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1. Introduction. An arithmetic function f(n) is said to be additive if
it satisfies f(ab) = f(a) + f(b), whenever a and b are coprime integers. For
such a function we define

A(x) =
∑

pk≤x

f(pk)
pk

and B(x) =
∑

pk≤x

|f(pk)|2

pk
.

The Turán–Kubilius inequality states that∑
n≤x

|f(n)−A(x)|2 ≤ c1xB(x)

for some absolute constant c1, uniformly for all complex-valued additive
functions f(n) and real x ≥ 2. (For the relevant literature on the Turán–
Kubilius inequality, see Elliott [4]; in particular Chapter 4.)

Let P (n) denote the largest prime factor of n if n > 1, and P (1) = 1.
Let S(x, y) = {n | 1 ≤ n ≤ x, P (n) ≤ y}. In 1982, Alladi [1] obtained a
Turán–Kubilius inequality for integers n which have no large prime factors.
More specifically, he showed that the inequality is valid uniformly for all
strongly additive functions f(n) and n ∈ S(x, y), where x, y satisfies x ≥ 20,
and exp{(log x)2/3} ≤ y ≤ x. In [8], we further extended this range to
y ≥ (log x)1+ε.

In the present paper we derive a Turán–Kubilius inequality for (general)
additive functions f(n), where n ∈ S(x, y).

We require uniform asymptotic estimates for Ψ(x, y), where

Ψ(x, y) =
∑

n≤x,P (n)≤y

1 = |S(x, y)| .
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Recently Hildebrand [5] showed that the asymptotic formula

(1.1) Ψ(x, y) = x%(u)
{

1 + O

(
log(u + 1)

log y

)}
, u =

log x

log y
,

holds uniformly in the range

(1.2) x ≥ 3 , exp{(log2x)5/3+ε} ≤ y ≤ x ,

where ε > 0 is fixed, log2x = log log x and the function %(u) is defined as
the continuous solution of the system

%(u) = 1 (0 ≤ u ≤ 1) ,

u%′(u) = −%(u− 1) (u > 1) .

For a smaller range, (1.1) has been established by de Bruijn [3].
More recently, Hildebrand and Tenenbaum [6] showed that the asymp-

totic formula

(1.3) Ψ(x, y) =
xαζ(α, y)

α
√

2πφ2(α, y)

{
1 + O

(
1
u

)
+ O

(
log y

y

)}
holds uniformly in the range x ≥ y ≥ 2, where

ζ(s, y) =
∏
p≤y

(1− p−s)−1 , Re s > 0 ,

φ(s, y) = log ζ(s, y) ,

φk(s, y) =
∂k

∂sk
φ(s, y) , k > 0 ,

and α = α(x, y) is defined as the (unique) solution of the equation

(1.4) φ1(α, y) + log x = 0 .

Let ξ = ξ(u) denote the unique positive solution of

eξ = uξ + 1 (u > 1)

and ξ(u) = 0 (0 ≤ u ≤ 1). By the definition of ξ(u) we readily deduce that

ξ(u) = log u + log2u + O(1) .

Finally, we let

β = β(x, y) = 1− ξ(u)
log y

, βk = β

(
x

pk
, y

)
, u =

log x

log y
.

We now state our main result.

Theorem 1. For a complex-valued additive function f we define

(1.5) Hf (x, y) =
∑

pk≤x,p≤y

f(pk)
pk%(u)

%

(
u− log pk

log y

)
(1− p−βk) ,
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and

Θf (x, y) =
∑

pk≤x,p≤y

|f(pk)|2

pk%(u)
%

(
u− log pk

log y

)
.

Then for all such f and x, y satisfying

(1.6) x ≥ 3 , exp{(log x)1/2+ε} ≤ y ≤ x ,

we have uniformly

(1.7)
∑

n∈S(x,y)

|f(n)−Hf (x, y)|2 � Ψ(x, y)Θf (x, y) .

In addition, there is u0 ≥ 1 such that for all u ≥ u0, the � in (1.7)
can be replaced by

≤
{

(1 + o(1)) , as x →∞ , if f > 0,
(2 + o(1)) , as x →∞ , for all other f .

In Theorem 1, we generalized the result of Alladi [1] to general additive
functions. From the examples in Section 6 we see that the generalization is
in a sense non-trivial.

From the proof of Theorem 1 in Section 3 we know that the exponent
1/2 in the lower bound of (1.6) is best possible.

The function Hf (x, y) in Theorem 1 can be replaced by

Hf (x, y) =
∑

pk≤x,p≤y

f(pk)
pk%(u)

%

(
u− log pk

log y

)
.

In other words, we have the following

Corollary 1. For all complex-valued additive functions f(n) and x, y
satisfying (1.6) we have uniformly∑

n∈S(x,y)

|f(n)−Hf (x, y)|2 � Ψ(x, y)Θf (x, y) .

The dual of the last inequality is

Theorem 2. Let {an} be any sequence of complex numbers. Then for
x, y satisfying (1.6) we have uniformly

∑
pk≤x
p≤y

pk%(u)

%

(
u− log pk

log y

)∣∣∣∣ ∑
n∈S(x,y)

pk‖n

an −
%

(
u− log pk

log y

)
pk%(u)

∑
n∈S(x,y)

an

∣∣∣∣2

� Ψ(x, y)
∑

n∈S(x,y)

|an|2 ,

where pk‖n means that pk divides n (p prime), but pk+1 does not.



332 T. Z. Xuan

We omit the proof of this result, which is almost the same as that of
Theorem 2 of Alladi [1].

As in [8] we shall further extend the range in Theorem 1. We now
introduce some notations. Let y be fixed and put αu = α(yu, y) and

(1.8) %∗(u) = %∗(yu, y) :=
yu(αu−1)ζ(αu, y)
αu

√
2πφ2(αu, y)

for u ≥ 1 and %∗(u) = 1 for 0 ≤ u ≤ 1. Then formula (1.3) becomes

(1.9) Ψ(x, y) = x%∗(u)
(

1 + O

(
1
u

)
+ O

(
log y

y

))
.

