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Consider the finite field Fq of q = pr elements where p is a prime, r ≥ 1.
For an n-tuple (v1, . . . , vn) of vectors

vi = (vi,1, . . . , vi,n)T

from the n-dimensional vector space Fnq over Fq and a polynomial

f(x) = xn −
n−1∑

i=0

aix
i ∈ Fq[x] ,

we consider the linear recurring sequence S = {s(k)} defined by

(1) s(k) =
{
vk if k ≤ n ,∑n−1
i=0 ais(k − n+ i) if k > n .

We note that the elements of the sequence S can be considered as elements
of the field Fqn which is an n-dimensional vector space over Fq.

It is easy to see that without loss of generality we can suppose that
f(0) 6= 0. Thus, it is possible to define the order of f , denoted by τ , as
the least positive integer t for which f(x) divides xt − 1. It is known from
[4] that the period of the sequence S does not exceed τ . For other details
concerning polynomials and linear recurring sequence over Fq, see [4].

In this paper we improve and generalize some results from the papers
[1], [2], [6], [7] which are also devoted to studying the distribution of values
of linear recurring sequences over finite fields. For some applications of such
sequences see [1], [2].

It is easy to check that if α, µ ∈ Fqn then for any fixed basis of Fqn over
Fq, the coordinate-vectors {ck} of the powers αµk, k = 1, 2, . . . , satisfy such
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an equation corresponding to the minimal polynomial of α over Fq. More
generally, for an n×n matrix A and a vector a over Fq the sequence {aAk}
satisfies such an equation corresponding to the minimal polynomial of A
over Fq.

Thus, results on the distribution of values of such linear recurring se-
quences are related to the well-known discrete logarithm problem and to the
orbit problem in finite fields (see [3] and [5] for background and references).

For an integer P > 1 denote by V (P ) the set of all possible values which
occur among the first P elements s1, . . . , sP of the sequence S, and by V the
set of all possible vectors which occur among elements of the sequence S.
In [1], some sufficient conditions were stated under which such a sequence
consists of all nonzero elements of Fnq , i.e. when V = Fnq \{(0, . . . , 0)} (or
V = F∗qn if we consider S as a sequence of elements of Fqn).

Denote by m the dimension of the vector space generated by the initial
vectors (v1, . . . , vn). It has been shown in [1] that in this case

|V | ≤ min{qm, τ} ,
where |V | denotes the cardinality of the set V .

It is clear that the n × n matrix (v1, . . . , vn) contains m ≤ n linearly
independent rows which we denote by wi = (wi,1, . . . , wi,n), i = 1, . . . ,m.
Thus we can define m linear recurring sequences Wi = {wi(k)} by

wi(k) =
{
wi,k if k ≤ n ,∑n−1
j=0 ajwi(k − n+ j) if k > n

(with the same characteristic polynomial f(x)) which are linearly indepen-
dent over Fq.

Note that the sequence of vectors (w1(k), . . . , wm(k))T , k = 1, 2, . . . ,
is periodic with the minimal period T dividing τ . Moreover, if f(x) is an
irreducible polynomial then T = τ .

Denote by Mm(P ) the number of different vectors which occur among

(w1(k), . . . , wm(k))T , k = 1, . . . , P ,

so that |V (P )| = Mm(P ).
Let us set for brevity

Mm = Mm(τ), M(P ) = M1(P ), M = M(τ) .

Then it has been shown in Theorem 3.2 of [1] that if f(x) is a primitive poly-
nomial of degree n (i.e. τ = qn−1) and m < n then Mm = qm. Furthermore,
when m = 1 it has been noted in [1] that there is an asymptotic formula for
the number of solutions of certain equations with a linear recurring sequence
which enables the authors to prove that M = q whenever τ > (q − 1)qn/2.

Now we are going to show that the result of [6] for systems of equations
with linear recurring sequences allows us to extend this result to any m ≥ 1.
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Set t = τ/ gcd(τ, q − 1).

Theorem 1. Let the dimension of the vector space generated by the ini-
tial vectors (v1, . . . , vn) be m and let f(x) be an irreducible polynomial over
Fq of order τ . Then there exists an absolute constant C > 0 such that if
P > C qm+(n−1)/2 log τ then Mm(P ) = Mm.

P r o o f. For θ1, . . . , θm ∈ Fq denote by NP (θ1, . . . , θm) the number of
solutions of the system of equations

wi(k) = θi, i = 1, . . . ,m, 1 ≤ k ≤ P .
It follows from [6] that

(2) NP (0, . . . , 0) = P/qm +O(qn/2−1 log τ)

for P ≤ t and that

(3) NP (θ1, . . . , θm) = P/qm +O(q(n−1)/2 log τ)

for P ≤ τ , for any non-zero tuple (θ1, . . . , θm), with absolute implied con-
stants in the O-symbol (see Theorems 1 and 2 of [6], respectively). From (2)
and (3) we get that

NP (θ1, . . . , θm) =
P

τ
Nτ (θ1, . . . , θm) +O(q(n−1)/2 log τ)

for any P and any tuple (θ1, . . . , θm).

It has been noted in [6] that in the cases P = t and P = τ the loga-
rithmic factor in the error terms of (2) and (3) respectively can be omitted.
Thus, there is some absolute constant C > 0 such that if t > Cqm+n/2−1

and τ > Cqm+(n−1)/2 then Mm = qm. This result together with Theorem 1
allows us to easily formulate conditions under which Mm(P ) = qm. If we do
not consider the zero tuple (0, . . . , 0), then similarly we get Mm(P ) ≥ qm−1
and Mm ≥ qm − 1 for τ ≥ P > Cnqm+(n−1)/2 log q and τ > Cnqm+(n−1)/2,
respectively.

