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Solving a linear equation in a set of integers I
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1. Introduction. The following three problems of combinatorial num-
ber theory are discussed in numerous works.

1) A set is called sum-free if no sum of two elements equals a third. It is
well known that at most [(N + 1)/2] numbers can be selected from the first
N natural numbers to form a sum-free set, and one of the extremal sets is
the set of odd numbers.

2) Let r(N) denote the maximal number of integers that can be selected
from {1, . . . , N} without including any three-term arithmetical progression.
It is known that

Ne−β
√

log N � r(N) � N(log N)−α

with certain positive constants α and β. Here the lower bound is due to
Behrend (1946), the upper bound to Heath-Brown (1987) and Szemerédi
(1990), while an earlier weaker bound was given by Roth (1953).

3) A Sidon set is a set of integers with the property that all sums of
pairs are different, that is, the equation x + y = u + v has no solution in
this set, except the trivial solutions given by x = u, y = v and x = v, y = u.
The maximal cardinality s(N) of a Sidon set A ⊂ [1, N ] satisfies

√
N − c1N

5/22 < s(N) <
√

N + c2N
1/4

with positive constants c1, c2. These bounds are essentially due to Erdős
and Turán; the exponent in the lower bound depends on estimates of the
difference between consecutive primes, and the improvement over Erdős and
Turán’s bound is due to improved results on primes.

The common feature of these problems is that they are related to a
linear equation; in case 1), x + y = z, in case 2), x + y = 2z, in case 3),
x + y = u + v. We try to consider this sort of problem for general linear
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equations, and we try to understand why the answers behave so differently in
these cases. Our efforts are only partially successful; at least, we formulate
the most important general questions and some conjectures, and study some
further equations.

Let (ai)1≤i≤k and b be integers. We try to solve the equation

(1.1) a1x1 + . . . + akxk = b

with x1, . . . , xk in a set of integers.
Some of these equations have “trivial” solutions that need to be excluded

from the consideration; for arithmetical progressions, they were collections
of three identical numbers, in Sidon’s problem, collections where (u, v) is a
permutation of (x, y). In general, we define trivial solutions as follows.

1.1. Definition. Assume that the integers x1, . . . , xk form a solution
of equation (1.1), and there are l different among them. Let

{1, . . . , k} = T1 ∪ . . . ∪ Tl

be the partition of the set of subscripts into disjoint nonempty parts Tj such
that xi = xj if and only if i, j ∈ Tν for some ν. We call this solution trivial
if ∑

i∈Tν

ai = 0, ν = 1, . . . , l ,

and nontrivial otherwise.

Clearly trivial solutions exist only if b = 0 and

s = a1 + . . . + ak = 0 .

If b = 0 and s = 0, then a collection of k identical numbers always forms a
trivial solution, while a solution with k distinct numbers is always nontrivial.

1.2. Definition. Let

r(N) = max{|A| : A ⊂ [1, N ]}
over sets A such that equation (1.1) has no nontrivial solution with xi ∈ A,
and let R(N) be the analogous maximum over sets such that equation (1.1)
has no solution with distinct integers xi ∈ A.

In case of the equation x+y = 2z (three-term arithmetical progression),
obviously r(N) = R(N). For the equation x + y = u + v (Sidon sets) we
shall see that r(N) ∼ R(N). We shall also meet equations for which these
quantities behave very differently (Section 3).

We shall try to find estimates for the quantities r(N) and R(N) for
certain classes of equations. We shall also consider the problem of infinite
sets without a solution.

In connection with equation (1.1) we saw that the vanishing of the con-
stant term b and the sum of the coefficients s = a1 + . . .+ak = 0 affects the
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existence of trivial solutions. They also affect the behaviour of r(N). The
following result is known.

1.3. Theorem. If b = s = 0, then

(1.2) r(N) ≤ R(N) = o(N) .

On the other hand , if b 6= 0 or s 6= 0, then r(N) > λN with some λ > 0 for
all N large enough.

(1.2) can be proved with Roth’s method, and it also follows immediately
from the famous theorem of Szemerédi (1975) on arithmetical progressions.
One can also adapt the methods of Heath-Brown (1987) and Szemerédi
(1990) to obtain

(1.3) r(N) ≤ R(N) � N(log N)−α

with a positive constant α depending on the coefficients a1, . . . , ak. The fact
that r(N) � N if b 6= 0 or s 6= 0 is stated by Komlós, Sulyok and Szemerédi
(1975), and was probably known long before that.

The condition b = 0 is equivalent to homogeneity or multiplication in-
variance (if x1, . . . , xk is a solution, so is tx1, . . . , txk), while the other means
translation invariance (if x1, . . . , xk is a solution, so is x1 + t, . . . , xk + t).
This double invariance also plays an important role in the study of r(N).
For short we shall call equations with b = s = 0 invariant , and those with
b 6= 0 or s 6= 0 noninvariant .

Noninvariant equations have drawn little attention so far. The estimate
r(N) � N is easy, but there remain many nontrivial unsolved problems.
We shall consider noninvariant equations in the second part, and devote the
first part to invariant equations.

Notation. Sets of integers will be denoted by script letters. If a letter,
say A, denotes a set, the corresponding Roman letter is used to denote its
counting function without any further explanation, so that

A(N) = |A ∩ [1, N ]| .

2. Lower bounds. Recall that we consider the equation

(2.1) a1x1 + . . . + akxk = 0

under the assumption that a1 + . . . + ak = 0.
The simplest method for finding lower estimates is the greedy algorithm,

which leads to the following result.

2.1. Theorem. There is an infinite sequence 1 = u1 < u2 < . . . of
integers such that

(2.2) un ≤ knk−1
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and equation (2.1) has no nontrivial solution in the set A = {u1, u2, . . .}.
In particular , we have

(2.3) R(N) ≥ r(N) ≥ k−1/(k−1)N1/(k−1) .