By part (ii) of Theorem 2 in [6], we see that

(1.10) %∗(u) = %(u) exp
{

O

(
1
u

+
log(u + 1)

log y
+ uRε

)}
,

where Rε = exp{−(log y)3/5−ε} for 0 < ε < 1/2.

Theorem 3. For a complex-valued additive function, we define

(1.11) H∗
f (x, y) =

∑
pk≤x,p≤y

f(pk)
pk%∗(u)

%∗
(

u− log pk

log y

)
(1− p−α(x/pk,y)) ,

(1.12) Θ∗
f (x, y) =

∑
pk≤x,p≤y

|f(pk)|2

pk%∗(u)
%∗

(
u− log pk

log y

)
.

Then for all such f and x, y satisfying

(1.13) x ≥ x0 , (log x)2+ε ≤ y ≤ exp
{

log x

log2x

}
,

where ε > 0 is fixed , we have uniformly

(1.14)
∑

n∈S(x,y)

|f(n)−H∗
f (x, y)|2 � Ψ(x, y)Θ∗

f (x, y) .

Let

H∗
f (x, y) =

∑
pk≤x,p≤y

f(pk)
pk%∗(u)

%∗
(

u− log pk

log y

)
.

Corollary 2. For all complex-valued additive functions f(n) and x, y
satisfying (1.13), we have uniformly∑

n∈S(x,y)

|f(n)−H∗
f (x, y)|2 � Ψ(x, y)Θ∗

f (x, y) .
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2. Some lemmas. To prove Theorem 1 we need the following lemmas.

Lemma 1. For u ≥ 1 and 0 ≤ t � 1, we have uniformly

%(u− t) = %(u)etξ(u)

(
1 + O

(
t

u

))
.

P r o o f. This is a slightly stronger form of [1, Lemma 3]; for the proof
see [7].

Lemma 2. For u ≥ 1 and 0 ≤ t ≤ u, we have uniformly

(2.1) %(u− t) ≤ %(u)etξ(u)(1 + O(u−1/3)) .

P r o o f. By Lemmas 2 and 3 of [7], we have uniformly for u ≥ 1 and
0 ≤ t ≤ u2/3,

(2.2) %(u− t) = %(u) exp
{

tξ(u)− t2

2
ξ′(u) +

t3

6
ξ′′(u)

}(
1 + O

(
t

u

))
.

By the definition of ξ(u) we have

(2.3) ξ′(u) =
ξ

uξ − u + 1
=

1
u

(
1 + O

(
1

ξ(u)

))
(u > 1)

and

ξ′′(u) = −ξ3(eξ(ξ2 − 2ξ + 2)− 2)
(ξeξ − eξ + 1)3

(2.4)

= − 1
u2

(
1 + O

(
1

ξ(u)

))
(u > 1) ,

which implies that ξ′(u) > 0 and ξ′′(u) < 0 for u > 1. From this and (2.2),
(2.1) follows for 0 ≤ t ≤ u2/3.

We now turn our attention to the case u2/3 ≤ t ≤ u − 1. By (3.9) of
Alladi [1] we have

(2.5) %(u) =

√
ξ′(u)
2π

eγ−uξ(u)+I(ξ(u))

(
1 + O

(
1
u

))
,

where

I(z) =
z∫

0

ev − 1
v

dv .

This implies

(2.6)
%(u− t)

%(u)
=

(
1 + O

(
1

u− t

))√
ξ′(u− t)

ξ′(u)
exp{F (u, t)} ,
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where

(2.7) F (u, t) = uξ(u)− (u− t)ξ(u− t) +
ξ(u−t)∫
ξ(u)

ev − 1
v

dv .

From (2.3) and (2.6) we have in the range considered

(2.8)
%(u− t)

%(u)
�
√

u exp{F (u, t)} .

Thus to obtain (2.1) in the case u2/3 ≤ t ≤ u− 1, it suffices to show

(2.9) F (u, t) ≤ tξ(u)− 1
2 t2ξ′(u) .

Let
G(u, t) = F (u, t)− tξ(u) + 1

2 t2ξ′(u) .

By (2.7), (2.3), (2.4) and the definition of ξ(u) we find that (∂2/∂t2)G(u, t)
< 0, (∂/∂t)G(u, t) < 0 and hence G(u, t) < 0 for t > 0. Thus (2.9) follows.

Finally, we consider the case u− 1 ≤ t ≤ u. It is well known that

%(u) = e−uξ(u)+u+O(u/ log u) .

This implies (2.1).
The proof of Lemma 2 is complete.

Lemma 3. For u ≥ u0 (u0 is a sufficiently large absolute constant),
0 ≤ t ≤ s, s ≥ 1

3u, t + s ≤ u, we have uniformly

(2.10) %(u)%(u− t− s) � %(u− t)%(u− s) .

P r o o f. If t ≤
√

u and t + s ≤ u− 1, from (2.2)–(2.4) we have

%(u− t) = %(u)etξ(u)

(
1 + O

(
t + t2

u

))
.

Lemma 2 implies

%(u− t− s) � %(u− s)etξ(u−s) � %(u− s)etξ(u) .

From these two estimates, (2.10) follows for 0 ≤ t ≤
√

u.
If t >

√
u and t + s ≤ u− 1, we let

P (u, t, s) = %(u)%(u− t− s)/(%(u− t)%(u− s)) .

By (2.5) and (2.3) we have

(2.11) P (u, t, s)

=
(

1 + O

(
1

u− t− s

))√
ξ′(u)ξ′(u− t− s)
ξ′(u− t)ξ′(u− s)

exp{F (u, t, s)}

≤ u exp{F (u, t, s)} ,
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where

F (u, t, s)
= (u− t)ξ(u− t) + (u− s)ξ(u− s)− uξ(u)− (u− t− s)ξ(u− t− s)

+
ξ(u−t−s)∫
ξ(u−t)

ev − 1
v

dv −
ξ(u−s)∫
ξ(u)

ev − 1
v

dv .

