Strangely sweeping one-dimensional diffusion

by Ryszard Rudnicki (Katowice)

Abstract

Let $X(t)$ be a diffusion process satisfying the stochastic differential equation $d X(t)=a(X(t)) d W(t)+b(X(t)) d t$. We analyse the asymptotic behaviour of $p(t)=$ $\operatorname{Prob}\{X(t) \geq 0\}$ as $t \rightarrow \infty$ and construct an equation such that $\lim _{\sup }^{t \rightarrow \infty} t^{-1} \int_{0}^{t} p(s) d s$ $=1$ and $\liminf _{t \rightarrow \infty} t^{-1} \int_{0}^{t} p(s) d s=0$.

1. Introduction. In the present paper we investigate the stochastic differential equation

$$
\begin{equation*}
d X(t)=a(X(t)) d W(t)+b(X(t)) d t \tag{1.1}
\end{equation*}
$$

where $W(t)$ is a Wiener process on \mathbb{R}. Assuming that a and b are differentiable bounded functions and $a(x)>0$ for $x \in \mathbb{R}$, the asymptotic behaviour of the trajectories of $X(t)$ is described by the integrals

$$
\begin{aligned}
& I_{1}(x)=\int_{-\infty}^{x} \exp \left(-\int_{0}^{z} \frac{2 b(u)}{a(u)^{2}} d u\right) d z \\
& I_{2}(x)=\int_{x}^{\infty} \exp \left(-\int_{0}^{z} \frac{2 b(u)}{a(u)^{2}} d u\right) d z
\end{aligned}
$$

Namely,
(1.2) if $I_{1}(x)=\infty$ and $I_{2}(x)=\infty$, then

$$
\operatorname{Prob}\left\{\sup _{t>0} X(t)=\infty\right\}=\operatorname{Prob}\left\{\inf _{t>0} X(t)=-\infty\right\}=1
$$

(1.3) if $I_{1}(x)<\infty$ and $I_{2}(x)=\infty$, then

$$
\operatorname{Prob}\left\{\lim _{t \rightarrow \infty} X(t)=-\infty\right\}=1
$$

(1.4) if $I_{1}(x)=\infty$ and $I_{2}(x)<\infty$, then

$$
\operatorname{Prob}\left\{\lim _{t \rightarrow \infty} X(t)=\infty\right\}=1
$$

1991 Mathematics Subject Classification: 60J60, 35K15.
Key words and phrases: diffusion process, parabolic equation.

$$
\begin{align*}
& \text { if } \begin{aligned}
I_{1}(x)<\infty \text { and } I_{2}(x)< & \infty \text {, then } \\
\qquad \operatorname{Prob}\left\{\lim _{t \rightarrow \infty} X(t)=\infty\right\} & =1-\operatorname{Prob}\left\{\lim _{t \rightarrow \infty} X(t)=-\infty\right\} \\
& =\mathbf{M} \frac{I_{1}(X(0))}{I_{1}(X(0))+I_{2}(X(0))}
\end{aligned} \tag{1.5}
\end{align*}
$$

where $\mathbf{M} X$ denotes the mean value of the random variable X (see [1] for the proof).

Although the trajectories of the process $X(t)$ admit a rather simple asymptotic description, the behaviour of the distribution of $X(t)$ can be complicated. It is well known that under some regularity conditions on a and b the distribution of $X(t)$ has a density for every $t>0$. Let f_{t} and g_{t} be the densities of two solutions of Eq. (1.1). In the next section we check that if $I_{1}(0)=\infty$ or $I_{2}(0)=\infty$, then

$$
\begin{equation*}
\left\|f_{t}-g_{t}\right\| \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{1.6}
\end{equation*}
$$

where $\|\cdot\|$ is the norm in $L^{1}(\mathbb{R})$. This condition means that the asymptotic behaviour of the distribution of $X(t)$ does not depend on the distribution of $X(0)$. From this it follows that if there exists a stationary solution of (1.1), i.e., a solution whose distribution does not depend on t, then $f_{t} \rightarrow g$ in $L^{1}(\mathbb{R})$ as $t \rightarrow \infty$, where g is the density of the stationary solution of (1.1) and f_{t} is the density of a solution $X(t)$ of (1.1). Moreover, in the next section we check that if there is no stationary solution of (1.1), then for every $c>0$ we have