The proof would be completely obvious if we only wanted the bound for
R(N). The possibility of equal ones among the variables and the existence
of trivial solutions add some complications, so we include a proof.

P r o o f. We put u1 = 1 and define un recursively. Given u1, . . . , un−1,
let un be the smallest positive integer satisfying

(2.4) un 6= −
(∑

i∈S
ai

)−1 ∑
1≤i≤k,i6∈S

aixi

for every set S ⊂ {1, . . . , k} of subscripts such that
∑

i∈S ai 6= 0 and every
choice of xi ∈ {u1, . . . , un−1} for i 6∈ S. For a fixed S with |S| = j this
excludes (n− 1)k−j numbers, thus the total number of excluded integers is
at most

k−1∑
j=1

(
k

j

)
(n− 1)k−j = nk − (n− 1)k − 1 < knk−1 .

Consequently, we can extend our set by an integer un ≤ knk−1. This will
automatically be different from u1, . . . , un−1, since putting xi = uj for all
i 6∈ S in (2.4) we get un 6= uj . It will also satisfy un > un−1 by the minimal
choice of un−1.

We show that (2.1) has no nontrivial solution in the set {u1, . . . , un}. We
use induction. The statement is obviously true for n = 1. We establish it for
n assuming its validity for n − 1. Suppose that there is a solution, and let
S denote the set of those subscripts for which xi = un. If

∑
i∈S ai 6= 0, this

contradicts to (2.4). If
∑

i∈S ai = 0, then by replacing each occurrence of
un by u1 we get another nontrivial solution, which contradicts the induction
hypothesis.

The greedy algorithm probably never gives the correct order of magni-
tude. In the cases when the size of r(N) is known, it is always much higher,
at least of order N2/k.

The same order of magnitude (up to a constant) can be achieved by a
random construction.

Behrend’s method that gave the sharp lower bound for three-term arith-
metical progressions does not work for every equation but it can be extended
to a class.

2.2. Definition. We say that an equation a1x1 + . . . + akxk = 0 is of
type (l,m) if l coefficients are positive and m are negative (l + m = k).
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We consider type (l, 1). We can rearrange such an equation as

(2.5) a1x1 + . . . + alxl = by (a1 + . . . + al = b) .

2.3. Theorem. Let a1, . . . , al and b be positive integers. There is a posi-
tive constant β, depending on b and l, such that for the equation (2.5) the
estimate

(2.6) r(N) � Ne−β
√

log N

holds.

We suppress the proof, which requires only a minimal modification of
Behrend’s (1946) argument.

3. Symmetric equations. For certain equations a simple combinato-
rial argument yields better estimates than Roth’s method.

3.1. Definition. We call an equation symmetric if the number of un-
knowns is even, say k = 2l, and the coefficients can be arranged into pairs
of type a,−a.

Sidon’s equation is a typical example.
A symmetric equation can be rearranged as

(3.1) a1x1 + . . . + alxl = a1xl+1 + . . . + alx2l

(so al+i = −ai for 1 ≤ i ≤ l).

3.2. Theorem. Let l ≥ 2, and let a1, . . . , al be positive integers. For the
symmetric equation (3.1) we have

r(N) = O(N1/l) ,(3.2)
R(N) = O(N1/2) .(3.3)

P r o o f. Let A ⊂ [1, N ] be any set, and write |A| = M . For an integer n
let t(n) denote the number of solutions of the equation

a1x1 + . . . + alxl = n, xi ∈ A .

Write S = a1 + . . . + al. We have∑
n≤SN

t(n) = M l .

The number
∑

t(n)2 is equal to the total number of solutions of equation
(3.1) with xi ∈ A, including the trivial ones. The inequality of the arithmetic
and square mean yields

(3.4)
∑

t(n)2 ≥ M2l

SN
.
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Now we estimate the number of trivial solutions. In a trivial solution
there is a partition of the set {1, . . . , 2l} of subscripts into sets T1, . . . , Tm

such that ∑
i∈Tj

ai = 0 ,

and xi is constant for i ∈ Tj . Each Tj must have at least two elements,
hence m ≤ l. At most Mm solutions belong to a fixed partition, hence the
total number of trivial solutions is at most PM l, where P is the number
of partitions. If the set A is such that (3.1) has only trivial solutions, then
(3.4) yields

M2l

SN
≤ PSN ,

that is, M ≤ (
√

PSN)1/l, which proves (3.2).
Next we estimate the number of solutions where not all xi are distinct.

Consider those for which xi = xj for certain subscripts 1 ≤ i < j ≤ 2l. Let
m be a subscript different from i and j. Equation (3.1) uniquely determines
xm in terms of the other xν , ν 6= j, m, and consequently it has at most
M2l−2 solutions. Taking into account the

(
k
2

)
possible choices of i and j,

the number of solutions with at least one repeated value of the variables is
at most (

k

2

)
M2l−2 .

For a set A in which there is no solution of (3.1) with distinct xi we obtain

M2l

SN
≤

(
k

2

)
M2l−2 ,

and this implies (3.3).

The bounds of (3.2) and (3.3) are of different order of magnitude if l ≥ 3.
We show that in general it is impossible to replace the exponent 1/2 of (3.3)
by any smaller number.

3.3. Theorem. For every l ≥ 3 and ε > 0 there are positive integers
a1, . . . , al such that for the equation (3.1) we have

(3.5) R(N) � N1/2−ε .

P r o o f. We consider the equation

(3.6) x1 + d(x2 + . . . + xl) = xl+1 + d(xl+2 + . . . + x2l) .

Put m = d2l, and let A consist of those numbers n ≤ N whose development
in base m contains only the digits 0, 1, . . . , d− 1. We show that (3.6) has no
solution with different elements of A. Consider any solution of (3.6) in A,
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say

xi =
∑

αijm
j .