Thus to obtain (2.10) in the case considered it suffices to show

(2.12) F (u, t, s) ≤ e−tsξ′(u) .

Let G(λ) = F (u, λt, λs) + λ2tsξ′(u), 0 ≤ λ ≤ 1. We proceed as in the proof
of (2.9) to get G(λ) < 0 for 0 < λ ≤ 1. From this, (2.12) follows.

Finally, we consider the case u − 1 ≤ t + s ≤ u. We put t1 = t − a,
s1 = s− b, with a ≥ 0, b ≥ 0, and a + b = 1. Then t1 + s1 ≤ u− 1, and

%(u− t) ≥ %(u− t1) , %(u− s) ≥ %(u− s1) ,

since %(u) is decreasing. By the above result in the case t + s ≤ u − 1, we
obtain

P (u, t, s) � %(u)%(u− t1 − s1)
%(u− t1)%(u− s1)

� 1 .

The proof of Lemma 3 is now complete.

R e m a r k. For u ≥ u0, 0 ≤ t ≤ s ≤ 1
3u, by Lemma 4 of [1], we have

%(u)%(u− t− s) ≤ %(u− t)%(u− s) .

If 1 ≤ u ≤ u0, we have %(u − t)/%(u) ≥ 1, since %(u) is decreasing, and
%(u − t − s)/%(u − s) � 1, by Lemma 2. So we have %(u)%(u − t − s) �
%(u− t)%(u− s) in the ranges considered.

Collecting the above estimates yields

%(u)%(u− t−s) � %(u− t)%(u−s) for u ≥ 1 , t ≥ 0 , s ≥ 0 and t+s ≤ u .

Let

H(x, y) =
∑

pk≤x,p≤y

1
pk%(u)

%

(
u− log pk

log y

)
.

Lemma 4. For x, y satisfying (1.6) we have uniformly

(2.13) H(x, y) = li(uξ(u))− log2u + log2y + O(1) .

P r o o f. By Theorem 3 of [1] we have∑
p≤y

1
p%(u)

%

(
u− log p

log y

)
= li(uξ(u))− log2u + log2y + O(1) .
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By Lemma 2 we get∑
pk≤x,p≤y,k≥2

1
pk%(u)

%

(
u− log pk

log y

)
�

∑
p≤y

1
p2

e2(log p)ξ(u)/ log y � 1 .

Thus (2.13) follows.

Lemma 5. For any fixed positive integer a and x, y satisfying (1.6) we
have uniformly

(2.14)
∑

pk≤x,p≤y

1
pk%(u)

%

(
u− log pk

log y

)(
log pk

log y

)a

� u .

P r o o f. By Lemma 2 and the prime number theorem, the left-hand side
of (2.14) is

�
∑
p≤y

1
p
e(log p)ξ(u)/ log y

(
log p

log y

)a

�
y∫

2

e(log z)ξ(u)/ log y

(
log z

log y

)a
dz

z log z

� 1
ξ(u)a

ξ(u)∫
η log 2

ewwa−1 dw � u ,

where η = ξ(u)/ log y.

Lemma 6. For x, y satisfying (1.6) we have uniformly

(2.15)
∑′ f(pk)

pk%(u)
%

(
u− log pk

log y

)
�

√
Θf (x, y) (log x)−3 ,

where
∑′ denotes a sum over integers p, k with the restrictions pk ≤ x,

p ≤ y and k > (log x)/(3 log p).

P r o o f. Applying the Cauchy–Schwarz inequality, the left-hand side of
(2.15) is

�
√

Θf (x, y)
{ ∑′ 1

pk%(u)
%

(
u− log pk

log y

)}1/2

.

By Lemma 2, the last sum is

�
∑
p≤y

p−k0ek0(log p)ξ(u)/ log y � (log x)−3 ,

where k0 = [log x/(3 log p)]. This provides the desired estimate.

Lemma 7. For x, y satisfying (1.6) we have uniformly

(2.16)
∑′′ f(pk)f(ql)

pkql%(u)
%

(
u− log pk

log y
− log ql

log y

)
� Θf (x, y)(log x)−3 ,
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where
∑′′ denotes a sum over integers p, q, k, l with the restrictions pkql ≤

x, p ≤ y, q ≤ y, and k ≥ (log x)/(3 log p) (or l ≥ (log x)/(3 log q)).

P r o o f. By Lemmas 3 and 6, the left-hand side of (2.16) is

� Hf (x, y)
√

Θf (x, y) (log x)−4 .

The Cauchy–Schwarz inequality and Lemma 4 give

(2.17) Hf (x, y) �
√

Θf (x, y)(u + log2y) ,

which completes the proof of Lemma 7.

3. Proofs of Theorem 1 and Corollary 1. We may suppose without
loss of generality that f ≥ 0. If f is any real-valued additive function, we
define an additive function fj(n), j = 1, 2 by

f1(pk) =
{

f(pk) if f(pk) > 0,
0 otherwise,

f2(pk) =
{
−f(pk) if f(pk) < 0,
0 otherwise.

Then we have

(f(n)−Hf (x, y))2 ≤ 2(f1(n)−Hf1(x, y))2 + 2(f2(n)−Hf2(x, y))2

and so the desired estimate for f follows from that for f1 and f2. Similarly
if f is complex-valued, we obtain the result by breaking it into its real and
imaginary parts.

