A note on the Kobayashi pseudodistance and the tautness of holomorphic fiber bundles

by Do Duc Thai and Nguyen Le Huong (Ha noi)

Abstract. We show a relation between the Kobayashi pseudodistance of a holomorphic fiber bundle and the Kobayashi pseudodistance of its base. Moreover, we prove that a holomorphic fiber bundle is taut iff both the fiber and the base are taut.

I. Introduction. In this article we shall show a relation between the Kobayashi pseudodistance of a holomorphic fiber bundle and the Kobayashi pseudodistance of its base. Moreover, we shall give another proof (not using universal coverings as in Nag [5]) that a holomorphic fiber bundle is taut iff both the fiber and the base are taut. An analogous result for hyperbolicity was proved by Nag [5].

In this section we recall some definitions and relevant properties.

We denote the Kobayashi pseudodistance on a complex space M by d_M (see Kobayashi [2], [3] and Lang [4]). M is called (complete) hyperbolic if d_M is a (complete) distance. M is called taut [3] if whenever N is a complex space and $f_i: N \to M$ is a sequence of holomorphic maps, then either there exists a subsequence which is compactly divergent or a subsequence which converges uniformly on compact subsets to a holomorphic map $f: N \to M$. It suffices that this condition should hold when N = D [3, p. 378], where D is the unit disk in \mathbb{C} .

Also, a complete hyperbolic space is taut, and a taut complex space is hyperbolic [3, p. 378].

Acknowledgement. The authors are grateful to the referee for many valuable comments.

2. THEOREM A. Let E be a holomorphic fiber bundle over M with hyperbolic fiber F and projection $\pi: E \to M$, where E, F, M are complex

¹⁹⁹¹ Mathematics Subject Classification: 32H15, 32L05.

Key words and phrases: holomorphic fiber bundle, Kobayashi pseudodistance, hyperbolic space, taut space.

manifolds. Then $d_M(x,y) = d_E(\widetilde{x}, \pi^{-1}(y)) = \inf_{\widetilde{y} \in \pi^{-1}(y)} d_E(\widetilde{x}, \widetilde{y})$ for all $x, y \in M$ and all $\widetilde{x} \in \pi^{-1}(x)$.

Proof. We have $d_M(x,y) \leq d_E(\widetilde{x}, \pi^{-1}(y))$ for all $\widetilde{x} \in \pi^{-1}(x)$. We must prove the reverse inequality. Take arbitrary points $x, y \in M$ and $\widetilde{x} \in \pi^{-1}(x)$. Consider $a_1, \ldots, a_k \in D$ and $f_1, \ldots, f_k \in \operatorname{Hol}(D, M)$ such that

$$f_1(0) = x$$
, $f_i(a_i) = f_{i+1}(0)$, $f_k(a_k) = y$.

Consider the pull-back diagram

$$\begin{array}{ccc}
D \times_M E & \xrightarrow{\sigma_1} & E \\
\Theta_1 \downarrow & & \downarrow \pi \\
D & \xrightarrow{f_1} & M
\end{array}$$

By a result of Royden [6], there is an equivalence $\Phi_1: D \times F \to D \times_M E$ of holomorphic fiber bundles over M. Thus there exists $c_1 \in F$ such that $\sigma_1 \circ \Phi_1(0, c_1) = \widetilde{x}$. We define a holomorphic map $\varphi_1: D \to E$ by

$$\varphi_1(z) = \sigma_1 \circ \Phi_1(z, c_1)$$
 for all $z \in D$.

Consider the pull-back diagram

$$\begin{array}{ccc} D\times_M E & \xrightarrow{\sigma_2} & E \\ \Theta_2 \downarrow & & \downarrow \pi \\ D & \xrightarrow{f_2} & M \end{array}$$

Reasoning as above, there exists an equivalence $\Phi_2: D \times F \to D \times_M E$ of holomorphic fiber bundles over M and a point $c_2 \in F$ such that $\sigma_2 \circ \Phi_2(0, c_2) = \varphi_1(a_1)$. Define a holomorphic map $\varphi_2: D \to E$ by

$$\varphi_2(z) = \sigma_2 \circ \Phi_2(z, c_2)$$
 for all $z \in D$.

