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Some division theorems for vector fields

by Andrzej Zajtz (Kraków)

Abstract. This paper is concerned with the problem of divisibility of vector fields with
respect to the Lie bracket [X,Y ]. We deal with the local divisibility. The methods used
are based on various estimates, in particular those concerning prolongations of dynamical
systems. A generalization to polynomials of the adjoint operator ad(X) is given.

0. Introduction. The Lie bracket of differentiable vector fields on a
smooth manifold is one of the fundamental operations not only in differential
geometry. We deal with the following problem of division:

Given vector fields X, Z, does there exist a vector field Y such that
[X,Y ] = Z?

The problem has been considered only for local vector fields and the full
and positive answer is known whenever X has a nonvanishing germ. In this
case X has local representation ∂/∂x1 and the “quotient” Y can be taken
to be

Y (x1, . . . , xn) =
x1∫
−δ

Z(t, x2, . . . , xn) dt

for ‖x‖ = sup |xi| ≤ δ. This fact has been broadly exploited in papers
concerning the well-known Pursell–Shanks theorem and its generalizations.

Since our problem will also be of local character it can be assumed that
X and Z are vector fields defined in a neighbourhood of the origin 0 of Rn
and the equality [X,Y ] = Z is meant in the sense of germs, that is, there
exists a neighbourhood U of 0 in which it holds.

Thus X, Y , Z will be elements of the Lie algebra X(Rn) of local C∞

vector fields defined near the origin of Rn. In view of the above, the question
remains open only for homogeneous vector fields X, Z, that is, with X(0) =
Z(0) = 0. From now on the notation X(Rn) will be used for the subalgebra
of homogeneous elements.
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In order to justify what we deal with in the section that follows, let us
see how the flow Ψt of a given vector field X can be involved in the problem
of divisibility by X.

For any field Z the transfer of Z along the trajectories of X is defined
by

(Ψt)∗Z = (DΨ−t ◦ Ψt)Z ◦ Ψt ,
i.e.

(Ψt)∗Z(x) = DΨ−t(Ψt(x))Z(Ψt(x)) .

The Lie bracket [Z,X] is just the infinitesimal version of that and we have

[Z,X] =
d

dt

∣∣∣∣
t=0

(Ψt)∗Z .

More generally,
d

dt
(Ψt)∗Z = [(Ψt)∗Z,X] .

Setting Yt = (Ψt)∗Z we can write

Y ′t = [Yt, X]
(
Y ′ =

d

dt
Y

)
.

This gives

(0.1) Z = −
[ t∫

0

Ys ds,X
]

+ Yt

since Y0 = Z. Without loss of generality we can assume that X is complete
so the range of t is (−∞,∞). If necessary we can replace X by fX where
f is a C∞ function which is 1 in a neighbourhood of 0 and has a compact
support in the set where X is defined. Suppose that

1o Yt → 0 as t→∞,
2o the integral

(0.2) Y (x) =
∞∫
0

Yt(x) dt

is convergent and Y is C∞ in a neighbourhood of 0. Then Z = [X,Y ] so Y
is a solution to the problem.

Since X(0) = 0 we have Ψt(0) = 0 for all t. If x = 0 is asymptotically
stable then Ψt(x)→ 0 as t→∞ for small ‖x‖. As also Z(0) = 0, it follows
that Z(Ψt(x))→ 0, but what we need is that DΨ−t(Ψt(x))Z(Ψt(x)) and all
its x-derivatives converge to 0 as t→∞, uniformly in x. The study of this
question will be the subject of the next section.
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1. Some bounds to flows. Consider the system of differential equations

(1.1) x′ = X(x) (x′ = dx/dt)

where x, X(x) are n-vectors, X is C∞ in a neighbourhood of x = 0 and
X(0) = 0. Thus X can be written

(1.1)′ X(x) = Ax+ h(x)

with A = DX(0) and ‖h(x)‖ ≤ L‖x‖2. We may assume that the Lipschitz
constant L is global, so that solutions to (1.1) are defined globally.

Assume that all the eigenvalues λi of A satisfy Reλi < 0 for i = 1, . . . , n
(for short: Reλ < 0). It is known that under this condition there exist
positive constants K and c such that

‖etA‖ ≤ Ke−ct for t > 0 ,

and δ > 0 such that

(1.2) ‖Ψt(x)‖ ≤ Ke−ct/2‖x‖ for ‖x‖ ≤ δ .
Here Ψt(x) is the solution of (1.1) passing through x at t = 0 (the flow of X).
For the constant c we may take any number < min(|Reλ|) (this is easily
seen by writing A in Jordan canonical form).