$$
\begin{equation*}
\int_{-c}^{c} f_{t} d x \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{1.7}
\end{equation*}
$$

where f_{t} is the density of a solution $X(t)$ of (1.1).
From the above results it follows that if $I_{1}(0)=\infty$ or $I_{2}(0)=\infty$ and if Eq. (1.1) has no stationary solution, then the asymptotic behaviour of the function

$$
p(t)=\operatorname{Prob}\{X(t) \geq c\}
$$

does not depend on c and on the initial distribution of $X(0)$. This leads to the following basic question: does the function $p(t)$ have a limit as $t \rightarrow \infty$?

Our paper is devoted to answering this question. Section 2 contains basic notations and results used in the paper. In Section 3, using some results of Gushchin and Mikhailov [2] we give a sufficient condition for the existence of this limit. Section 4 contains the main result of the paper. We show that the behaviour of $p(t)$ can be surprisingly chaotic. Namely, we construct an equation such that (1.6) and (1.7) hold and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} p(s) d s=1 \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} p(s) d s=0 \tag{1.9}
\end{equation*}
$$

In this example $a(x)=1$ and $b(x) \rightarrow 0$ as $|x| \rightarrow \infty$. It is interesting that even a small drift coefficient $b(x)$ can cause the synchronous oscillation of molecules between $+\infty$ and $-\infty$.
2. Preliminaries. In this section we assume that $a \in C^{3}(\mathbb{R}), b \in C^{2}(\mathbb{R})$ and $a(x)>\alpha$, where α is a positive constant and $C^{n}(\mathbb{R})$ is the space of n times differentiable bounded functions whose derivatives of order $\leq n$ are continuous and bounded. It is well known that under these assumptions for every $t>0$ each solution $X(t)$ of Eq. (1.1) has a density $u(t, x)$ and the function u satisfies the Fokker-Planck equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{2} a(x)^{2} u\right)-\frac{\partial}{\partial x}(b(x) u), \quad(t, x) \in(0, \infty) \times \mathbb{R} \tag{2.1}
\end{equation*}
$$

Let the distribution of $X(0)$ have a density f. Then the solution $u(t, x)$ of Eq. (2.1) can be written in the form

$$
\begin{equation*}
u(t, x)=\int_{\mathbb{R}} K(t, x, y) f(y) d y \tag{2.2}
\end{equation*}
$$

where the kernel K is independent of the initial density f and $\| u(t, \cdot)-$ $f \|_{L^{1}} \rightarrow 0$ as $t \rightarrow 0$.

Eq. (2.1) generates a semigroup $\left\{P^{t}\right\}_{t \geq 0}$ of Markov operators on $L^{1}(\mathbb{R})$ defined by

$$
\begin{equation*}
P^{0} f=f, \quad\left(P^{t} f\right)(x)=\int_{\mathbb{R}} K(t, x, y) f(y) d y, \quad t>0 \tag{2.3}
\end{equation*}
$$

We recall that a linear operator P on $L^{1}(\mathbb{R})$ is called a Markov operator if $P(D) \subset D$, where D is the set of all densities, i.e., $D=\left\{f \in L^{1}(\mathbb{R})\right.$: $\left.f \geq 0, \int f d x=1\right\}$. In [4] it is proved that if

$$
\begin{equation*}
\int_{-\infty}^{\infty} \exp \left(-\int_{0}^{x} \frac{2 b(y)}{a(y)^{2}} d y\right) d x=\infty \tag{2.4}
\end{equation*}
$$

then for any two densities f and g we have

$$
\begin{equation*}
\left\|P^{t} f-P^{t} g\right\|_{L^{1}} \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{2.5}
\end{equation*}
$$