Continuing this process we find maps $\varphi_1, \ldots, \varphi_k \in \operatorname{Hol}(D, E)$ such that $\varphi_1(0) = \widetilde{x}, \varphi_i(a_i) = \varphi_{i+1}(0), \varphi_k(a_k) \in \pi^{-1}(y)$. Thus $d_M(x,y) \ge d_E(\widetilde{x}, \pi^{-1}(y))$ for all $\widetilde{x} \in \pi^{-1}(x)$.

3. LEMMA. Let $\pi: \widetilde{X} \to X$ be a holomorphic map between two complex spaces satisfying the following: For every $x \in X$ there exists an open neighbourhood U_x of x such that $\pi^{-1}(U_x)$ is taut. Then \widetilde{X} is taut if so is X.

Proof. Assume that X is taut and a sequence $\{\widetilde{f}_n\} \subset \operatorname{Hol}(D, \widetilde{X})$ is not compactly divergent. Without loss of generality we may suppose that there exists a sequence $\{z_n\} \subset D$ converging to a point $z \in D$ such that $\{\widetilde{f}_n(z_n)\}$ converges to a point $\widetilde{p} \in \widetilde{X}$.

Obviously $\{f_n = \pi \circ f_n\} \subset \operatorname{Hol}(D,X)$ is not compactly divergent and we can assume that $\{f_n\}$ converges uniformly to a map $F \in \operatorname{Hol}(D,X)$.

Put $p = \pi(\widetilde{p}) = F(z)$. Take an open neighbourhood U_p of p such that $\pi^{-1}(U_p)$ is taut. Since $\{f_n\}$ converges to F, there exists an open subset V of D such that $f_n(V) \subset U_p$ for all $n \geq N$.

On the other hand, since $\{\widetilde{f}_n(z_n)\}$ converges to \widetilde{p} and since $\pi^{-1}(U_p)$ is taut, we can assume that $\{\widetilde{f}_n|V\} \subset \operatorname{Hol}(V,\pi^{-1}(U_p))$ converges uniformly to a map $\widetilde{F} \in \operatorname{Hol}(V,\widetilde{X})$.

Consider the family \mathcal{V} of all pairs (W, Φ) , where W is an open subset of D and $\Phi \in \operatorname{Hol}(W, \widetilde{X})$ such that there exists a subsequence $\{\widetilde{f}_{n_k}|W\}$ of $\{\widetilde{f}_n|W\}$ which converges uniformly to Φ in $\operatorname{Hol}(W, \widetilde{X})$.

We define an order relation in $\mathcal V$ by setting $(W_1,\Phi_1)\leq (W_2,\Phi_2)$ if $W_1\subset W_2$ and for every subsequence $\{\widetilde f_{n_k}|W_1\}$ of $\{\widetilde f_n|W_1\}$ converging to Φ_1 in $\operatorname{Hol}(W_1,\widetilde X)$ uniformly on compact sets, the sequence $\{\widetilde f_{n_k}|W_2\}$ contains a subsequence converging to Φ_2 in $\operatorname{Hol}(W_2,\widetilde X)$. Assume that $\{(W_\alpha,\Phi_\alpha)\}_{\alpha\in\Lambda}$ is a well-ordered subset of $\mathcal V$. Put $W_0=\bigcup_{\alpha\in\Lambda}W_\alpha$. Define $\Phi_0\in\operatorname{Hol}(W_0,\widetilde X)$ by $\Phi_0|W_\alpha=\Phi_\alpha$ for all $\alpha\in\Lambda$. Take a sequence $\{(W_i,\Phi_i)\}_{i=1}^\infty\subset\{(W_\alpha,\Phi_\alpha)\}_{\alpha\in\Lambda}$ such that $(W_1,\Phi_1)\leq (W_2,\Phi_2)\leq\ldots$ and $W_0=\bigcup_{i=1}^\infty W_i$. Then there exists a subsequence $\{\widetilde f_n^1|W_1\}$ of $\{\widetilde f_n|W_1\}$ converging to Φ_1 in $\operatorname{Hol}(W_1,\widetilde X)$.

