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Strangely sweeping one-dimensional diffusion

by Ryszard Rudnicki (Katowice)

Abstract. Let X(t) be a diffusion process satisfying the stochastic differential equa-
tion dX(t) = a(X(t)) dW (t) + b(X(t)) dt. We analyse the asymptotic behaviour of p(t) =

Prob{X(t) ≥ 0} as t→∞ and construct an equation such that lim supt→∞ t
−1 ∫ t

0
p(s) ds

= 1 and lim inft→∞ t−1
∫ t
0
p(s) ds = 0.

1. Introduction. In the present paper we investigate the stochastic
differential equation

(1.1) dX(t) = a(X(t)) dW (t) + b(X(t)) dt ,

where W (t) is a Wiener process on R. Assuming that a and b are differen-
tiable bounded functions and a(x) > 0 for x ∈ R, the asymptotic behaviour
of the trajectories of X(t) is described by the integrals

I1(x) =
x∫

−∞

exp
(
−

z∫
0

2b(u)
a(u)2

du

)
dz ,

I2(x) =
∞∫
x

exp
(
−

z∫
0

2b(u)
a(u)2

du

)
dz .

Namely,

(1.2) if I1(x) =∞ and I2(x) =∞, then

Prob{sup
t>0

X(t) =∞} = Prob{inf
t>0

X(t) = −∞} = 1 ,

(1.3) if I1(x) <∞ and I2(x) =∞, then

Prob{ lim
t→∞

X(t) = −∞} = 1 ,

(1.4) if I1(x) =∞ and I2(x) <∞, then

Prob{ lim
t→∞

X(t) =∞} = 1 ,
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(1.5) if I1(x) <∞ and I2(x) <∞, then

Prob{ lim
t→∞

X(t) =∞} = 1− Prob{ lim
t→∞

X(t) = −∞}

= M
I1(X(0))

I1(X(0)) + I2(X(0))
,

where MX denotes the mean value of the random variable X (see [1] for
the proof).

Although the trajectories of the process X(t) admit a rather simple
asymptotic description, the behaviour of the distribution of X(t) can be
complicated. It is well known that under some regularity conditions on a
and b the distribution of X(t) has a density for every t > 0. Let ft and gt
be the densities of two solutions of Eq. (1.1). In the next section we check
that if I1(0) =∞ or I2(0) =∞, then

(1.6) ‖ft − gt‖ → 0 as t→∞ ,

where ‖ · ‖ is the norm in L1(R). This condition means that the asymptotic
behaviour of the distribution of X(t) does not depend on the distribution
of X(0). From this it follows that if there exists a stationary solution of
(1.1), i.e., a solution whose distribution does not depend on t, then ft → g
in L1(R) as t→∞, where g is the density of the stationary solution of (1.1)
and ft is the density of a solution X(t) of (1.1). Moreover, in the next section
we check that if there is no stationary solution of (1.1), then for every c > 0
we have

(1.7)
c∫
−c

ft dx→ 0 as t→∞ ,

where ft is the density of a solution X(t) of (1.1).
From the above results it follows that if I1(0) =∞ or I2(0) =∞ and if

Eq. (1.1) has no stationary solution, then the asymptotic behaviour of the
function

p(t) = Prob{X(t) ≥ c}
does not depend on c and on the initial distribution of X(0). This leads to
the following basic question: does the function p(t) have a limit as t→∞?

Our paper is devoted to answering this question. Section 2 contains basic
notations and results used in the paper. In Section 3, using some results of
Gushchin and Mikhailov [2] we give a sufficient condition for the existence
of this limit. Section 4 contains the main result of the paper. We show that
the behaviour of p(t) can be surprisingly chaotic. Namely, we construct an
equation such that (1.6) and (1.7) hold and

lim sup
t→∞

1
t

t∫
0

p(s) ds = 1 ,(1.8)
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lim inf
t→∞

1
t

t∫
0

p(s) ds = 0 .(1.9)

In this example a(x) = 1 and b(x) → 0 as |x| → ∞. It is interesting that
even a small drift coefficient b(x) can cause the synchronous oscillation of
molecules between +∞ and −∞.

2. Preliminaries. In this section we assume that a ∈ C3(R), b ∈ C2(R)
and a(x) > α, where α is a positive constant and Cn(R) is the space of n
times differentiable bounded functions whose derivatives of order ≤ n are
continuous and bounded. It is well known that under these assumptions for
every t > 0 each solution X(t) of Eq. (1.1) has a density u(t, x) and the
function u satisfies the Fokker–Planck equation

(2.1)
∂u

∂t
=

∂2

∂x2

(
1
2
a(x)2u

)
− ∂

∂x
(b(x)u), (t, x) ∈ (0,∞)× R .