By the additivity of f(n), (1.1) and Lemma 1 we have∑
n∈S(x,y)

f(n) =
∑

pk≤x,p≤y

f(pk)
{

Ψ

(
x

pk
, y

)
− Ψ

(
x

pk+1
, y

)}
(3.1)

= Ψ(x, y)Hf (x, y)
(

1 + O

(
log(u + 1)

log y

))
+ O(R1) + O(R2) ,

where

R1 = Ψ(x, y)
∑

p≤y,k≤k0

f(pk)
pk%(u)

%

(
u− log pk

log y

)
p−βk

(
log p

log x

)
,

R2 = Ψ(x, y)
∑

pk≤x,p≤y,k>k0

f(pk)
pk%(u)

%

(
u− log pk

log y

)
p−βk

(k0 = [log x/(3 log p)]). Applying the Cauchy–Schwarz inequality we get

(3.2) R1 � Ψ(x, y)
√

Θf (x, y) (log x)−1 .
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By Lemma 6 we have

(3.3) R2 � Ψ(x, y)
√

Θf (x, y) (log x)−1 .

From (3.1)–(3.3), (2.17) and (1.6) we further have

W :=
∑

n∈S(x,y)

{f(n)−Hf (x, y)}2(3.4)

=
∑

n∈S(x,y)

f2(n)− 2Hf (x, y)
∑

n∈S(x,y)

f(n)

+ Ψ(x, y)Hf (x, y)2

=
∑

n∈S(x,y)

f2(n)− Ψ(x, y)Hf (x, y)2

+ O(Ψ(x, y)Θf (x, y)(log x)−ε) .

We also have∑
n∈S(x,y)

f2(n) ≤
∑

pkql≤x
p≤y,q≤y

f(pk)f(ql)
{

Ψ

(
x

pkql
, y

)
− Ψ

(
x

pk+1ql
, y

)
(3.5)

− Ψ

(
x

pkql+1
, y

)
+ Ψ

(
x

pk+1ql+1
, y

)}
+

∑
pk≤x,p≤y

f2(pk)
{

Ψ

(
x

pk
, y

)
− Ψ

(
x

pk+1
, y

)}
= W1 + W2 , say .

Put log pk/ log y = t, log ql/ log y = s,

β(x/pk, y) = βk , β(x/ql, y) = βl , β(x/(pkql), y) = βkl .

By (1.1), and Lemmas 1 and 7 we obtain

W1 = Ψ(x, y)
∑∗ f(pk)f(ql)

pkql%(u)
%(u− t− s)(1− p−βkl)(1− q−βkl)(3.6)

×
(

1 + O

(
log(u + 1)

log y

))
+ O

(
Ψ(x, y)

∑∗ f(pk)f(ql)
pkql%(u)

%(u− t− s)

×
(

p−βkl

(
log p

log x

)
+ q−βkl

(
log q

log x

)))
+ O(Ψ(x, y)Θf (x, y)(log x)−ε)

= W ′
1 + O(R3) + O(E) , say ,
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where
∑∗ denotes a sum over integers p, q, k, l with the restrictions p ≤ y,

q ≤ y, k ≤ log x/(3 log p) and l ≤ log x/(3 log q).
We first consider the case u ≥ u0. By Lemma 4 of [1] we get

W ′
1 ≤ Ψ(x, y)

∑∗ f(pk)f(ql)
pkql

%(u− t)%(u− s)
%(u)2

(3.7)

×(1− p−βk)(1− q−βl)
(

1 + O

(
log(u + 1)

log y

))
+ O

(
Ψ(x, y)

∑∗ f(pk)f(ql)
pkql

%(u− t)%(u− s)
%(u)2

×((p−βk − p−βkl) + (q−βl − q−βkl))
)

≤ Ψ(x, y)Hf (x, y)2(1 + O(log(u + 1)/ log y)) + O(R4) , say .

It is easy to prove that

p−βk − p−βkl � p−βk

(
s log p

u log y

)
.

From this, applying the Cauchy–Schwarz inequality and Lemma 5 we have

(3.8) R4 � Ψ(x, y)(log x)−1
√

Θf (x, y) ·
√

uΘf (x, y) � E .

Similarly, we have

(3.9) R3 � Ψ(x, y)(log x)−1Hf (x, y) ·
√

Θf (x, y) � E .

From (3.6)–(3.9) and (2.17) we obtain

(3.10) W1 ≤ Ψ(x, y)Hf (x, y)2 + O(E) ,

where E is defined as in (3.6).
We next turn to W2. In view of (1.1) and (1.6), we get

W2 ≤
∑

pk≤x,p≤y

f2(pk)Ψ
(

x

pk
, y

)
(3.11)

= Ψ(x, y)
∑

pk≤x,p≤y

f2(pk)
pk%(u)

%

(
u− log pk

log y

)(
1 + O

(
log(u + 1)

log y

))
= Ψ(x, y)Θf (x, y) + O(E) .

Collecting (3.4), (3.5), (3.10) and (3.11) yields

(3.12) W ≤ Ψ(x, y)Θf (x, y)(1 + O((log x)−ε)) .

Now we turn our attention to the case u ≤ u0. From the remark of
Lemma 3, we have

%(u)%(u− t− s) � %(u− t)%(u− s) .
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By the same argument as before, we have

W � Ψ(x, y)Θf (x, y) .

The proof of Theorem 1 is now complete.

R e m a r k. In (3.4) there is an error term O(Ψ(x, y)Θf (x, y)(u + log2y)
×(log(u+1)/ log y)), where the factor O(log(u+1)/ log y) comes from the er-
ror term in (1.1), which is best possible. From this we see that the exponent
1/2 in lower bound (1.6) is best possible.

P r o o f o f C o r o l l a r y 1. We may suppose without loss of generality
that f ≥ 0. We have

(3.13) Hf (x, y) = Hf (x, y)−∆(x, y) ,

where

(3.14) ∆(x, y) =
∑

pk≤x,p≤y

f(pk)
pk%(u)

%

(
u− log pk

log y

)
p−βk .

By (3.1)–(3.3) and (3.14) we have∑
n∈S(x,y)

f(n) = Ψ(x, y)Hf (x, y)
(

1 + O

(
log(u + 1)

log y

))
− Ψ(x, y)∆(x, y) .