Lemma 1.1. If there is a bound

‖Ψt(x)‖ ≤ Kec(t)‖x‖ for ‖x‖ ≤ δ , t ≥ 0 ,

with K a constant and c(t) depending only on the eigenvalues of A and not
on their multiplicities (as in the above case), then the derivatives DkΨt(x),
k = 1, 2, . . . , also have similar bounds with the same δ and c(t) and different
constants Kk.

P r o o f. Consider the following variational equation (kth prolongation of
(1.1) with respect to x):

(1.3)



x′ = X(x) ,
ξ′1 = DX(x)ξ1 ,
ξ′2 = D2Xξ1ξ1 +DXξ2 ,
. . .

ξ′k =
k∑
s=1

DsX
∑

α1+...+αs=k
αi>0

ξα1 . . . ξαs ,

with ξα ∈ Rn for α = 1, . . . , k. With brief notation (x, ξ′1, . . . , ξ
′
k) =

F (x, ξ1, . . . , ξk) the Hessian of this equation, i.e. DF (0), is of the form
A

A
. . .

A

 (of dimension (k + 1)n) .
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Thus DF (0) has the same eigenvalues as A.
For any constant vector v ∈ Rn the system

(Ψt(x), DΨt(x)v, . . . , DkΨt(x)vk)

is a solution to (1.3) passing through (x, v, 0, . . . , 0) ∈ R(k+1)n. In fact,

(DkΨtv
k)′ = (DkΨt)′vk = DkΨ ′tv

k = Dk(X ◦ Ψt)vk

=
( k∑
s=1

Ds(X)Ψt
∑

α1+...+αs=k
αi>0

Dα1Ψt . . . D
αsΨt

)
vk

and (Dα1Ψt . . . D
αsΨt)vk = (Dα1Ψtv

α1) . . . (DαsΨtv
αs). Therefore, if a

bound ‖Ψt(x)‖ ≤ kec(t)‖x‖ holds for ‖x‖ ≤ δ and t ≥ 0, then

‖DlΨt(x)vl‖ ≤ Kle
c(t)‖(x, v, 0, . . . , 0)‖ , l = 1, . . . , k ,

for all ‖x‖ ≤ δ and any ‖v‖ ≤ 1. This gives ‖DlΨt‖ ≤ K ′lec(t).
Lemma 1.2. We have

(1.4) |detDΨt(x)| ≥Me(trA)t for ‖x‖ ≤ δ ,
with a positive constant M .

P r o o f. Set ∆t(x) = detDΨt(x). Then ∆t+s(x) = ∆t(Ψs(x)). Hence

∆′s(x) = ∆′0(Ψ0(x))∆s(x) .

A routine computation leads to ∆′0(ξ) = trDX(ξ) and finally

(1.4) ∆s(x) = exp
t∫

0

trDX(Ψs(x)) ds ,

since ∆0(x) = 1. By applying (1.1)′ this can be written as

∆s(x) = e(trA)t exp
t∫

0

trDk(Ψs(x)) ds .

Since
|trDk(Ψs(x))| ≤ C‖Ψs(x)‖2 ≤ CδKe−ct ,

the integral
∫ t
0

trDk(Ψs(x)) ds is bounded from below by −CδK/c. Thus
we can take M = exp(−CδK/c).
Lemma 1.3. There are constants Kk and Lk such that

(1.5) ‖DkΨt(x)‖ ≤ Kke
−ct/2

(1.6) ‖Dk[DΨ−t(Ψt(x))]‖ ≤ Lke(k+1)at ,

where a = − trA− (n− 1)c and ‖x‖ ≤ δ.
P r o o f. The bounds (1.5) follow immediately from Lemma 1.1 with ref-

erence to (1.2).
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For (1.6), from the identity Ψ−t(Ψt(x)) = x it follows that DΨ−t(Ψt(x))
is equal to the inverse matrix to DΨt(x). In view of (1.5) and Lemma 1.2
the elements of (DΨt(x))−1 are majorized in absolute value by

e(− trA−(n−1)c)t (= eat)

up to a constant multiplicative factor.
Now from (DΨt)−1 ◦DΨt = I we get

D(DΨt)−1DΨ−t + (DΨt)−1D2Ψt = 0 ,

which gives
‖D(DΨt)−1‖ ≤ L1e

2at ,

and (1.6) follows by induction.
We denote by Xm(Rn) the space of local vector fields, m-flat at 0.