The choice of m is sufficiently large to guarantee that in both sides of (3.6),
multiplication by d and addition of the terms can be performed in base m
without carry, hence the corresponding equation must hold for each digit:

α1j + d(α2j + . . . + αlj) = αl+1,j + d(αl+2,j + . . . + α2l,j) .

This implies that α1j ≡ αl+1,j (mod d), and consequently α1j = αl+1,j for
all j, that is, x1 = xl+1.

The number of such integers up to N is � N δ, where

δ =
log d

log m
=

log d

2 log d + log l
>

1
2
− ε

if d > l1/ε.

3.4. Problem. Given a symmetric equation (3.1), is there always a con-
stant c > 0 (depending on the coefficients) such that

R(N) � N1/2−c ?

Theorem 3.2 can be applied to deduce a bound for certain nonsymmetric
equations.

Consider the equation

(3.7) a1x1 + . . . + akxk = 0 .

3.5. Definition. By the genus of equation (3.7) we mean the largest
number m such that there is a partition

{1, . . . , k} = T1 ∪ . . . ∪ Tm

of the set of subscripts into m disjoint nonempty sets Tj such that∑
i∈Tj

ai = 0

for every j.

3.6. Theorem. For any equation of genus m we have

(3.8) r(N) � N1/m .

P r o o f. For each 1 ≤ j ≤ m select an i(j) ∈ Tj and let bj = ai(j). We
consider the auxiliary equation

(3.9) b1y1 + . . . + bmym = b1ym+1 + . . . + bmy2m .

From any solution of (3.9) we can make a solution of (3.7) by setting
xi(j) = yj and xi = ym+j for i ∈ Tj , i 6= i(j). We claim that nontrivial
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solutions of (3.9) turn into nontrivial solutions. Indeed, for every integer n
we have (by putting bm+j = −bj)∑

xi=n

ai =
∑
yj=n

bj ,

and a choice of n for which the right side does not vanish proves the nontriv-
iality of the solution (xi). Now an application of Theorem 3.2 to equation
(3.9) completes the proof.

4. Sidon sets. A set A of integers is called a Sidon set if the equation
x+y = u+v with x, y, u, v ∈ A can hold only trivially, that is, either x = u,
y = v or x = v, y = u.

The equation x + y = u + v can be rearranged to x − u = v − y. This
form gives the following useful equivalent condition. For an integer n let
δ(n) denote the number of solutions of n = x− y, x, y ∈ A. The set A is a
Sidon set if and only if δ(n) ≤ 1 for every n 6= 0.

This is a symmetric equation, thus the estimate O(
√

N) for the cardi-
nality of a Sidon set follows from Theorem 3.2. Here more precise estimates
are available.

4.1. Theorem. A Sidon set A ⊂ [1, N ] always satisfies

(4.1) |A| ≤ N1/2 + N1/4 + 1 .

The first proof of this result is due to Erdős–Turán (1941) and can be
found in Halberstam–Roth (1966). Another proof was given by Lindström
(1969). Both proofs are based on the idea of counting “small” differences
a − a′. We give a third proof, where the same idea is somewhat hidden.
We shall deduce (4.1) from a property which is perhaps of an independent
interest.

4.2. Theorem. Let A, B be nonempty finite sets of integers, |A| = m,
|B| = n. Assume that A is a Sidon set. Then

(4.2) |A+ B| ≥ m2n

m + n− 1
.

P r o o f. For any integer u let σ(u) denote the number of solutions of
u = a + b, a ∈ A, b ∈ B. We have obviously∑

σ(u) = |A||B| = mn ,

hence the inequality of the arithmetic and square mean yields

(4.3)
∑

σ(u)2 ≥ m2n2

|A+ B|
.
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The sum
∑

σ(u)2 counts those quadruples a, a′, b, b′ that satisfy a, a′ ∈
A, b, b′ ∈ B, a + b = a′ + b′, which can be rearranged as

(4.4) a− a′ = b′ − b .

For a pair b 6= b′ there can be at most one pair a, a′ that satisfies (4.4).
This gives at most n(n− 1) solutions, besides which we have the mn trivial
solutions a = a′, b = b′. Consequently,∑

σ(u)2 ≤ n(n− 1) + mn ;

comparing this and (4.3) we obtain (4.2).

P r o o f o f T h e o r e m 4.1. Assume that A ⊂ [1, N ] is a Sidon set,
|A| = m, and apply Theorem 4.2 to the set B = {1, . . . , n}. Since A+ B ⊂
[2, N + n], we have

N + n− 1 ≥ |A+ B| ≥ m2n

m + n− 1
.

This gives a lower estimate of N which depends on n. The optimal value is
around m

√
m−m. By putting n = [m

√
m ]−m + 1 we obtain

N ≥ m2(m
√

m−m)
m
√

m
−m

√
m + m = m2 − 2m

√
m + m = (m−

√
m)2 .

This yields a quadratic inequality for
√

m, from which we obtain

m ≤
√

N + 1
2 +

√√
N + 1

4 <
√

N + N1/4 + 1 .

4.3. Theorem. For infinitely many values of N there are Sidon sets
A ⊂ [1, N ] with

(4.5) |A| ≥ N1/2 .

Proofs of (4.5) are based on constructions of Sidon sets modulo m for
certain values of m, that is, sets of residues such that x+y ≡ u+v (mod m)
can only hold trivially among elements of the set. The known constructions
are: p + 1 residues modulo p2 + p + 1 (Singer 1938), and p residues modulo
p2 − 1 (Bose 1942), where p is a power of a prime. (Proofs of these results
and further information can be found in Halberstam–Roth (1966).) Both
constructions are based on properties of finite fields.