As for W of (3.4) we obtain similarly

W :=
∑

n∈S(x,y)

{f(n)−Hf (x, y)}2(3.15)

=
∑

n∈S(x,y)

f2(n)− Ψ(x, y)Hf (x, y)2

+ 2Ψ(x, y)Hf (x, y)∆(x, y) + O(Ψ(x, y)Θf (x, y)(log x)−ε) .

In view of (3.5), (3.10), (3.11) and (3.13) we have

(3.16)
∑

n∈S(x,y)

f2(n)

≤ Ψ(x, y)Hf (x, y)2 − 2Ψ(x, y)Hf (x, y)∆(x, y)

+ Ψ(x, y)∆(x, y)2 + Ψ(x, y)Θf (x, y)(1 + O((log x)−ε)) .

Applying the Cauchy–Schwarz inequality we have

(3.17) ∆(x, y)2 ≤ Θf (x, y)
∑

pk≤x,p≤y

1
pk%(u)

%

(
u− log pk

log y

)
p−2βk .

Denoting by Σ the sum on the right-hand side of (3.17) we may write
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Σ =
∑

p≤Y,k≤ξ(u)

+
∑

pk≤x,p≤Y,k>ξ(u)

+
∑

pk≤x,Y <p≤y

(3.18)

= Σ1 + Σ2 + Σ3 , say ,

where Y = exp
√

log y. By Lemma 2 we have

Σ1 ≤
∑

p≤Y,k≤ξ(u)

1
pk+2

e(k+2)(log p)ξ(u)/ log y

(
1 + O

(
1

u1/3

))
(3.19)

≤
∑

p

∞∑
k=1

1
pk+2

(
1 + O

(
1

u1/3

))
= C0(1 + O(u−1/3)) , say ,

where
∑

p denotes a sum taken over all prime numbers.
It is easy to prove that

Σ2 + Σ3 � u−1 .

From this and (3.17)–(3.19) we obtain

(3.20) ∆(x, y)2 ≤ C0(1 + O(u−1/3))Θf (x, y) .

Combining (3.15), (3.16) and (3.20) completes the proof of Corollary 1.

R e m a r k. For strongly additive functions, Alladi [1] obtained a Turán–
Kubilius inequality for S(x, y). The result can be deduced from Theorem 1,
the argument is almost the same as that of Corollary 1.

4. Preliminaries to the proof of Theorem 3. In order to prove
Theorem 3, we need some lemmas.

Lemma 8. For x ≥ y ≥ 2 and 1 ≤ d ≤ y we have uniformly

Ψ

(
x

d
, y

)
= Ψ(x, y)d−α(x,y)

(
1 + O

(
1
u

+
log y

y

))
.

P r o o f. See [6, Theorem 3].

Lemma 9. For u ≥ 2, 0 ≤ t ≤ u, y ≥ y0 and y ≥ u1+ε where y0 is a
sufficiently large absolute constant , and ε > 0 is fixed , we have uniformly

%∗(u− t) � %∗(u) exp{t(1− αu) log y} .

P r o o f. We first consider the case t ≤ u− 1. By (1.8) we have

(4.1)
%∗(u− t)

%∗(u)
=

αu

αu−t

√
φ2(αu, y)

φ2(αu−t, y)
exp{F ∗(u, t)} ,

where

(4.2) F ∗(u, t) := (uαu−t − uαu − tαu−t + t) log y + φ(αu−t, y)− φ(αu, y) .
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From (1.4) we have

(4.3) φ1(αu, y) + u log y = 0 .

Differentiating (4.3) with respect to u and using Lemma 4 of [6] then yields

(4.4) α′u = − log y/φ2(αu, y) < 0 ,

hence αu in decreasing, so that αu/αu−t ≤ 1. By Lemma 4 of [6] we have

φ2(αu, y)/φ2(αu−t, y) � U2(u, t) ,

where U(u, t) = 1 if |t| ≤ u/2, and =
√

u, otherwise. From this and (4.1)
we get

%∗(u− t)/%∗(u) � U(u, t) exp{F ∗(u, t)} .

By (7.19) of [6] and (4.4) we have

(4.5) α′u = −ξ′(u)
log y

(1 + O(Rε + (u log y)−1)) ,

where Rε = exp{(− log y)3/5−ε}.
Therefore to prove the lemma for t ≤ u− 1, it suffices to show

(4.6) F ∗(u, t) < t(1− αu) log y + 1
2 t2α′u log y (0 < t ≤ u− 1) .

By the same argument as in the proof of (2.9), and using Lemma 4 of [6],
(4.6) is derived.

If u− 1 ≤ t ≤ u, by (7.8) of [6] and (1.10) we have

%∗(u) exp{t(1− αu) log y} ≥ %∗(u) exp{(u− 1)ξ(u) + O(uRε)}

≥ exp
{

u + O

(
u

log u

)
+ O

(
log(u + 1)

log y
+ uRε

)}
� 1 .

This completes the proof of Lemma 9.

Lemma 10. For u ≥ u0, t ≥ 0, s ≥ 0, t+ s ≤ u−1, and y ≥ u1+ε (ε > 0
is fixed), we have uniformly

%∗(u)%∗(u− t− s)
%∗(u− t)%∗(u− s)

≤ 1 + O

(
min(t, s)

u

)
.

P r o o f. Denoting the left-hand side of the above formula by Q(u, t, s),
we have by (1.8),

(4.7) Q(u, t, s) =
αu−tαu−s

αuαu−t−s

√
α′uα′u−t−s

α′u−tα
′
u−s

exp{R(u, t, s)} ,

where

R(u, t, s) = uαu log y + (u− t− s)αu−t−s log y(4.8)
− (u− t)αu−t log y − (u− s)αu−s log y

+ φ(αu, y) + φ(αu−t−s, y)− φ(αu−t, y)− φ(αu−s, y) .
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It is easy to prove that

(4.9) R(u, t, s) ≤ tsα′u log y

and

(4.10) αu−tαu−s − αuαu−t−s ≤ 0 .