Theorem 1.4. Suppose X is as above and Z ∈ Xm(Rn). If (k + 1)a −
mc/2 < 0 then there exists a Ck vector field Y in a neighbourhood of 0 such
that [X,Y ] = Z.

P r o o f. Z being m-flat satisfies ‖DkZ(x)‖ ≤ Mk‖x‖m−k for 0 ≤ k ≤
m− 1 and it is bounded for k ≥ m when ‖x‖ ≤ δ. We have

(1.7) ‖Dk(DΨ−t(Ψt(x))Z(Ψt(x)))‖ ≤
∑
r+s=k

‖Dr(DΨ−t ◦ Ψt)‖ ‖Ds(Z ◦ Ψt)‖ .

By (1.2) and (1.5)

‖(DuZ) ◦ Ψt‖
.
≤ e−(m−u)ct/2 for u ≤ m− 1 ,

and the left hand side is bounded for u ≥ m. Here and below,
.
≤ indicates

that the bound holds up to a multiplicative constant.
As the other term in (1.7) is bounded by e−uct/2 we get

(1.8) ‖Ds(Z ◦ Ψt)‖
.
≤ e−mct/2

for all s since u ≥ m. In view of (1.6)–(1.8) we have

‖Dk(DΨ−t ◦ Ψt)Z ◦ Ψt| ‖
.
≤ e((k+1)a−mc/2)t .

Suppose (k + 1)a−mc/2 < 0 for a positive integer k. Then the integral

(1.9) F (X,Z) =
∞∫
0

(Ψt)∗Z dt
(

=
∞∫
0

(exp tX)∗Z dt
)

is a vector field of class Ck in the ball ‖x‖ ≤ δ.
Since clearly ‖(Ψt)∗Z‖ → 0 as t→∞, we get by (0.1)

(1.10) [X,F (X,Z)] = Z ,

which was to be proved.
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2. Divisibility by linear vector fields. Suppose X = Ax. Then
Ψt(x) = etAx. As previously we assume that A satisfies Reλ < 0.

Let c be any constant < min(|Reλ|) and b any constant > max(|Reλ|).
Then

(2.1) ‖eta‖ ≤ Ke−ct , ‖e−tA‖ ≤ Lebt , t ≥ 0 .

We call

d(X) =
max(|Reλ|)
min(|Reλ|)

the dispersion of X. Obviously b/c > d(X).

Theorem 2.1. Suppose that Z is m-flat at x = 0 and m ≥ d(X) + 1.
Then Z is divisible by X with a quotient F (X,Z) defined by (1.9).

P r o o f. Now
(Ψt)∗Z(x) = e−tAZ(etA)

and
Dk((Ψt)∗Z(x) = e−tADkZ(etA)ektA , k ≥ 0 .

Exploiting the m-flatness of Z as in the proof of Theorem 1.4 we come to
the following estimate:

‖Dk((Ψt)∗Z(x))‖
.
≤ e(b−mc)t , k = 0, 1, . . .

The constants b and c may be taken such that b/c < d(X)+1. It follows that
b −mc < 0 for m ≥ d(X) + 1. Consequently, the integral (1.9) converges
uniformly together with all its derivatives. Thus F (X,Z) is a C∞ vector
field in any ball contained in the domain of Z.

In particular, if X = x then d(X) = 1 and taking m = 2 we conclude
from Theorem 2.1 that each Z from X2(Rn) is divisible by X.

3. Divisibility by means of linearization. Consider again the general
case X = Ax+h(x) as in (1.1). The field X0 = Ax is called the linearization
of X at 0. From now on the vector field X will be thought of locally as the
germ at 0 of a smooth map X : Rn → Rn.

Suppose that X is C∞-equivalent to its linearization X0, that is, there
exists a C∞-diffeomorphism f of Rn, with f(0) = 0, such that f∗X = X0

in a neighbourhood of 0.
For a given Z set Z0 = f∗Z and assume that there is a Y0 such that

Z0 = [Y0, X0]. This means

f∗Z = [Y0, f∗X] = f∗[(f−1)∗Y0, X] .