Consider $\{\tilde{f}_n^1|W_2\}$. As above $\{\tilde{f}_n^1\}$ contains a subsequence $\{\tilde{f}_n^2\}$ such that $\{\tilde{f}_n^2|W_2\}$ converges to Φ_2 in $\operatorname{Hol}(W_2,\widetilde{X})$.

Continuing this process we get sequences $\{\widetilde{f}_n^k\}$ such that $\{\widetilde{f}_n^k\} \in \{\widetilde{f}_n^{k-1}\}$ for every $k \geq 2$ and $\{\widetilde{f}_n^k|W_k\}$ converges uniformly to Φ_k in $\operatorname{Hol}(W_k,\widetilde{X})$. Therefore $\{\widetilde{f}_k^k\}$ converges to Φ_0 in $\operatorname{Hol}(W_0,\widetilde{X})$.

Thus $(W_0, \Phi_0) \in \mathcal{V}$ and hence the subset $\{(W_\alpha, \Phi_\alpha)\}_{\alpha \in \Lambda}$ has an upper bound. By Zorn's Lemma, the family \mathcal{V} has a maximal element (W, Φ) .

Let $\{\widetilde{f}_{n_k}|W\}$ be a subsequence of $\{\widetilde{f}_n|W\}$ converging uniformly to Φ in $\operatorname{Hol}(W,\widetilde{X})$. Take $z\in\overline{W}$ and an open neighbourhood U of $F(z_0)$ in X such that $\pi^{-1}(U)$ is taut. Since $\{f_n\}$ converges uniformly to $F\in\operatorname{Hol}(D,X)$ in $\operatorname{Hol}(D,X)$, there exists an open neighbourhood W_0 of z_0 in D such that $(\pi\circ\widetilde{f}_n)(W_0)\subset U$ for all $n\geq 1$. Hence $\widetilde{f}_n(W_0)\subset\pi^{-1}(U)$ for all $n\geq 1$.

Take $z_1 \in W_0 \cap W$. Then $\{\widetilde{f}_{n_k}(z_1)\}$ is convergent. By the normality of the family $\operatorname{Hol}(W_0, \pi^{-1}(U))$ and by the maximality of (W, Φ) we have $W_0 \subset W$ and W = D.

Notice that for the hyperbolicity the above lemma was proved by Eastwood [1].

4. COROLLARY. Let $\pi: \widetilde{X} \to X$ be a holomorphic covering map between two complex spaces. Then \widetilde{X} is taut if and only if so is X.

 $P \operatorname{roof.} \Rightarrow Assume \text{ that } \widetilde{X} \text{ is taut and a sequence } \{f_n\} \subset \operatorname{Hol}(D,X) \text{ is not compactly divergent. Then there exists a sequence } \{z_n\} \subset D \text{ converging } \mathbb{C}$

to $z_0 \in D$ such that $\{f_n(z_n)\}$ converges to $p \in X$. Put $f_n(z_n) = y_n$.