A semigroup $\left\{P^{t}\right\}_{t \geq 0}$ of Markov operators on $L^{1}(\mathbb{R})$ is called sweeping if for every $c>0$ and for every $f \in L^{1}(\mathbb{R})$ we have

$$
\begin{equation*}
\int_{-c}^{c} P^{t} f d x \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{2.6}
\end{equation*}
$$

The notion of sweeping was introduced by Komorowski and Tyrcha [3]. They proved that if $\left\{P^{t}\right\}_{t \geq 0}$ is a semigroup of integral Markov operators, if $\left\{P^{t}\right\}_{t \geq 0}$ has no invariant density and if there exists a positive locally integrable function f_{*} invariant with respect to $\left\{P^{t}\right\}_{t \geq 0}$, then this semigroup is sweeping (see [3] for details). Using this criterion we can prove the following.

Lemma 1. The semigroup $\left\{P^{t}\right\}_{t \geq 0}$ generated by Eq. (2.1) is sweeping iff

$$
\begin{equation*}
\int_{-\infty}^{\infty} \exp \left(\int_{0}^{x} \frac{2 b(y)}{a(y)^{2}} d y\right) d x=\infty \tag{2.7}
\end{equation*}
$$

Proof. Let

$$
f_{*}(x)=\frac{1}{a(x)^{2}} \exp \left(\int_{0}^{x} \frac{2 b(y)}{a(y)^{2}} d y\right)
$$

Then f_{*} is a positive locally integrable function such that $P^{t} f_{*}=f_{*}$ for every $t \geq 0$. Since a is a bounded function and $a(x)>\alpha>0,(2.7)$ holds iff $\int f_{*} d x=\infty$. If $\int f_{*} d x<\infty$, then $f=f_{*} /\left\|f_{*}\right\|_{L^{1}}$ is an invariant density which does not satisfy (2.6). If $\int f_{*} d x=\infty$ we check that there is no invariant density. Suppose, on the contrary, that g is one. Then g satisfies the differential equation

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}\left(\frac{1}{2} a(x)^{2} g(x)\right)-\frac{d}{d x}(b(x) g(x))=0 \tag{2.8}
\end{equation*}
$$

A solution of (2.8) is given by

$$
\begin{equation*}
g(x)=f_{*}\left(c_{1}+c_{2} \int_{0}^{x} \psi(y) d y\right) \tag{2.9}
\end{equation*}
$$

where

$$
\psi(x)=\exp \left(-\int_{0}^{x} \frac{2 b(y)}{a(y)^{2}} d y\right)
$$

and c_{1}, c_{2} are constants. Since $\int f_{*} d x=\infty$, the function g can be nonnegative and integrable only if

$$
g(x)=c f_{*} \int_{-\infty}^{x} \psi(y) d y \quad \text { or } \quad g(x)=c f_{*} \int_{x}^{\infty} \psi(y) d y
$$

where c is a positive constant. We consider the first case, the second one is analogous. Since a and b are bounded and $a(x) \geq \alpha>0$, there exists $\gamma>0$ such that if $|x-y| \leq 1$, then $\psi(y) / \psi(x) \geq \gamma$. This implies that

$$
g(x) \geq c \gamma a(x)^{-2} \geq c \gamma(\sup a(x))^{-2}>0
$$

for $x \in \mathbb{R}$. Consequently, g is not a density. This completes the proof that (2.7) implies sweeping.

Conditions (1.6) and (1.7) mentioned in the introduction follow from the analogous conditions for the semigroup $\left\{P^{t}\right\}_{t \geq 0}$, because for every $t>0$ each solution of (1.1) has a density. Let

$$
p(t)=\int_{c}^{\infty} u(t, x) d x=\operatorname{Prob}\{X(t) \geq c\}
$$

If (2.4) and (2.7) hold, then $\lim _{t \rightarrow \infty} p(t)$ does not depend on c and on the distribution of $X(0)$. Now (1.3) and (1.4) immediately yield.