We present a similar construction, which, however, applies only the ex-
istence of a primitive root modulo a prime.

4.4. Theorem. Let p be a prime. There is a collection a1, . . . , ap−1 of
p− 1 integers such that the sums ai + aj are all different modulo p(p− 1).

It is easy to see by counting the differences ai − aj that there cannot be
p such numbers.
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P r o o f. Let g be a primitive root modulo p. For i = 1, . . . , p− 1, let ai

be the solution of the congruences

ai ≡ i (mod p− 1), ai ≡ gi (mod p) .

Our aim is to show that for arbitrary r the congruence

(4.6) ai + aj ≡ r (mod p(p− 1))

has at most one solution in i, j (up to permutation).
(4.6) is equivalent to the system of two congruences

ai + aj ≡ r (mod p− 1), ai + aj ≡ r (mod p) ,

that is,

i + j ≡ r (mod p− 1), gi + gj ≡ r (mod p) .

The integers x1 = gi, x2 = gj satisfy

(4.7) x1 + x2 ≡ r (mod p), x1x2 ≡ gr (mod p) ,

and consequently (x − x1)(x − x2) is the factorization of the polynomial
x2 − rx + gr modulo p. From the uniqueness of factorization we infer the
uniqueness of i, j up to a permutation.

Theorem 4.1 estimates r(N) for Sidon’s equation. With a small modifi-
cation of the argument a slightly weaker estimate can be given for R(N).

4.5. Definition. We call A a weak Sidon set if the equation x+y = u+v
has no solution with four distinct elements of A.

4.6. Theorem. A weak Sidon set A ⊂ [1, N ] satisfies

(4.8) |A| ≤ N1/2 + 4N1/4 + 11 .

4.7. Theorem. Let A, B be nonempty finite sets of integers, |A| = m,
|B| = n. Assume that A is a weak Sidon set. Then

(4.9) |A+ B| ≥ m2n

3m + n− 1
.

P r o o f. Let A be a weak Sidon set. We claim that δ(u) ≤ 2 for every
u 6= 0, and there are at most 2m values of u such that δ(u) = 2.

Indeed, take any u > 0 with δ(u) > 1, and let w be the smallest element
of A for which w − u ∈ A. Take any other solution of u = x− y, x, y ∈ A.
Since the four numbers w,w − u, x, y = x− u cannot be all distinct, by the
minimality of w we have y = w. Thus there is at most one further solution,
which shows δ(u) ≤ 2, and if there is one, then the two solutions have a
common element w. For any u with δ(u) = 2 let w(u) be this common
element.
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We claim that the numbers w(u) are all distinct for u > 0. Indeed,
assume that w(u) = w(v) = w, u > v > 0. Then

(w + u) + (w − u) = (w + v) + (w − v)
is a solution of the forbidden equation with four distinct elements of A.

We have assigned distinct elements w(u) of A to each u > 0 with δ(u) =
2, thus there are at most m such numbers. By the symmetry δ(u) = δ(−u)
there are altogether at most 2m such numbers.

Let u1, . . . , uk, k ≤ 2m, be the nonzero numbers such that δ(ui) = 2.
Following the argument of the proof of Theorem 4.2 we obtain∑

σ(u)2 ≤ n(n− 1) + mn +
∑

b−b′=ui

1 .

Each ui has at most n representations in the form b−b′, hence the last term
is at most kn ≤ 2mn, and we have∑

σ(u)2 ≤ n(n− 1) + 3mn .

The proof can be completed like that of Theorem 4.2, and the deduction
of Theorem 4.6 goes along the same lines as for Theorem 4.1.

5. A generalization of Sidon’s equation. In this section we consider
the equation

(5.1) x1 + x2 + . . . + xl = y1 + y2 + . . . + yl .

A sequence in which (5.1) has no nontrivial solution is often called a Bl-
sequence. The case l = 2 is the class of Sidon sets.

From Theorem 3.2 we know that r(N) � N1/l. The special nature of
equation (5.1) permits us to obtain this result by an easy counting argu-
ment. Let A ⊂ [1, N ] be a solution-free set, |A| = r(N) = m. Let us form
all sums of l terms of A, repetitions allowed. The number of these sums
(order disregarded) is

(
n+l−1

l

)
. These sums are different integers, all less

than lN . This yields
ml

l!
≤

(
m + l − 1

l

)
≤ lN ,

and consequently

(5.2) r(N) = m ≤ (ll!)1/lN1/l .

On the other hand, it is known that

(5.3) r(N) ≥ (1 + o(1))N1/l

(Bose–Chowla (1962–63), see also Halberstam–Roth (1966), Chapter II). It
is undecided whether the limit

lim r(N)N−1/l

exists, except in the case l = 2.
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This argument does not work for R(N), and the general results of Section
3 give only R(N) �

√
N . We show that an O(N1/l) estimate can be deduced

for R(N), albeit in a more complicated way.

5.1. Theorem. For equation (5.1) we have

(5.4) R(N) ≤ (1 + o(1))l2−1/lN1/l .

P r o o f. Take a set A ⊂ [1, N ], |A| = M = R(N), in which (5.1) has
no solution with 2l distinct integers. For positive integers j and n let σj(n)
denote the number of solutions of

(5.5) n = x1 + . . . + xj , xj ∈ A ,

and let sj(n) be the number of solutions of (5.5) with the restriction that
x1, . . . , xj are all distinct.

We write e(t) = e2πit and we introduce the generating function

f(t) =
∑
a∈A

e(at) .

We have
f(t)j =

∑
σj(n)e(nt) ,

and consequently Parseval’s formula yields

Mj =
1∫

0

|f(t)|2j dt =
∑

n

σj(n)2 .