Since \widetilde{X} is taut, X is hyperbolic. Take $\widetilde{p} \in \pi^{-1}(p)$. Since $d_X(y_n, p) = \inf_{\widetilde{y}_n \in \pi^{-1}(y_n)} d_{\widetilde{X}}(\widetilde{y}_n, \widetilde{p})$ (see [2]), there exists $\widetilde{y}_n \in \pi^{-1}(y_n)$ such that $d_{\widetilde{X}}(\widetilde{y}_n, \widetilde{p}) < d_X(y_n, p) + 1/n$. Lift f_n to a map \widetilde{f}_n such that $\pi \circ \widetilde{f}_n = f_n$ and $\widetilde{f}_n(z_n) = \widetilde{y}_n$. Since $\{\widetilde{f}_n(z_n)\}$ converges to \widetilde{p} and \widetilde{X} is taut, we can assume that $\{\widetilde{f}_n\}$ converges uniformly to a map $\widetilde{f} \in \operatorname{Hol}(D, \widetilde{X})$ in $\operatorname{Hol}(D, \widetilde{X})$. Then $\{f_n\}$ converges to $\pi \circ \widetilde{f}$ in $\operatorname{Hol}(D, X)$.

- ← The proof is deduced immediately from Lemma 3.
- **5.** THEOREM B. Let E be a holomorphic fiber bundle over M with fiber F and projection $\pi: E \to M$, where E, F, M are complex manifolds. Then E is taut if and only if both F and M are.

Proof. \Rightarrow Assume that E is taut. Since F embeds as a closed complex subspace in E, F is taut. Assume that a sequence $\{f_n\} \subset \operatorname{Hol}(D,M)$ is not compactly divergent. Without loss of generality we may suppose that there exists a sequence $\{z_n\} \subset D$ converging to $z \in D$ such that $\{y_n = f_n(z_n)\}$ converges to $p \in M$. Take $\widetilde{p} \in \pi^{-1}(p)$. By Theorem A, $d_M(y_n,p) = \inf_{x_n \in \pi^{-1}(y_n)} d_E(\widetilde{p}, x_n)$. Hence there exists $x_n \in E$ such that $d_E(\widetilde{p}, x_n) < d_M(p, y_n) + 1/n$.

Pull back the fiber bundle $\pi: E \to M$ to a fiber bundle $\Theta_n: D \times_M E \to D$ getting a commutative diagram

$$\begin{array}{cccc} D\times_M E & \xrightarrow{\sigma_n} & E \\ \Theta_n \downarrow & & \downarrow \pi \\ D & \xrightarrow{f_n} & M \end{array}$$

As in the proof of Theorem A there exists an equivalence $\Phi_n: D \times F \to D \times_M E$ of holomorphic fiber bundles over D and $c_n \in F$ such that $\sigma_n \circ \Phi_n(z_n, c_n) = x_n$. Put $\varphi_n(z) = \sigma_n \circ \Phi_n(z, c_n)$ for all $z \in D$. It is easy to see that $\{\varphi_n(z_n)\}$ converges to $\widetilde{p} \in E$. Without loss of generality we may assume that $\{\varphi_n\}$ converges to a map $\varphi \in \text{Hol}(D, E)$ in Hol(D, E). Hence $\{f_n\}$ converges to $\pi \circ \varphi$ in Hol(D, M).

← The converse is deduced immediately from Lemma 3.

References

- [1] A. Eastwood, A propos des variétés hyperboliques complètes, C. R. Acad. Sci. Paris 280 (1975), 1071–1075.
- [2] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York 1970.
- [3] —, Intrinsic distance, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357–416.
- [4] S. Lang, Introduction to Hyperbolic Complex Spaces, Springer, 1987.

- [5] S. Nag, Hyperbolic manifolds admitting holomorphic fiberings, Bull. Austral. Math. Soc. 26 (1982), 181–184.
- [6] H. L. Royden, Holomorphic fiber bundles with hyperbolic fiber, Proc. Amer. Math. Soc. 43 (1974), 311–312.

DEPARTMENT OF MATHEMATICS PEDAGOGICAL INSTITUTE NO. 1 OF HA NOI HA NOI, VIET NAM

Reçu par la Rédaction le 9.5.1990 Révisé le 1.9.1990 et 5.1.1991