We also have α′u−t < α′u < 0, and hence α′u/α′u−s ≤ 1. From this, (4.7),
(4.9) and (4.10), we obtain

(4.11) Q(u, t, s) ≤
√

α′u−t−s/α′u−t exp{tsα′u log y} .

Next we will give a relatively sharp estimate for Q(u, t, s). We may
suppose without loss of generality that t ≥ s.

Let

D := {(t, s) | t ≥ s > 0, t + s ≤ u− 1} ,

D1 := {(t, s) | t ≥ s, ts > u4/3, t + s ≤ u− 1} ,

D2 := {(t, s) | t ≥ s > 0, ts ≤ u4/3, t ≤ 6u/7} ,

D3 := {(t, s) | s > 0, ts ≤ u4/3, 6u/7 < t ≤ u− 1− s} ,

where u ≥ u0. It is obvious that D = D1 ∪D2 ∪D3.
In the case (t, s) ∈ D1, we have

√
α′u−t−s/α′u−t �

√
u by (6.6) of [6].

From this, (4.11), (4.5) and (2.3) we get

(4.12) Q(u, t, s) �
√

u exp{− 1
2u1/3} � u−4 for (t, s) ∈ D1 .

In the case (t, s) ∈ D2, by Taylor’s formula, we have
√

α′u−t−s/α′u−t =
1 + O(s/u). From this and (4.11) we have

(4.13) Q(u, t, s) ≤ 1 + O(s/u) for (t, s) ∈ D2 .

Finally, in the case (t, s) ∈ D3, we have α′u log y ≤ −7u/8 by (4.5).
Noting that t ≥ 6u/7, it then follows that

(4.14) Q(u, t, s) ≤
√

ξ′(u− t− s)/ξ′(u− t) e−(3/4)s =: N(s) , say .

Differentiating the above equation, we find

N ′(s) =
−e−(3/4)s

2
√

ξ′(u− t)ξ′(u− t− s)

(
ξ′′(u− t− s) +

3
2
ξ′(u− t− s)

)
.

If we assume for the moment that

(4.15) ξ′′(u) + aξ′(u) > 0 for u > 1 , a ≥ 4/3 ,

then it follows that N ′(s) < 0 for s > 0, hence N(s) < N(0) = 1. From this
and (4.14) we obtain

(4.16) Q(u, t, s) ≤ 1 for (t, s) ∈ D3 ,

and hence the assertion of Lemma 10.
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It remains to prove the inequality (4.15). By (2.3), (2.4) and definition
of ξ(u) we find

ξ′′(u) + aξ′(u) =
L(ξ)

ξ(eξ − u)3
, say ,

where

L(ξ) := e2ξ(aξ2 − 2aξ + a) + eξ(−ξ3 + 2ξ2 + 2aξ − 2ξ − 2a) + 2ξ + a .

We also have ξ(eξ − u) = (ξeξ − eξ + 1) > 0 for ξ > 0. To obtain (4.15) it
therefore suffices to show

(4.17) L(ξ) > 0 for ξ > 0 .

A simple calculation gives

L(n)(ξ) ≥ 0 for ξ = 0 , n = 0, 1, 2,

dn

dξn
(L′′(ξ)e−ξ) ≥ 0 for ξ = 0 , n = 1, 2, 3,

d4

dξ4
(L′′(ξ)e−ξ) = eξ(4aξ2 + 32aξ + 46a) > 0 for ξ > 0 .

These inequalities imply (4.17), and hence (4.15). Combining (4.12), (4.13)
and (4.16) completes the proof of Lemma 10.

Let

H∗(x, y) =
∑

pk≤x,p≤y

1
pk%∗(u)

%∗
(

u− log pk

log y

)
.

Lemma 11. For x, y satisfying

(4.18) x ≥ x0 , (log x)2+ε ≤ y ≤ x ,

we have uniformly

H∗(x, y) = u + log2y + O

(
u

log u

)
+ O(u exp{−(log y)3/5−ε}) .

P r o o f. We may write

H∗(x, y) =
∑

p≤y,k=1

+
∑

pk≤x,p≤y,k≥2

= Σ1 + Σ2 .

By the same argument as in [1], we have

Σ1 = u + log2y + O

(
u

log u

)
+ O(u exp{−(log y)3/5−ε}) .

By Lemma 9 we obtain

Σ2 �
∑

pk≤x,p≤y,k≥2

p−kαu �
∑
p≤y

p−2αu .



Turán–Kubilius inequality 345

By (7.8) of [6] we have 1− αn ≤ 1/(2 + ε/2), for x, y satisfying (4.18) and
x0 sufficiently large. This implies Σ2 � 1.

This completes the proof of Lemma 11.

Moreover, we also need the following results, which can be established
in the same way as Lemma 11.

Lemma 12. For x, y satisfying (4.18) we have uniformly

ΣA :=
∑

pk≤x,p≤y

1
pk%∗(u)

%∗
(

u− log pk

log y

)(
log pk

log y

)a

� u ,

where a is any fixed positive integer.

Lemma 13. For x, y satisfying (4.18) we have uniformly

ΣB :=
∑

pk≤x,p≤y,k>k0

1
pk%∗(u)

%∗
(

u− log pk

log y

)
� (log x)−3 ,

where k0 is defined as in Lemma 6.

5. Proofs of Theorem 3 and Corollary 2. The proof of Theorem 3
is somewhat similar to the proof of Theorem 1. We may suppose without
loss of generality that f ≥ 0. By (1.9) and Lemma 8 we have

(5.1)
∑

n∈S(x,y)

f(n) = Ψ(x, y)H∗
f (x, y) + O(R5) ,

where

R5 = Ψ(x, y)
∑

pk≤x,p≤y

f(pk)
pk%∗(u)

%∗
(

u− log pk

log y

)(
u− log pk

log y
+ 1

)−1

.

Applying the Cauchy–Schwarz inequality and then using Lemmas 11 and 13
and (1.13) yields

R5 � Ψ(x, y)
√

Θ∗
f (x, y) {u−1H∗(x, y)1/2 + (ΣB)1/2}(5.2)

� Ψ(x, y)
√

u−1Θ∗
f (x, y) .