Corollary 1. If $I_{1}(0)<\infty$ and $I_{2}(0)=\infty$, then $p(t) \rightarrow 0$ as $t \rightarrow \infty$. If $I_{1}(0)=\infty$ and $I_{2}(0)<\infty$, then $p(t) \rightarrow 1$ as $t \rightarrow \infty$.

Another consequence of condition (2.5) and the sweeping property of the semigroup $\left\{P^{t}\right\}_{t \geq 0}$ is the following

Corollary 2. Assume that for some constant c we have $a(x)=a(c-x)$ and $b(x)=-b(c-x)$ for all x. Suppose that $I_{1}(0)=\infty$ and (2.7) holds. Then $\lim _{t \rightarrow \infty} p(t)=1 / 2$.

We will also need the following time-homogeneous version of the Kolmogorov equation (see [5]). Let $\varphi \in C^{2}(\mathbb{R})$ and let $u(t, x)$ be the solution of the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{1}{2} a(x)^{2} \frac{\partial^{2} u}{\partial x^{2}}+b(x) \frac{\partial u}{\partial x} \tag{2.10}
\end{equation*}
$$

with the initial condition $u(0, x)=\varphi(x)$. Then $u(t, x)=\mathbf{M} \varphi(X(t))$, where $X(t)$ is the solution of (1.1) with the initial condition $X(0)=x$.
3. Convergence of $p(x)$. The main result of this section is the following

Theorem 1. Let $a \in C^{3}(\mathbb{R}), b \in C^{2}(\mathbb{R}), a(x)>\alpha>0$ for $x \in \mathbb{R}$ and let

$$
B(x)=\int_{0}^{x} \frac{b(y)}{a(y)^{2}} d y
$$

be a bounded function and

$$
g(x)=\int_{0}^{x} e^{-2 B(y)} d y
$$

Assume that the limits

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \frac{1}{g(T)} \int_{0}^{T} 2\left(g^{\prime}(x) a(x)^{2}\right)^{-1} d x=\beta^{2}, \\
& \lim _{T \rightarrow-\infty} \frac{1}{g(T)} \int_{0}^{T} 2\left(g^{\prime}(x) a(x)^{2}\right)^{-1} d x=\gamma^{2}
\end{aligned}
$$

exist, where $\beta>0$ and $\gamma>0$. Then for every solution $X(t)$ of (1.1) and $c \in \mathbb{R}$ the function $p(t)=\operatorname{Prob}\{X(t) \geq c\}$ satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} p(t)=\frac{\beta}{\beta+\gamma} \tag{3.1}
\end{equation*}
$$

The proof of Theorem 1 is based on the following theorem.
Theorem 2 (Gushchin, Mikhailov [2]). Let $q \in C^{1}(\mathbb{R})$ and $q(x) \geq \alpha>0$ for $x \in \mathbb{R}$. Let $u(t, x)$ be the solution of the equation

$$
\begin{equation*}
q(x) \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \tag{3.2}
\end{equation*}
$$

with the initial condition $u(0, x)=\varphi(x)$, where φ is a continuous bounded function. Assume that the limits

$$
\begin{gathered}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} q(s) d s=\beta^{2} \\
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{0} q(s) d s=\gamma^{2} \\
\lim _{T \rightarrow \infty} \frac{1}{T(\beta+\gamma)} \int_{-T / \gamma}^{T / \beta} \varphi(s) q(s) d s=A
\end{gathered}
$$

exist, where $\beta>0$ and $\gamma>0$. Then $u(t, x) \rightarrow A$ as $t \rightarrow \infty$ for each $x \in \mathbb{R}$.
Proof of Theorem 1. Since B is a bounded function, conditions (2.4) and (2.7) hold. This implies that the limit (3.1) does not depend on the initial condition $X(0)$ and on c. Let $X(t)$ be the solution of Eq. (1.1) with the initial condition $X(0)=0$, and $Y(t)=g(X(t))$. Since the function g satisfies the equation

$$
\frac{1}{2} a(x)^{2} g^{\prime \prime}(x)+b(x) g^{\prime}(x)=0
$$

Itô's formula implies

$$
\begin{aligned}
d Y(t)= & {\left[b(X(t)) g^{\prime}(X(t))+\frac{1}{2} a(X(t))^{2} g^{\prime \prime}(X(t))\right] d t } \\
& +a(X(t)) g^{\prime}(X(t)) d W(t) \\
= & a(X(t)) g^{\prime}(X(t)) d W(t) .
\end{aligned}
$$