Let the distribution of X(0) have a density f . Then the solution u(t, x) of
Eq. (2.1) can be written in the form

(2.2) u(t, x) =
∫
R

K(t, x, y)f(y) dy ,

where the kernel K is independent of the initial density f and ‖u(t, ·) −
f‖L1 → 0 as t→ 0.

Eq. (2.1) generates a semigroup {P t}t≥0 of Markov operators on L1(R)
defined by

(2.3) P 0f = f, (P tf)(x) =
∫
R

K(t, x, y)f(y) dy , t > 0 .

We recall that a linear operator P on L1(R) is called a Markov operator
if P (D) ⊂ D, where D is the set of all densities, i.e., D = { f ∈ L1(R) :
f ≥ 0,

∫
f dx = 1}. In [4] it is proved that if

(2.4)
∞∫
−∞

exp
(
−

x∫
0

2b(y)
a(y)2

dy

)
dx =∞ ,

then for any two densities f and g we have

(2.5) ‖P tf − P tg‖L1 → 0 as t→∞ .

A semigroup {P t}t≥0 of Markov operators on L1(R) is called sweeping
if for every c > 0 and for every f ∈ L1(R) we have

(2.6)
c∫
−c

P tf dx→ 0 as t→∞ .
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The notion of sweeping was introduced by Komorowski and Tyrcha [3].
They proved that if {P t}t≥0 is a semigroup of integral Markov operators, if
{P t}t≥0 has no invariant density and if there exists a positive locally inte-
grable function f∗ invariant with respect to {P t}t≥0 , then this semigroup is
sweeping (see [3] for details). Using this criterion we can prove the following.

Lemma 1. The semigroup {P t}t≥0 generated by Eq. (2.1) is sweeping iff

(2.7)
∞∫
−∞

exp
( x∫

0

2b(y)
a(y)2

dy

)
dx =∞ .

P r o o f. Let

f∗(x) =
1

a(x)2
exp

( x∫
0

2b(y)
a(y)2

dy

)
.

Then f∗ is a positive locally integrable function such that P tf∗ = f∗ for
every t ≥ 0. Since a is a bounded function and a(x) > α > 0, (2.7) holds
iff
∫
f∗ dx =∞. If

∫
f∗ dx <∞, then f = f∗/‖f∗‖L1 is an invariant density

which does not satisfy (2.6). If
∫
f∗ dx = ∞ we check that there is no

invariant density. Suppose, on the contrary, that g is one. Then g satisfies
the differential equation

(2.8)
d2

dx2

(
1
2
a(x)2g(x)

)
− d

dx
(b(x)g(x)) = 0 .

A solution of (2.8) is given by

(2.9) g(x) = f∗

(
c1 + c2

x∫
0

ψ(y) dy
)
,

where

ψ(x) = exp
(
−

x∫
0

2b(y)
a(y)2

dy

)
and c1, c2 are constants. Since

∫
f∗ dx = ∞, the function g can be non-

negative and integrable only if

g(x) = cf∗

x∫
−∞

ψ(y) dy or g(x) = cf∗

∞∫
x

ψ(y) dy ,

where c is a positive constant. We consider the first case, the second one is
analogous. Since a and b are bounded and a(x) ≥ α > 0, there exists γ > 0
such that if |x− y| ≤ 1, then ψ(y)/ψ(x) ≥ γ. This implies that

g(x) ≥ cγa(x)−2 ≥ cγ(sup a(x))−2 > 0

for x ∈ R. Consequently, g is not a density. This completes the proof that
(2.7) implies sweeping.
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Conditions (1.6) and (1.7) mentioned in the introduction follow from the
analogous conditions for the semigroup {P t}t≥0 , because for every t > 0
each solution of (1.1) has a density. Let

p(t) =
∞∫
c

u(t, x) dx = Prob{X(t) ≥ c} .

If (2.4) and (2.7) hold, then limt→∞ p(t) does not depend on c and on the
distribution of X(0). Now (1.3) and (1.4) immediately yield.

Corollary 1. If I1(0) < ∞ and I2(0) = ∞, then p(t) → 0 as t → ∞.
If I1(0) =∞ and I2(0) <∞, then p(t)→ 1 as t→∞.

Another consequence of condition (2.5) and the sweeping property of the
semigroup {P t}t≥0 is the following

Corollary 2. Assume that for some constant c we have a(x) = a(c−x)
and b(x) = −b(c − x) for all x. Suppose that I1(0) = ∞ and (2.7) holds.
Then limt→∞ p(t) = 1/2.