Hence Z = [Y,X] with Y = (f−1)∗Y0, and we obtain

Lemma 3.1. If f∗Z is divisible by the linearization of X then Z is divisible
by X.
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Note that the transformation f∗ does not change the order of flatness
of Z.

Which (germs of) vector fields are linearizable? The answer is: almost
all. This can be concluded from the following theorems of Sternberg:

Either of the conditions below implies that a vector field X with X(0) = 0
is C∞-equivalent to its linearization DX(0)x.

(i) Each eigenvalue λ of DX(0) satisfies Reλ < 0 and

(3.1) X(x) = DX(0)x+ o(x∞) .

(ii) Each eigenvalue λi (i = 1, . . . , n) satisfies

(3.2) λi 6= m1λ1 + . . .+mnλn

whenever the mj are non-negative integers with m1 + . . .+mn ≥ 2 ([1], [2]).

Combining these facts with our results of previous sections, via Lemma
3.1, we come to the following conclusion.

Theorem 3.2. Suppose that X is a C∞ vector field and DX(0) has all
eigenvalues with negative real parts. If X satisfies either (3.1) or (3.2) then
every vector field Z, m-flat with m ≥ d(X) + 1, is C∞-divisible by X.

Sternberg’s algebraic condition (3.2) is also directly involved in the prob-
lem of divisibility of vector fields. Namely, let∑

aiαx
α ,

∑
biαx

α ,
∑

ciαx
α

be the Taylor series at x = 0 for X, Y , Z respectively. The equality [X,Y ] =
Z gives

(3.3)
∑

α+β=γ
j=1,...,n

biα+1j
ajβ − a

i
α+1j

bjβ = ciγ

with 1j standing for the multiindex (0, . . . , 0, 1, 0, . . . , 0), where 1 is in the
jth place. For given coefficients a and c there is a purely algebraic problem
of solvability of this equation with respect to the unknown coefficients b.

Let us take X =
∑n
i=1 λixi∂/∂xi. Then the λi are the eigenvalues of

DX(0).
Let α = (α1, . . . , αn), α1 + . . .+ αn = |α|. In this case all aiα in formula

(3.3) vanish for |α| ≥ 2. Hence (3.3) is now∑
j

(∑
k

biα+1j−1k
ajk − a

i
jb
j
α

)
= ciα .

Since aij = λiδ
i
j and the number of the indices j is αj we get(∑

j

αjλj − λi
)
biα = ciα .
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Suppose that Z is m-flat and ciα 6= 0 for |α| ≥ m; then for the existence of
Y such that [X,Y ] = Z it is necessary to have

(3.4) λi 6=
∑
j

αjλj

for any non-negative integers α1, . . . , αn satisfying |α| ≥ m. This is exactly
Sternberg’s condition for m = 2 (in the regularity class k =∞).

If λi =
∑
αjλj and Reλ < 0 (or Reλ > 0) then

|Reλi| =
∑

αj |Reλj | ≥ |α|min(|Reλj |) .

This implies |α| ≤ max(|Reλj |)/min(|Reλj |) = d(X). Thus for m ≥ d(X)
+ 1 we have |α| ≤ m− 1 and the condition (3.4) is satisfied (as it should be
in view of Theorem 3.2). This also shows that the lower bound d(X) + 1 for
m in Theorem 3.2 is sharp.

On the other hand, if there are both negative and positive numbers in
Reλ then the equality λi =

∑
αjλj may occur for all |α|.

4. Generalization to polynomials. For some applications to actions
of infinite Lie groups it is useful to know when polynomials of the adjoint
mapping ad(X) act surjectively in the space of infinitely flat vector fields.
An answer to this question is given in the following:

Theorem 4.1. Let P (ξ) = a0 + a1 + . . .+ arξ
r be a polynomial of degree

r > 0. Suppose that X satisfies Reλ < 0. For any vector field Z vanishing
up to infinite order at x = 0 there exists a vector field Y such that Z =
P (ad(X))Y . The Y can be defined by

(4.1) Y (x) = −
∞∫
0

f(t)(Ψt)∗Z(x) dt

where f(t) is the solution of the differential equation

(4.2) a0ξ − a1ξ
′ +

r∑
k=2

(k − 1)akξ(k) = 0 ,

with initial conditions ξ(0) = . . . = ξ(r−2)(0) = 0, ξ(r−1)(0) = 1/((r − 1)ar)
for r ≥ 2 and ξ(0) = −1/a1 for r = 1.