Let $\bar{a}(x)=g^{\prime}\left(g(x)^{-1}\right) a\left(g(x)^{-1}\right)$. Then $\bar{a} \in C^{3}(\mathbb{R})$ and the process $Y(t)$ satisfies the stochastic equation $d Y(t)=\bar{a}(Y(t)) d W(t), Y(0)=0$. Let $\varphi \in C^{2}(\mathbb{R})$ be such that $\varphi(x)=1$ for $x>0$ and $\varphi(x)=0$ for $x \leq$ -1 . Then $\mathbf{M} \varphi(Y(t))=u(t, 0)$, where $u(t, x)$ is the solution of the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{1}{2} \bar{a}(x)^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{3.3}
\end{equation*}
$$

with the initial condition $u(0, x)=\varphi(x)$ (see (2.10)). Let $q(x)=2 \bar{a}(x)^{-2}$. From (3.3) it follows that u is the solution of Eq. (3.2) with the initial condition $u(0, x)=\varphi(x)$. It is easy to check that q and φ satisfy the assumptions of Theorem 2 and $A=\beta /(\beta+\gamma)$. Consequently,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbf{M} \varphi(g(X(t)))=\lim _{t \rightarrow \infty} \mathbf{M} \varphi(Y(t))=\frac{\beta}{\beta+\gamma} \tag{3.4}
\end{equation*}
$$

Since the semigroup (2.3) is sweeping, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \operatorname{Prob}\{|X(t)| \leq c\}=0 \tag{3.5}
\end{equation*}
$$

for every $c>0$. From (3.4) and (3.5) we obtain

$$
\lim _{t \rightarrow \infty} p(t)=\frac{\beta}{\beta+\gamma}
$$

because $\varphi(g(x)) \rightarrow 1$ as $x \rightarrow \infty$ and $\varphi(g(x)) \rightarrow 0$ as $x \rightarrow-\infty$.
One of the implications of Theorem 2 is the following proposition.
Proposition 1. Let a and b be functions satisfying the assumptions of Theorem 1 and let $\bar{B}(x)=B(x)-\frac{1}{2} \log a(x)$. Assume that $\lim _{x \rightarrow \infty} \bar{B}(x)=r$ and $\lim _{x \rightarrow-\infty} \bar{B}(x)=s$. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} p(t)=\frac{e^{2 r}}{e^{2 r}+e^{2 s}} \tag{3.6}
\end{equation*}
$$

Proof. Since $B(x)=\bar{B}(x)+\frac{1}{2} \log a(x)$, the function g is given by the formula

$$
g(x)=\int_{0}^{x} \frac{1}{a(y)} e^{-2 \bar{B}(y)} d y
$$

This implies that

$$
\beta^{2}=\lim _{T \rightarrow \infty} \int_{0}^{T} \frac{2}{a(x)} e^{2 \bar{B}(x)} d x / \int_{0}^{T} \frac{1}{a(x)} e^{-2 \bar{B}(x)} d x
$$

Since $\int_{0}^{\infty} \frac{1}{a(x)} d x=\infty$ and $\lim _{x \rightarrow \infty} \bar{B}(x)=r$, we have $\beta^{2}=2 e^{4 r}$. Analogously $\gamma^{2}=2 e^{4 s}$. Finally, (3.6) follows from (3.1).
4. Example. In this section we construct a function $b \in C^{2}(\mathbb{R})$ such that every solution $X(t)$ of the stochastic equation

$$
\begin{equation*}
d X(t)=d W(t)+b(X(t)) d t \tag{4.1}
\end{equation*}
$$

satisfies conditions (1.8) and (1.9). We check these conditions only for the solution which satisfies the initial condition $X(0)=0$ and for $c=0$, because (1.8) and (1.9) imply that the semigroup (2.3) is sweeping and satisfies (2.5).