In particular, we have M1 = M .
Consider the sum

∑
sl(n)2. It counts the number of solutions of (5.1)

under the restriction that x1, . . . , xl are distinct, y1, . . . , yl are distinct, but
xi = yj is allowed. By the assumption on A we know that some coincidence
xi = yj must indeed occur. If we fix i, j and the value of xi = yj , then
equation (5.1) reduces to the corresponding equation with l − 1 variables.
The number of solutions of this equation is

∑
sl−1(n)2. Taking into account

the l possible choices of i, j and the M possibilities of xi we find that

(5.6)
∑

sl(n)2 ≤ l2M
∑

sl−1(n)2 ≤ l2MMl−1 .

Now we estimate the square mean of σl(n)− sl(n). This quantity is the
number of those solutions of (5.5) in which xi = xj holds for some i 6= j.
For fixed i and j this is equal to the number of solutions of

n = 2x1 + x2 + . . . + xl−1 ,

which we shall denote by q(n). We conclude that

(5.7) σl(n)− sl(n) ≤
(

l

2

)
q(n) .
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We have ∑
q(n)e(nt) = f(2t)f(t)l−2 ,

and consequently, by applying Parseval’s identity and Hölder’s inequality
we obtain∑

|q(n)|2 =
1∫

0

|f(2t)|2|f(t)|2l−4 dt

≤
( 1∫

0

|f(2t)|2l−2 dt
)1/(l−1)( 1∫

0

|f(t)|2l−2 dt
)1−1/(l−1)

= M
1/(l−1)
l−1 M

1−1/(l−1)
l−1 = Ml−1 .

(5.7) and this inequality imply

(5.8)
∑

(σl(n)− sl(n))2 ≤ l4Ml−1 .

From (5.6) and (5.8) we infer, using the triangle inequality,

Ml ≤ (
√

l2MMl−1 +
√

l4Ml−1)2(5.9)

= l2Ml−1(
√

M + l)2 ≤ (1 + o(1))l2Ml−1M .

These moments of the function f are also connected by a general prop-
erty that can be deduced from Hölder’s inequality, namely, for an arbitary
function f the moments

∫
|f |α form a logarithmically convex function of α.

In particular, we have

(5.10) Ml−1 ≤ M
(l−2)/(l−1)
l M1/(l−1) .

(To deduce (5.10), one can apply Hölder’s inequality for f2/(l−1) and
f l(l−2)/(l−1), with the exponents l − 1 and (l − 1)/(l − 2), respectively.)

By multiplying (5.9) and (5.10) and raising to the (l − 1)th power we
obtain

(5.11) Ml ≤ (1 + o(1))l2l−2M l .

A lower estimate of Ml was given in Section 3; (3.4) yields

(5.12) Ml ≥
M2l

lN
.

(5.11) and (5.12) imply

M ≤ (1 + o(1))l2−1/lN1/l ,

which was to be proved.

6. A supermultiplicativity property. In the previous estimates of
r(N) and R(N) they were often compared to a power of N . We could
determine the optimal exponents only for a few equations. It is perhaps
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more surprising that even the existence of optimal exponents, that is, of
numbers γ and Γ with the property that

Nγ−ε � r(N) � Nγ+ε, NΓ−ε � R(N) � NΓ+ε

is uncertain. In other words, we ask the following.

6.1. Problem. Do the limits

γ = lim
log r(N)
log N

, Γ = lim
log R(N)

log N
exist?

The only possibility to establish the existence of such a limit in the case
when we are unable to find its value via estimates of r(N) is to find a
connection between values of r(N) for different values of N . We are able to
do this for a class of equations.

We consider an equation

(6.1) a1x1 + . . . + akxk = 0 .

The condition will be connected with the partitions

(6.2) {1, . . . , k} = T1 ∪ . . . ∪ Tl

such that

(6.3)
∑
i∈Tj

ai = 0, j = 1, . . . , l.

6.2. Definition. We call equation (6.1) primitive if there is a finest
one among the partitions (6.2) satisfying (6.3); in other words, there is a
partition such that any subset T of subscripts such that

∑
i∈T ai = 0 is the

union of certain sets Tj .
Write

S =
∑

|ai| .
6.3. Theorem. If equation (6.1) is primitive, then for any integers n1,

n2 we have

(6.4) r(Sn1n2) ≥ r(n1)r(n2) .

P r o o f. Take maximal solution-free sets Ai ⊂ [1, ni] and consider the
set

(6.5) A = {u + Sn1v : u ∈ A1, v ∈ A2} .

We show that equation (6.1) has only trivial solutions in A. Indeed, assume
that the numbers

xi = ui + Sn1vi

form a solution. (6.1) implies the congruence∑
aiui ≡ 0 (mod Sn1) .
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Since the absolute value of the left side is less than Sn1, we infer that∑
aiui = 0, hence also

∑
aivi = 0. These solutions must be trivial, that is,

ui and vi are constant for i ∈ Tj , thus the solution xi is trivial as well.

6.4. R e m a r k. A typical case when this argument does not work is
Sidon’s equation. In a set of type (6.5) we find solutions of the equation
x + y = u + v as soon as both sets Ai have at least two elements:

(u1 + Snv1) + (u2 + Snv2) = (u1 + Snv2) + (u2 + Snv1) .

6.5. Theorem. For a primitive equation the limit

γ = lim
log r(N)
log N

exists.

P r o o f. An iteration of (6.4) yields

r(Sk−1nk) ≥ r(n)k .

Take any N > n. With the choice

k =
[

log N

log Sn

]
we have N ≥ (Sn)k, hence r(N) ≥ r(n)k, or

log r(N)
log N

≥
(

log N

log Sn
− 1

)
log r(n)
log N

.

As N →∞, this implies

γ− = lim inf
log r(N)
log N

≥ log r(n)
log Sn

≥ log r(n)
log n

− log S

log n
.