Similarly,

(5.3) H∗
f (x, y) �

√
uΘ∗

f (x, y) .

By (5.1)–(5.3) we further have

W ∗ :=
∑

n∈S(x,y)

{f(n)−H∗
f (x, y)}2(5.4)

=
∑

n∈S(x,y)

f2(n)− Ψ(x, y)H∗
f (x, y)2 + O(Ψ(x, y)Θ∗

f (x, y)) .
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For fixed y, put log pk/ log y = t, log ql/ log y = s, α(x/pk, y) = αu−t,
α(x/ql, y) = αu−s, α(x/(pkql), y) = αu−t−s. By (1.9) and Lemma 8 we have

(5.5)
∑

n∈S(x,y)

f2(n) ≤ W ∗
1 + W ∗

2 ,

where

W ∗
1 = Ψ(x, y)

∑
pkql≤x

p≤y,q≤y

f(pk)f(ql)
pkql%∗(u)

%∗(u− t− s)(1− p−αu−t−s)

× (1− q−αu−t−s)(1 + O((u− t− s + 1)−1))

and

W ∗
2 =

∑
pk≤x,p≤y

f2(pk)
{

Ψ

(
x

pk
, y

)
− Ψ

(
x

pk+1
, y

)}
.

Since

(1− p−αu−t−s)(1− q−αu−t−s)
= (1−p−αu−t)(1−q−αu−s)+O(p−αu−t−p−αu−t−s)+O(q−αu−s−q−αu−t−s) ,

by Lemma 10 we have

(5.6) W ∗
1 ≤ Ψ(x, y)H∗

f (x, y)2 + O(R6) + O(R7) + O(R8) ,

where

R6 = Ψ(x, y)
∑

pkql≤x
p≤y,q≤y

f(pk)f(ql)
pkql%∗(u)2

%∗(u− t)%∗(u− s)(u− t− s + 1)−1 ,

R7 = Ψ(x, y)
∑

pkql≤x
p≤y,q≤y

f(pk)f(ql)
pkql%∗(u)2

%∗(u− t)%∗(u− s)(p−αu−t − p−αu−t−s) ,

R8 = Ψ(x, y)
∑

pkql≤x
p≤y,q≤y

f(pk)f(ql)
pkql%∗(u)2

%∗(u− t)%∗(u− s)
(

s

u

)
.

Applying the Cauchy–Schwarz inequality, and then using Lemmas 11
and 13 and (1.13) yields

R6 � Ψ(x, y)Θ∗
f (x, y)(H∗

f (x, y)2u−2 + H∗
f (x, y)(ΣB))1/2(5.7)

� Ψ(x, y)Θ∗
f (x, y) .

It is easy to prove that

p−αu−t − p−αu−t−s � p−αu−t

(
s

u

)
� s

u
.
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Hence R7 � R8. Applying the Cauchy–Schwarz inequality and then using
Lemmas 11 and 12 we have
(5.8) R8 � Ψ(x, y)Θ∗

f (x, y)(u−2H∗(x, y)(ΣA))1/2 � Ψ(x, y)Θ∗
f (x, y) .

Obviously,
(5.9) W ∗

2 � Ψ(x, y)Θ∗
f (x, y) .

Collecting (5.5)–(5.9) yields

(5.10)
∑

n∈S(x,y)

f2(n) ≤ Ψ(x, y)H∗
f (x, y)2 + O(Ψ(x, y)Θ∗

f (x, y)) .

From this and (5.4), the proof of Theorem 3 is now complete.

P r o o f o f C o r o l l a r y 2. We may suppose without loss of generality
that f ≥ 0. We have
(5.11) H∗

f (x, y) = H∗
f (x, y)−∆∗(x, y) ,

where

∆∗(x, y) =
∑

pk≤x,p≤y

f(pk)
pk%∗(u)

%∗
(

u− log pk

log y

)
p−α(x/pk,y) .

By (5.1), (5.2) and (5.11) we have

(5.12)
∑

n∈S(x,y)

{f(n)−H∗
f (x, y)}2

=
∑

n∈S(x,y)

f2(n)− Ψ(x, y)H∗
f (x, y)− 2Ψ(x, y)H∗

f (x, y)∆∗(x, y)

+ O(Ψ(x, y)Θ∗
f (x, y)) .

Now (5.10) and (5.11) imply∑
n∈S(x,y)

f2(n) ≤ Ψ(x, y)H∗
f (x, y)2 − 2Ψ(x, y)H∗

f (x, y)∆∗(x, y)(5.13)

+ Ψ(x, y)∆∗(x, y)2 + O(Ψ(x, y)Θ∗
f (x, y)) .

Applying the Cauchy–Schwarz inequality and Lemma 9 we obtain

∆∗(x, y)2 ≤ Θ∗
f (x, y)

∑
pk≤x,p≤y

1
pk%∗(u)

%∗(u− t)p−2αu−t

� Θ∗
f (x, y)

∑
pk≤x,p≤y

1
pk+2

p(k+2)(1−αu) .

(7.8) of [6] implies the last sum is � 1, for x, y satisfying (4.18) and x0

sufficiently large, hence
(5.14) ∆∗(x, y) � Θ∗

f (x, y) .

Combining (5.12)–(5.14) completes the proof of Corollary 2.
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6. Examples. Let

β(n) =
∑
p|n

p , B(n) =
∑
pα‖n

αp , B1(n) =
∑
pα‖n

pα ,

where pα||n means that pα divides n (p prime), but pα+1 does not.
The functions β(n), B(n) and B1(n) are additive, and they are in a sense

“large” (the average order is π2n/(6 log n), see [2]).

Proposition 1. For x, y satisfying (1.6) we have uniformly

ηβ(x, y) = li(yeξ(u))
(

1 + O

(
1
u

))
and

θβ(x, y) = li(y2eξ(u))
(

1 + O

(
1
u

))
,

where ηf (x, y) and θf (x, y) are defined as in [1].