We will also need the following time-homogeneous version of the Kol-
mogorov equation (see [5]). Let ϕ ∈ C2(R) and let u(t, x) be the solution of
the equation

(2.10)
∂u

∂t
=

1
2
a(x)2

∂2u

∂x2
+ b(x)

∂u

∂x

with the initial condition u(0, x) = ϕ(x). Then u(t, x) = Mϕ(X(t)), where
X(t) is the solution of (1.1) with the initial condition X(0) = x.

3.Convergence of p(x). The main result of this section is the following

Theorem 1. Let a ∈ C3(R), b ∈ C2(R), a(x) > α > 0 for x ∈ R and let

B(x) =
x∫

0

b(y)
a(y)2

dy

be a bounded function and

g(x) =
x∫

0

e−2B(y) dy .

Assume that the limits

lim
T→∞

1
g(T )

T∫
0

2(g′(x)a(x)2)−1 dx = β2 ,

lim
T→−∞

1
g(T )

T∫
0

2(g′(x)a(x)2)−1 dx = γ2



42 R. Rudnicki

exist , where β > 0 and γ > 0. Then for every solution X(t) of (1.1) and
c ∈ R the function p(t) = Prob{X(t) ≥ c} satisfies

(3.1) lim
t→∞

p(t) =
β

β + γ
.

The proof of Theorem 1 is based on the following theorem.

Theorem 2 (Gushchin, Mikhailov [2]). Let q ∈ C1(R) and q(x) ≥ α > 0
for x ∈ R. Let u(t, x) be the solution of the equation

(3.2) q(x)
∂u

∂t
=
∂2u

∂x2

with the initial condition u(0, x) = ϕ(x), where ϕ is a continuous bounded
function. Assume that the limits

lim
T→∞

1
T

T∫
0

q(s) ds = β2 ,

lim
T→∞

1
T

0∫
−T

q(s) ds = γ2 ,

lim
T→∞

1
T (β + γ)

T/β∫
−T/γ

ϕ(s)q(s) ds = A

exist , where β > 0 and γ > 0. Then u(t, x)→ A as t→∞ for each x ∈ R.

P r o o f o f T h e o r e m 1. Since B is a bounded function, conditions
(2.4) and (2.7) hold. This implies that the limit (3.1) does not depend on
the initial condition X(0) and on c. Let X(t) be the solution of Eq. (1.1)
with the initial condition X(0) = 0, and Y (t) = g(X(t)). Since the function
g satisfies the equation

1
2a(x)2g′′(x) + b(x)g′(x) = 0 ,

Itô’s formula implies

dY (t) = [b(X(t))g′(X(t)) + 1
2a(X(t))2g′′(X(t))] dt

+ a(X(t))g′(X(t)) dW (t)
= a(X(t))g′(X(t)) dW (t) .

Let a(x) = g′(g(x)−1)a(g(x)−1). Then a ∈ C3(R) and the process Y (t)
satisfies the stochastic equation dY (t) = a(Y (t)) dW (t), Y (0) = 0. Let
ϕ ∈ C2(R) be such that ϕ(x) = 1 for x > 0 and ϕ(x) = 0 for x ≤
−1. Then Mϕ(Y (t)) = u(t, 0), where u(t, x) is the solution of the equa-
tion

(3.3)
∂u

∂t
=

1
2
a(x)2

∂2u

∂x2
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with the initial condition u(0, x) = ϕ(x) (see (2.10)). Let q(x) = 2a(x)−2.
From (3.3) it follows that u is the solution of Eq. (3.2) with the initial condi-
tion u(0, x) = ϕ(x). It is easy to check that q and ϕ satisfy the assumptions
of Theorem 2 and A = β/(β + γ). Consequently,

(3.4) lim
t→∞

Mϕ(g(X(t))) = lim
t→∞

Mϕ(Y (t)) =
β

β + γ
.

Since the semigroup (2.3) is sweeping, we have

(3.5) lim
t→∞

Prob{|X(t)| ≤ c} = 0

for every c > 0. From (3.4) and (3.5) we obtain

lim
t→∞

p(t) =
β

β + γ
,

because ϕ(g(x))→ 1 as x→∞ and ϕ(g(x))→ 0 as x→ −∞.

One of the implications of Theorem 2 is the following proposition.

Proposition 1. Let a and b be functions satisfying the assumptions of
Theorem 1 and let B(x) = B(x)− 1

2 log a(x). Assume that limx→∞B(x) = r

and limx→−∞B(x) = s. Then

(3.6) lim
t→∞

p(t) =
e2r

e2r + e2s
.

P r o o f. Since B(x) = B(x) + 1
2 log a(x), the function g is given by the

formula

g(x) =
x∫

0

1
a(y)

e−2B(y) dy .