Since this holds for every n, we have

γ− ≥ lim sup
log r(n)
log n

− log S

log n
= lim sup

log r(n)
log n

,

which is possible only if the upper and lower limits are equal.

7. Equations in four variables. Any equation in three variables is of
type (2, 1), hence it satisfies

(7.1) Ne−β
√

log N � r(N) = R(N) � N(log N)−α

with certain positive constants α, β depending on the coefficients. Equations
in four variables show a more varied picture. In Section 4 we studied a
particular case, Sidon’s equation, and had r(N) ∼

√
N . The lower estimate

R(N) � N1/3 follows from Theorem 2.1. This can be improved in the
following way.
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7.1. Theorem. For an invariant equation in four variables, the limits

γ = lim
log r(N)
log N

, Γ = lim
log R(N)

log N

exist and

1/2 ≤ γ = Γ .

At first we show that r(N) and R(N) are not very different.

7.2. Theorem. For an invariant equation in four variables we have

(7.2) r(N) � R(N)e−β
√

log N

with some positive constant β, depending on the coefficients.

P r o o f. Write the equation as

(7.3) a1x1 + a2x2 + a3x3 + a4x4 = 0 .

Take a set A ⊂ [1, N ], |A| = R(N), in which equation (7.3) has no solution
with four distinct numbers. Any solution must satisfy xi = xj with some
1 ≤ i < j ≤ 4. If ai = −aj , this is a trivial solution. If ai 6= −aj , then
by replacing xj by xi we get an equation in three variables. Thus, any
nontrivial solution in A induces a solution to one of at most six equations
in three variables, say

(7.4) bj1y1 + bj2y2 + bj3y3 = 0, j = 1, . . . , J, J ≤ 6 .

For each j let Bj ⊂ [1, N ] be a set of integers in which equation (7.4) has
no solution in distinct integers and

|Bj | � Ne−βj

√
log N ;

such sets exist by Theorem 2.3. By an averaging argument we can find a set

A′ = A ∩
⋂

(Bj + tj), |A′| � |A|e−β
√

log N ,

which implies

r(N) ≥ |A′| � Ne−β
√

log N .

Next we estimate R(N). For equations of type (3, 1) we have the same
lower estimate as stated in (7.1) for type (2, 1). The other possibility is type
(2, 2). We can write an equation of type (2, 2) in the form

(7.5) aX + bY = cU + dV, a, b, c, d > 0, a + b = c + d .

7.3. Theorem. For the equation (7.5) we have

(7.6) r(N) �
√

N
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if abcd is not a square and

(7.7) r(N) �
√

Ne−β
√

log N

with a positive constant β, depending on the coefficients, if abcd is a square.

P r o o f. Write a + b = S. Take a prime p > S, and let B consist of the
numbers

(7.8) 1 + x + Spx′, 0 ≤ x, x′ < p, x′ ≡ x2 (mod p) .

Clearly |B| = p and B ⊂ [1, Sp2]. We are going to study solutions of (7.5)
in B. Equation (7.5) reduces to

(ax + by − cu− dv) + Sp(ax′ + by′ − cu′ − dv′) = 0 .

This yields ax+by ≡ cu+dv (mod Sp). Since both sides of this congruence
are in the interval [0, Sp), they must be equal. We conclude that

(7.9) ax + by = cu + dv ,

and consequently

ax′ + by′ = cu′ + dv′ ,

which in turn yields

(7.10) ax2 + by2 ≡ cu2 + dv2 (mod p) .

The square of (7.9) is

(7.11) a2x2 + 2abxy + b2y2 = c2u2 + 2cduv + d2v2 ,

while multiplying (7.10) by the equality a + b = c + d we obtain

(7.12) a2x2 + ab(x2 + y2) + b2y2 ≡ c2u2 + cd(u2 + v2) + d2v2 (mod p) .

By subtracting (7.11) from (7.12) we get

(7.13) ab(x− y)2 ≡ cd(u− v)2 (mod p) .

If x ≡ y (mod p), then (7.13) yields u ≡ v. Since x, y, u, v are all
in [0, p), these congruences imply x = y, u = v. A substitution into (7.9)
now shows that x = y = u = v, and we are dealing with a trivial solution.
Consequently, if this is a nontrivial solution, then x − y 6≡ 0 (mod p) and
(7.13) is possible only if abcd is a quadratic residue modulo p.

If abcd is not a square, then we can choose a residue q modulo 8abcd so
that (q, 8abcd) = 1 and abcd is a quadratic nonresidue for every prime p ≡ q
(mod 8abcd). Indeed, the theorem of quadratic reciprocity and the theorem
on the quadratic character of 2 show that the Jacobi symbol

(
abcd

p

)
depends

only on the residue of p modulo 8abcd and both values ±1 are possible (in
fact, they occur with the same frequency). By the prime number theorem
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for arithmetic progressions we can find such a prime p in the interval

(7.14)

√
N

2S
< p <

√
N

S

for large N . For such a prime we have B ⊂ [1, N ], and consequently

r(N) ≥ |B| = p ≥
√

N

2S

for N > N0.
If abcd = t2 with an integer t > 0, then we can rewrite (7.13) as

t2(x− y)2 ≡ (cd)2(u− v)2 (mod p) ,

that is,
t(x− y) ≡ ±cd(u− v) (mod p) .

If the + sign is valid, then this and (7.9) lead to

(7.15) cSu ≡ (ac + t)x + (bc− t)y, dSv ≡ (ad− t)x + (bd + t)y .

If the − sign holds, then we obtain

(7.16) cSu ≡ (ac− t)x + (bc + t)y, dSv ≡ (ad + t)x + (bd− t)y .

Let B′ consist of those elements of B in whose representation (7.8) the
condition x < εp holds, where

ε =
1

2S2 + 2t
.