P r o o f. Equation (4.2) being with constant coefficients, there are positive
constants α, β such that

(4.3) |f(t)| ≤ αeβt for t ≥ 0 .

As in Section 1, we have the following bounds:

(4.4) ‖f(t)Dk(Ψt)∗Z(x)‖ ≤ αMk
me

(β+γk−mc)t , c > 0 ,
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for t ≥ 0 and ‖x‖ ≤ δ. With k fixed we can choose m great enough so that
β+γk−mc < 0. This makes the integral (4.1) uniformly convergent in B(δ)
together with all derivatives. Thus Y is C∞ in B(δ).

Set Yt = (Ψt)∗Z. In the introduction we saw that Y ′t = ad(X)Yt. Hence

Y
(k)
t = [ad(X)]kYt , k ≥ 1 .

Therefore

(4.5) P (ad(X))fYt = a0fYt + a1fY
′
t + . . .+ arfY

(r)
t .

From
(fYt)(k) = fY

(k)
t + k(f ′Yt)(k−1) + (1− k)f (k)Yt

for k ≥ 1, we get

fY
(k)
t = (fYt)(k) − k(f ′Yt)(k−1) + (k − 1)f (k)Yt .

On inserting this into (4.5) one gets for r ≥ 2

P (ad(X))fYt =
(
a0f − a1f

′ +
r∑

k=2

ak(k − 1)f (k)
)
Yt + a1(fYt)′

+
r∑

k=2

ak[(fYt)(k) − k(f ′Yt)(k−1)]

= a1(fYt)′ +
r∑

k=2

ak[(fYt)(k) − k(f ′Yt)(k−1)]

according to our assumption on f . Now, by integrating either side with
respect to t over the interval (0,∞) and using notation (4.1) we obtain

(4.6) P (ad(X))Y = a1fYt|∞0 +
{ r∑
k=1

ak[(fYt)(k−1) − k(f ′Yt)(k−2)]
}∞

0
,

and f satisfies f(0) = f ′(0) = . . . = f (r−2)(0) = 0, f (r−1)(0) = 1/((r−1)ar).
So, in view of (4.4) for k = 0, we have

fYt|∞0 = −f(0)Y0 = −f(0)Z = 0 .

As the bound (4.3) can be extended to all derivatives of f and the operator
ad(X) is bounded in B(δ), there is a constant M such that

‖f (p)Y
(q)
t ‖ ≤ αeβt‖ad(X)q‖ ‖Yt‖ ≤Me(β+γ0−mc)t , p, q ≥ 0 ,

with β + γ0 −mc < 0. Therefore

Ik = [(fYt)(k−1) − k(f ′Yt)(k−2)]∞0 = 0

for 2 ≤ k ≤ r − 1. For k = r

Ir = −f (r−1)(0)Y0 + rf (r−1)(0)Y0 = (r − 1)f (r−1)(0)Z .
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Coming back to (4.6) we finally get

P (ad(X))Y = ar(r − 1)f (r−1)(0)Z = Z ,

as required.
For r = 1, we take f(0) = −1/a1. Then

P (ad(X))Y = a1fYt|∞0 = −a1f(0)Z = Z .

In particular:

(i) If P (u) = a+ u, then f(t) = −eat and

Y =
∞∫
0

eat(Ψt)∗Z dt .

(ii) If P (u) = ur, r ≥ 2, then

Y =
1

(r − 1)!(r − 1)

∞∫
0

tr−1(Ψt)∗Z dt .

This Y satisfies

Z = [X, . . . [X, [X,Y ]]] (r commutators) .

As we see from the proof one can expect existence of a solution to the
equation P (ad(X))Y = Z also in the case where Z vanishes at x = 0 up to
a finite order m. This would depend on the polynomial P and the required
regularity class of Y which is to be defined by formula (4.1).

References

[1] E. Ne lson, Topics in Dynamics, I. Flows, Princeton University Press, Princeton
1969.

[2] S. Sternberg, On the structure of local homeomorphisms of Euclidean n-space, II ,
Amer. J. Math. 80 (1958), 623–631.

JONTKOWA GÓRKA 15A
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