This implies that

β2 = lim
T→∞

T∫
0

2
a(x)

e2B(x) dx
/ T∫

0

1
a(x)

e−2B(x) dx .

Since
∫∞
0

1
a(x) dx = ∞ and limx→∞B(x) = r, we have β2 = 2e4r. Analo-

gously γ2 = 2e4s. Finally, (3.6) follows from (3.1).

4. Example. In this section we construct a function b ∈ C2(R) such
that every solution X(t) of the stochastic equation

(4.1) dX(t) = dW (t) + b(X(t)) dt

satisfies conditions (1.8) and (1.9). We check these conditions only for
the solution which satisfies the initial condition X(0) = 0 and for c = 0,
because (1.8) and (1.9) imply that the semigroup (2.3) is sweeping and
satisfies (2.5).
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The function b(x) will be the limit of some sequence of functions bn ∈
C2(R), n = 2, 3, . . . Set

In1 =
0∫

−∞

exp
(
−

z∫
0

2bn(u) du
)
dz ,

In2 =
∞∫
0

exp
(
−

z∫
0

2bn(u) du
)
dz .

Let Xn(t), n = 2, 3, . . . , be the solution of the stochastic equation

(4.2) dXn(t) = dW (t) + bn(Xn(t)) dt

with the initial condition Xn(0) = 0.
We now define inductively a sequence of functions {bn}. Let b2 ∈ C2(R)

be a function such that b2(x) = 1 for x ≥ 0, b2(x) = −α2 = −1/8 for x ≤ −1
and b2 is increasing in [−1, 0]. Then I2

2 = 1/2 and I2
1 ≥ 1/(2α2). From (1.5)

it follows that
Prob{ lim

t→∞
X2(t) =∞} ≥ 1− α2 .

This implies that there exists t2 ≥ 0 such that

(4.3) Prob{ inf
t≥t2

X2(t) ≥ 0} ≥ 1− 1
4
.

Denote the set in braces in (4.3) by F2 and let

F2,j = {ω ∈ F2 : max
0≤t≤2t2

|X2(t)| ≤ j} .

From (4.3) it follows that there exists a positive integer j2 such that
Prob{F2,j2} > 1/2. Assume that bn−1, jn−1 and tn−1 have already been
defined. If n is odd we set bn(x) = bn−1(x) for x ≤ jn−1 and bn(x) = αn for
x ≥ 1 + jn−1, where

(4.4) αn = (8nIn−1
1 )−1e−2(1+jn−1) .

We assume that bn ∈ C2(R) and bn is decreasing in [jn−1, 1 + jn−1]. Since
In1 = In−1

1 , from (1.5) it follows that

Prob{ lim
t→∞

Xn(t) =∞} ≤ In−1
1 /In2 ≤ 1/(4n) .

This implies that there exists tn > (n− 1)tn−1 such that

(4.5) Prob{sup
t≥tn

Xn(t) ≤ 0} ≥ 1− 1/(2n) .

Denote the set in braces in (4.5) by Fn. Then there exists an integer jn such
that jn > jn−1 and the probability of the event

Fn,jn = {ω ∈ Fn : max
0≤t≤ntn

|Xn(t)| ≤ jn}
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is greater than 1−1/n. Analogously, if n is even, then bn ∈ C2(R) is decreas-
ing in [−1− jn−1,−jn−1], bn(x) = bn−1(x) for x ≥ −jn−1 and bn(x) = −αn
for x ≤ −1− jn−1, where

αn = (8nIn−1
2 )−1e−2(1+jn−1) .

The constants tn and jn are chosen in such a way that tn > (n − 1)tn−1,
jn > jn−1 and the probability of the event

Fn,jn = { inf
t≥tn

Xn(t) ≥ 0 and max
0≤t≤ntn

|Xn(t)| ≤ jn}

is greater than 1−1/n. The functions bn can be chosen in such a way that the
sequences {b′n} and {b′′n} are uniformly bounded. Let b(x) = limn→∞ bn(x).
Then b ∈ C2(R). Since αn → 0 as n → ∞, b(x) → 0 as |x| → ∞. Let
X(t) be the solution of Eq. (4.1) with the initial condition X(0) = 0. Since
b(x) = bn(x) for |x| ≤ jn, we have X(t)(ω) = Xn(t)(ω) for t ∈ [ 0, ntn] and
ω ∈ Fn,jn (see [1]). This gives

Prob{(−1)nX(t) ≥ 0 for t ∈ [tn, ntn]} ≥ Prob{Fn,jn} ≥ 1− 1/n .

Thus p(t) ≥ 1 − 1/n for even n and t ∈ [tn, ntn], and p(t) ≤ 1/n for odd n
and t ∈ [tn, ntn]. The last inequalities imply (1.8) and (1.9).
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