For a solution of (7.5) among elements of B′ in both sides of the congruences
in (7.15) and (7.16) there are numbers < p in absolute value, hence the
congruences turn into equalities:

(7.17) cSu = (ac + t)x + (bc− t)y, dSv = (ad− t)x + (bd + t)y ,

or

(7.18) cSu = (ac− t)x + (bc + t)y, dSv = (ad + t)x + (bd− t)y .

The plan is to select a subset B′′ ⊂ B′ in which neither system of equa-
tions has a nontrivial solution. Consider equations (7.17). Assume first that
bc 6= t. Then the first equation of (7.17) is an equation in three variables,
and there is a set C1 ⊂ [1, εp] such that this equation has no solution in C1

and
|C1| � pe−c

√
log p

(Theorem 2.3). If bc = t, then taking into account the equalities abcd = t2

and a + b = c + d we easily infer that b = d and a = c. In this case
the equations of (7.17) reduce to u = x, v = y and they induce trivial
solutions (recall the just stated equalities between coefficients), so we can
take C1 = [1, εp]∩N. Similarly we construct a set C2 for the equations (7.18).
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By an averaging argument we can find a set C in the form C = C1 ∩ (C2 + t)
satisfying

|C| � pe−c′
√

log p .

The set B′′ of integers, induced by formula (7.8) for x ∈ C, satisfies

|B′′| = |C| � pe−c
√

log p .

Equation (7.5) has only trivial solutions in B′′ and by choosing a prime
satisfying (7.14) we obtain

r(N) ≥ |B′′| �
√

Ne−β
√

log N

as claimed.

7.4. R e m a r k. For Sidon’s equation, the equations in (7.17) and (7.18)
reduce to u = x, v = y or u = y, v = x, so instead of the last argument
we can simply set B′′ = B′ and obtain r(N) �

√
N although abcd = 1

is a square. This construction is due to P. Erdős and appeared in Stöhr
(1955) (if one intends to handle only Sidon sets and not general equations,
many details of the proof become superfluous). Although constructions
based on finite fields or the one given in Section 9 yield sharper estimates,
this construction has certain applications where it cannot be replaced by
the other ones. Also, the other constructions do not seem to admit such a
generalization to arbitrary equations as this one.

Now we can easily deduce Theorem 7.1.

P r o o f o f T h e o r e m 7.1. For primitive equations (Definition 6.2) the
existence of γ follows from Theorem 6.5. The only nonprimitive equation
in four variables is (a constant multiple of) Sidon’s equation, for which
γ = 1/2 by Theorem 4.1. Now Theorem 7.2 implies the existence of Γ and
the equality γ = Γ , and Theorem 7.3 implies γ ≥ 1/2.

For equations of type (3, 1) Theorem 2.3 yields γ = 1, for equations of
genus 2 (these must be symmetric) Theorems 3.2 and 7.3 give γ = 1/2. For
equations of genus 1 and type (2, 2), the value of γ is unknown. We show
that for this class of equations there is no universal nontrivial upper bound
for γ.

7.5. Theorem. For every ε > 0 there is an equation of type (2, 2) and
genus 1 such that γ > 1− ε.

P r o o f. We take an integer d ≥ 2 and consider the equation

(7.19) (d + 1)x + y = (d− 1)u + 3v .
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Let B ⊂ [0, d/3) be a set of integers such that 0 ∈ B and the auxiliary
equation

(7.20) x + y + u = 3v

has no nontrivial solution in B. Let A consist of those integers whose rep-
resentation in base d contains only digits belonging to B. We show that
equation (7.19) has no nontrivial solution in A.

Assume that x, y, u, v form a nontrivial solution of (7.19) and develop
them in base d : x =

∑
xid

i, etc. Let j be the least i for which xi, yi, ui, vi

are not all equal. (7.19) yields

(d + 1)xjd
j + yjd

j ≡ (d− 1)ujd
j + 3vjd

j (mod dj+1) ,

that is,

(7.21) xj + yj + uj ≡ 3vj (mod d) .

Since xj , . . . , vj are all in [0, d/3), the congruence in (7.21) must be an
equality. By definition of the set B this implies that they are equal, a
contradiction.

By an obvious calculation we find

A(N) � N log |B|/log d ,

hence

γ ≥ log |B|
log d

.

Equation (7.14) is of type (3, 1), hence by Theorem 7.2 we have max |B| �
d exp(−β

√
log d ) with some constant β, and for sufficiently large d we can

achieve |B| > d1−ε and thus γ > 1− ε.

8. Finite and infinite sets. Besides estimating the size of finite sets,
one can also ask how dense an infinite set can be without containing a
solution of the equation

(8.1) a1x1 + . . . + akxk = 0.

Such a set A satisfies A(N) ≤ r(N) for every N . It is a difficult, and in
general unsolved problem whether there is an infinite solution-free set A
such that A(N) is not much less than r(N) for all, or at least for infinitely
many values of N . Moser (1953) modified Behrend’s construction to find
an infinite set A that contains no three-term arithmetical progression and
satisfies

A(N) � Ne−β
√

log N .

First we show that this can be done for every equation of genus 1. (The
genus of an equation was defined in Definition 3.5.)
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8.1. Theorem. Assume that equation (8.1) is of genus 1.

(a) There is an infinite set A of positive integers such that (8.1) has no
nontrivial solution in A and

A(N) � r(N)
for every N .

(b) There is an infinite set A of positive integers such that (8.1) has no
solution in A with k different numbers and

A(N) � R(N)
for every N .

P r o o f. Write S =
∑
|ai| and put m = S +1. For every integer i choose

a set Ai such that

Ai ⊂ ((m− 1)mi−1,mi], |Ai| = r(mi−1)

and equation (8.1) has no nontrivial solution in Ai. Let A =
⋃
Ai.