Proposition 2. For x, y satisfying (1.6) we have uniformly

HB(x, y) = li(yeξ(u))
(

1 + O

(
1
u

))
and

ΘB(x, y) = li(y2eξ(u))
(

1 + O

(
1
u

))
,

where Hf (x, y) and Θf (x, y) are defined as in Section 1.

Proposition 3. For x, y satisfying (1.6) we have uniformly

HB1(x, y) =
c(u)
%(u)

y

log y

(
1 + O

(
u

log y

))
,(6.1)

ΘB1(x, y) =
1

%(u)

{
y[u]+1

([u] + 1) log y
(6.2)

+
([u] + 1)yu+u/([u]+1)

([u] + 2)u log y

}(
1 + O

(
1

log y

))
,

where [x] denotes the greatest integer not exceeding the real number x, and
c(u) =

∑
1≤k≤[u] %(u− k), and 1 ≤ c(u) < 3.

R e m a r k s. (i) It is easily seen that for 1 ≤ u ≤ (log y)1−ε,

ηβ(yu, y) ∼ HB(yu, y) as y →∞ ,

θβ(yu, y) ∼ ΘB(yu, y) as y →∞ ,

and that for 2 ≤ u ≤ (log y)1−ε and y ≥ y0 (y0 is a sufficiently large
constant),

HB1(y
u, y) > c2HB(yu, y) (c > 1)
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and

ΘB1(y
u, y) > y1/2ΘB(yu, y) .

From this we see that the generalization obtained in Theorem 1 is in a sense
non-trivial.

(ii) We emphasize that in the classical case y = x,

ηβ(x, x) ∼ HB(x, x) ∼ HB1(x, x) as x →∞

and

θβ(x, x) ∼ ΘB(x, x) ∼ ΘB1(x, x) as x →∞ .

We will only prove Proposition 3; the proofs of Propositions 1 and 2 are
similar but simpler.

P r o o f o f P r o p o s i t i o n 3. By the definition of Hf (x, y), we have

HB1(x, y) =
1

%(u)

{ ∑
1≤k≤u

∑
p≤y

%

(
u− log pk

log y

)

+
∑

[u]+1≤k≤log x/ log 2

∑
p≤x1/k

%

(
u− log pk

log y

)}
=

1
%(u)

(Σ1 + Σ2) , say .

Partial summation and the prime number theorem yield∑
p≤y

%

(
u− k log p

log y

)
=

y∫
2

%

(
u− k log z

log y

)
dz

log z

(
1 + O

(
1

log y

))
(6.3)

+ O

( y∫
2

∣∣∣∣%′(u− k log z

log y

)∣∣∣∣ k

log y

dz

z

)
= I1 + O(I2) , say .

In the first integral we make the change of variable w = log z/ log y and
obtain

I1 =
1∫

δ

%(u− kw)yw dw

w

(
1 + O

(
1

log y

))
,

where δ = log 2/ log y. Now let us apply integration by parts in such a
manner that yw is chosen as the factor to be integrated, which results in the
appearance of a factor 1/ log y. By routine calculations we obtain

I1 = %(u− k)
y

log y

(
1 + O

(
1

log y

))
+ O

(
k%(u− k − 1)

u− k + 1
y

log2y

)
,
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and similarly,

I2 �
y

log2y

k

u− k + 1
%(u− k − 1) (k ≤ u− 1) .

This implies that

Σ1 =
y

log y

∑
1≤k≤u

%(u− k)
(

1 + O

(
u

log y

))
.

To estimate Σ2, we apply again partial summation and the prime number
theorem to obtain∑

p≤x1/k

%

(
u− k log p

log y

)
� kx1/k

log x
+

k2x1/k

log x log y
,

so that

Σ2 �
uyu/([u]+1)

log2y
.

This provides the required estimate. Also

c(u) =
∑

1≤k≤[u]

%(u− k)

≤ 1 + %(1) + %(2) + . . . + %([u]− 1)

≤ 1 +
∞∫

0

%(u) du = 1 + eγ < 3 .

It remains to prove the estimate (6.2). We write

ΘB1(x, y) =
1

%(u)

{ ∑
1≤k≤u

∑
p≤y

pk%

(
u− log pk

log y

)

+
∑

[u]+1≤k≤log x/ log 2

∑
p≤x1/k

pk%

(
u− log pk

log y

)}
=

1
%(u)

(Σ3 + Σ4) , say .

Partial summation and the prime number theorem yield

(6.4)
∑
p≤y

pk%

(
u− k log p

log y

)

=
log y∫

log 2

e(k+1)w%

(
u− kw

log y

)
dw

w

(
1 + O

(
1

log2y

))
.
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Using integration by parts we deduce that the right-hand side of (6.4) is
equal to

yk+1

(k + 1) log y
%(u− k)

(
1 + O

(
1

log2y

))

+ O

( log y∫
log 2

e(k+1)w

k + 1
%

(
u− kw

log y

)
dw

w2

)

+ O

( log y∫
log 2

e(k+1)w

k + 1

∣∣∣∣%′(u− kw

log y

)∣∣∣∣ k

log y

dw

w

)
.

The first error term is of order

� yk+1

(k log y)2
%(u− k) .

By the definition of %(u), the second error term can be bounded, for k ≤ u,
by

� k

log y

%(u− k)
u− k + 1

log y∫
log 2

e(k+1)w

k + 1
dw

w
� yk+1

k log2y
.

Thus, we obtain

Σ3 =
y[u]+1

([u] + 1) log y

(
1 + O

(
1

log y

))
.

Moreover, we may deduce in the same way as before

Σ4 =
∑

[u]+1≤k≤log x/ log 2

kx(k+1)/k

(k + 1) log x

(
1 + O

(
1

log x

))

=
([u] + 1)x([u]+2)/([u]+1)

([u] + 2) log x

(
1 + O

(
1

log x

))
.

Thus the proof of (6.2) is complete.
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