1986), 808–821.
- [4] R. Lidl and H. Niederreiter, *Finite Fields*, Encyclopedia Math. Appl. 20, Addison–Wesley, Reading, Mass., 1983 (now distributed by Cambridge Univ. Press).
- [5] K. S. McCurley, The discrete logarithm problem, in: Cryptology and Computational Number Theory, C. Pomerance (ed.), Proc. Sympos. Appl. Math. 42, Amer. Math. Soc., 1990, 49–74.
- I. Shparlinski, On the distribution of recurring sequences, Problemy Peredachi Informatsii 25 (2) (1989), 46-53 (in Russian).
- [7] —, On the distribution of values of recurring sequences and the Bell numbers in finite fields, European J. Combin. 12 (1991), 81–87.

MATHEMATICS DEPARTMENT	SCHOOL OF MPCE
THE PENNSYLVANIA STATE UNIVERSITY	MACQUARIE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802	SYDNEY, NEW SOUTH WALES 2109
U.S.A.	AUSTRALIA
E-mail: MULLEN@MATH.PSU.EDU	E-mail: IGOR@MACADAM.MPCE.MQ.EDU.AU

Received on 10.9.1992 and in revised form on 15.4.1993 (2302)