We show that there is no solution in A. Suppose that x1, . . . , xk form a
solution. Let j be the maximal number for which Aj contains any xi. Let
S be the set of those i for which xi ∈ Aj , and T = {1, . . . , k}\S. We have∣∣∣ ∑

i∈T
aixi

∣∣∣ ≤ mj−1
∑
i∈T

|ai|

and ∣∣∣ ∑
i∈S

ai(xi −mj)
∣∣∣ ≤ mj−1

∑
i∈S

|ai| .

Adding these inequalities we obtain

(8.2)
∣∣∣ k∑

i=1

aixi −mj
∑
i∈S

ai

∣∣∣ ≤ Smj−1 .

If the numbers xi form a solution, then the first term on the left side vanishes
and (8.2) yields ∣∣∣ ∑

i∈S
ai

∣∣∣ ≤ S/m < 1 .

On the other hand, the ai’s are integers, and consequently
∑

i∈S ai = 0.
Since the equation is of genus 1, we have T = ∅, that is, xi ∈ Aj for all i,
which contradicts the choice of the set Aj .

We estimate A(N). Assume that mj ≤ N < mj+1. Then

A(N) ≥ |Aj | = r(mj−1) ≥ 1
m2

r(mj+1) ≥ 1
m2

r(N) .

(In the second step we used the inequality r(uv) ≤ ur(v), which can be
shown by cutting an interval of length uv into u equal pieces.)

This concludes the proof of case (a). Case (b) is completely analogous.
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There are equations for which the analog of Theorem 8.1 fails. For
Sidon’s equation we know that r(N) ∼

√
N (Section 4), while Erdős proved

that an infinite Sidon set A cannot satisfy A(N) �
√

N . He even proved
that

(8.3) lim inf A(N)
/√

N

log N
< ∞

(see Stöhr (1955), Halberstam–Roth (1966), Ch. II, §3)). We now present
a weaker result which may hold for every equation, albeit we are able to
prove it only for a subclass.

8.2. Theorem. Assume that equation (8.1) is primitive. There is an
infinite set A of positive integers such that (8.1) has no nontrivial solution
in A and

(8.4) A(N) = r(N)No(1) .

This corresponds to part (a) of Theorem 8.1. We do not know any such
extension of part (b).

P r o o f. We already know (Theorem 6.5) that the limit

γ = lim
log r(N)
log N

exists. Our task is to construct an infinite set A satisfying

A(N) = Nγ+o(1) .

We represent the integers in changing base system with the numbers
mi = S(i + 1) as bases:

(8.5) n = α0 + α1m0 + α2m0m1 + . . . , 0 ≤ αi ≤ mi − 1 .

For each i let Bi ⊂ [0, i] be a set of integers in which equation (8.1) has no
solution, 0 ∈ Bi and |Bi| = r(i + 1). Such a set can be obtained from a set
B′i ⊂ [1, i+1] by translating it by its first element. Now we define the set A
as the collection of all integers n in whose decomposition (8.5) all the digits
αi satisfy αi ∈ Bi.

The fact that (8.1) has no nontrivial solution in A can be shown like in
the proof of Theorem 6.3.

We estimate A(N). Let

m0m1 . . .mk ≤ N < m0m1 . . .mkmk+1 .

For such an N we have

A(N) ≥ |B0||B1| . . . |Bk| .
For every ε > 0 we have

|Bi| = r(i + 1) ≥ (i + 1)γ−ε ≥ mγ−2ε
i
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if i > i0 = i0(ε). We also know that

mk+1 = S(k + 2) < (k!)ε < (m1 . . .mk)ε

for k > k0. Consequently,

A(N) ≥
k∏

i=i0

mγ−2ε
i ≥ Nγ−2εm−γ

k+1

∏
i<i0

m−γ
i ≥ Nγ−4ε

if N is so large that also the inequality∏
i<i0

mi < Nε

is satisfied.
We proved that A(N) ≥ Nγ−4ε holds for every positive ε if N is suffi-

ciently large. Since A(N) ≤ r(N) ≤ Nγ+ε holds by the definition of γ, (8.4)
is established.

Sidon’s equation x + y = u + v is nonprimitive, of genus 2, thus neither
result of this section applies; we mentioned (see (8.3)), that the first does
not hold. The second may hold (Erdős conjectures it does), but much less
is known. The greedy algorithm, described in Section 2, guarantees the
existence of a Sidon set satisfying

A(N) ≥ 4−1/3N1/3 .

By exploiting the special form of this equation, the constant is easily im-
proved to

√
2, and for a long time nothing better was known. Ajtai, Komlós

and Szemerédi (1981) found the following improvement.

8.3. Theorem. There is an infinite Sidon set A satisfying

(8.6) A(N) � (N log N)1/3 .

9. Concluding remarks. We defined three properties of invariant
equations, type, genus and primitivity, which are connected with the be-
haviour of r(N) and R(N). Probably the most important is the genus. All
our estimates are compatible with the following possibility (there is too little
positive support to call it a conjecture):

(9.1) γ = 1/genus

for every equation.
At the moment we do not even know the existence of γ and Γ . For an

easier formulation of the following problems, however, let us pretend that
they exist (the problems can be easily reformulated with lower and upper
limits if this assumption is dropped).

The simplest equation for which we do not know the value of γ is x+3y =
2u + 2v; I do not know anything more than γ ≥ 1/2 by Theorem 7.1.
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By Theorem 7.1 we know that γ = Γ if k, the number of variables, is at
most 4, and Theorems 3.2–3.3 show that γ < Γ is possible with k = 6. Can
γ < Γ happen for k = 5?

If (9.1) holds, then we have γ ≥ 1/[k/2] for every equation. The only
unconditional result for k ≥ 5 is γ ≥ 1/(k − 1) by Theorem 2.1. Could one
find an improvement of this inequality (say, γ ≥ 2/k)?
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