Moreover, it is an easy matter to explicitly compute constants in all of
the above mentioned bounds (in fact, they are quite reasonable, about 1).

Since t ≥ τ/q the condition τ > Cnqm+n/2 guarantees that Mm = qm.
This is a generalization (up to the constant C) of the above mentioned result
concerning the case m = 1. An evident deficiency of Theorem 1 is that it
can be utilized only if the period is sufficiently large.

The following results give other lower bounds for Mm(P ) that are non-
trivial for any τ . First we get new lower bounds for the number M(P ). It
is easy to prove that M > τ1/n and M(P ) > (P − n)1/n (see the proof of
Theorem 3 below). We show that for fields Fq of small characteristic p this
bound can be improved.
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We need the following refinement of Theorem 1 of [7]:

(4) M(P ) ≥ min
{
M,P

(
n+ p− 2
p− 1

)−l}

where l is the least integer with M(P ) ≤ pl.
In order to obtain this result we can replace the trivial bound M(P ) ≤

q = pr in the proof of Theorem 1 of [7] with the inequality M(P ) ≤ pl.
Theorem 2. We have the bound

M(P ) ≥ min{M,p−1P log p/(log p+p logn)} .
P r o o f. It follows from (4) that M(P ) < M implies

P ≤M(P )
(
n+ p− 2
p− 1

)l
≤M(P )npl = M(P )plp log n/ log p

< (pM(P ))p logn/ log p+1

since, by definition, pl−1 < M(P ).

The next theorem generalizes the above result to the m-dimensional case.

Theorem 3. Let f(x) be an irreducible polynomial over Fq of order τ .
Then we have the bounds

Mm(P ) ≥ (P − n+m)1/(n−m+1)

and

Mm(P ) ≥ min{τ1/(n−m+1), p−1P log p/(log p+p log(n−m+1))} .
P r o o f. Let λ1, . . . , λn be the roots of f(x) (lying in Fqn). Then we have

the representations

wi(k) =
n∑

j=1

αi,jλ
k
j , i = 1, . . . ,m, k = 1, 2, . . . ,

for some αi,j ∈ Fqn , i = 1, . . . ,m, j = 1, . . . , n.
Let β1, . . . , βm ∈ Fqn be any nonzero solution of the following system of

m− 1 linear homogeneous equations
m∑

i=1

αi,jβi = 0, j = n−m+ 2, . . . , n .

Define the sequence

ω(k) =
m∑

i=1

βiwi(k) .
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Then for some γj , j = 1, . . . , n−m+ 1, we have

ω(k) =
n−m+1∑

j=1

γjλ
k
j , k = 1, 2, . . .

It is evident that the sequences Wi, i = 1, . . . ,m are linearly independent
over Fqn as well. Thus Ω = {ω(k)} is a nonzero linear recurring sequence of
elements of the field Fqn of order at most n −m + 1. Now we are going to
show that the period of the sequence Ω equals τ .

Since f(x) is irreducible, the condition f(x) | (xτ − 1) is equivalent to
λτj − 1 = 0, j = 1, . . . , n, and moreover all of these equalities are equivalent.
Therefore, if ω(k + T ) = ω(k), k = 1, 2, . . . , and λTj − 1 6= 0, j = 1, . . . , n
then we see that the system

n−m+1∑

j=1

ψjλ
k
j = 0, k = 1, . . . , n−m+ 1 ,

has a nonzero solution ψj = γj(λTj − 1), j = 1, . . . , n − m + 1, which is
impossible.

Evidently, Mm(P ) is greater than or equal to the number of different
values which occur among ω(1), . . . , ω(P ). On the other hand, taking into
account that Ω is a linear recurring sequence of order n − m + 1 and of
period τ , we conclude that for P ≤ τ all tuples

(ω(k), . . . , ω(k + n−m)), k = 1, . . . , P − n+m,

are pairwise different. Thus Mm(P )n−m+1 ≥ P and we obtain the first
bound.

It is easy to note that for P = τ we could consider τ pairwise different
tuples

(ω(k), . . . , ω(k + n−m)), k = 1, . . . , τ ,
rather than τ − n + m. Then the sequence Ω takes at least τ1/(n−m+1)

different values. Hence
Mm ≥ τ1/(n−m+1) ,

and applying Theorem 2 we get the second bound.

The following theorem is a generalization and an improvement of The-
orem 1 of [7]. It is nontrivial for all q but is especially effective when p is a
fixed prime.

Theorem 4. For P > (pMm)p log n/ log p+1 we have Mm(P ) = Mm.

P r o o f. Let θ1, . . . , θm be a basis of the field Fqm over Fq. Applying
Theorem 2 to the linear recurring sequence

u(k) = θ1w1(k) + . . .+ θmwm(k), k = 1, 2, . . . ,
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over Fqm we get

Mm(P ) ≥ min{Mm, p
−1P log p/(log p+p log n)} ,

and the result follows.

Since Mm ≤ qm the statement of the theorem holds for

P > (pq)m(p logn/ log p+1) .

Thus, for p fixed, Mm(P ) = Mm for some P = exp(O(m log q logn)).
In particular, if m and q are fixed, then the number of vectors (w1(k), . . . ,
wm(k)) that we need to compute in order to determine the set of all possible
distinct values, is bounded by nO(1), i.e. the computation can be done in
polynomial time.

In fact, when q is fixed, for an arbitrary m the number of vectors which
we need to compute can be estimated by exp(O(logMm log n)) which is a
quasi-polynomial function exp(log2L) in the total size L = Li + Lo of the
input Li = O(n) and of the output Lo = O(mMm). However, we do not
know any upper bounds for Mm (excepting Mm ≤ qm).

Acknowledgement. We would like to thank the referee for several help-
ful comments.
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