Corrigendum to the paper

"Constants for lower bounds for linear forms in

the logarithms of algebraic numbers II.
The homogeneous rational case"
(Acta Arith. 55 (1990), 15-22)
by

Josef Blass, A. M. W. Glass, David K. Manski,

David B. Meronk, and Ray P. Steiner

In the main theorem of the paper and Corollary 1 (as well as all results of part I, Acta Arith. 55 (1990), 1-14), there is an $n^{2 n+1}$ appearing in the constant for the lower bound of the linear form in the logarithms of the algebraic numbers. Inadvertently, this $n^{2 n+1}$ was omitted from Corollary 2 making the general case far better than the special case (Theorem) since $n^{2 n+1} / n!\rightarrow \infty$ as $n \rightarrow \infty$. This is palpably in error. The lower bound on $|\Lambda|$ in Corollary $2($ if $\Lambda \neq 0)$ should be

$$
\exp \left\{\frac{-\left(24 e^{2}\right)^{n}}{\left(\log \bar{E}_{2}\right)^{n+1}} 2^{20} n^{2 n+1} D^{n+2} V_{1} \ldots V_{n}(\log \bar{M})\left(W^{*}+C(n, D)\right)\right\}
$$

where $C(n, D)=n(n+1) \log \left(D^{3} \bar{V}_{n}\right)+x_{n}^{*} / n+\log d, \bar{V}_{j}=\max \left\{j V_{j}, 1\right\}$ $(1 \leq j \leq n), x_{n}^{*}$ is defined in part I and $\bar{M}=M\left(\bar{V}_{n-1} / V_{n-1}^{+}\right)^{n}$. This Corollary is obtained from the Theorem by essentially replacing V_{j} by $j V_{j}$ $(1 \leq j \leq n)$; hence the term $n^{2 n+1} / n!$ in the special case becomes $n^{2 n+1}$ in the general rational homogeneous case.

Our apologies for any problems that this typographical error may have caused to others.