The function $b(x)$ will be the limit of some sequence of functions $b_{n} \in$ $C^{2}(\mathbb{R}), n=2,3, \ldots$ Set

$$
\begin{aligned}
& I_{1}^{n}=\int_{-\infty}^{0} \exp \left(-\int_{0}^{z} 2 b_{n}(u) d u\right) d z \\
& I_{2}^{n}=\int_{0}^{\infty} \exp \left(-\int_{0}^{z} 2 b_{n}(u) d u\right) d z
\end{aligned}
$$

Let $X^{n}(t), n=2,3, \ldots$, be the solution of the stochastic equation

$$
\begin{equation*}
d X^{n}(t)=d W(t)+b_{n}\left(X^{n}(t)\right) d t \tag{4.2}
\end{equation*}
$$

with the initial condition $X^{n}(0)=0$.
We now define inductively a sequence of functions $\left\{b_{n}\right\}$. Let $b_{2} \in C^{2}(\mathbb{R})$ be a function such that $b_{2}(x)=1$ for $x \geq 0, b_{2}(x)=-\alpha_{2}=-1 / 8$ for $x \leq-1$ and b_{2} is increasing in $[-1,0]$. Then $I_{2}^{2}=1 / 2$ and $I_{1}^{2} \geq 1 /\left(2 \alpha_{2}\right)$. From (1.5) it follows that

$$
\operatorname{Prob}\left\{\lim _{t \rightarrow \infty} X^{2}(t)=\infty\right\} \geq 1-\alpha_{2} .
$$

This implies that there exists $t_{2} \geq 0$ such that

$$
\begin{equation*}
\operatorname{Prob}\left\{\inf _{t \geq t_{2}} X^{2}(t) \geq 0\right\} \geq 1-\frac{1}{4} \tag{4.3}
\end{equation*}
$$

Denote the set in braces in (4.3) by F_{2} and let

$$
F_{2, j}=\left\{\omega \in F_{2}: \max _{0 \leq t \leq 2 t_{2}}\left|X^{2}(t)\right| \leq j\right\}
$$

From (4.3) it follows that there exists a positive integer j_{2} such that $\operatorname{Prob}\left\{F_{2, j_{2}}\right\}>1 / 2$. Assume that b_{n-1}, j_{n-1} and t_{n-1} have already been defined. If n is odd we set $b_{n}(x)=b_{n-1}(x)$ for $x \leq j_{n-1}$ and $b_{n}(x)=\alpha_{n}$ for $x \geq 1+j_{n-1}$, where

$$
\begin{equation*}
\alpha_{n}=\left(8 n I_{1}^{n-1}\right)^{-1} e^{-2\left(1+j_{n-1}\right)} . \tag{4.4}
\end{equation*}
$$

We assume that $b_{n} \in C^{2}(\mathbb{R})$ and b_{n} is decreasing in $\left[j_{n-1}, 1+j_{n-1}\right]$. Since $I_{1}^{n}=I_{1}^{n-1}$, from (1.5) it follows that

$$
\operatorname{Prob}\left\{\lim _{t \rightarrow \infty} X^{n}(t)=\infty\right\} \leq I_{1}^{n-1} / I_{2}^{n} \leq 1 /(4 n)
$$

This implies that there exists $t_{n}>(n-1) t_{n-1}$ such that

$$
\begin{equation*}
\operatorname{Prob}\left\{\sup _{t \geq t_{n}} X^{n}(t) \leq 0\right\} \geq 1-1 /(2 n) \tag{4.5}
\end{equation*}
$$

Denote the set in braces in (4.5) by F_{n}. Then there exists an integer j_{n} such that $j_{n}>j_{n-1}$ and the probability of the event

$$
F_{n, j_{n}}=\left\{\omega \in F_{n}: \max _{0 \leq t \leq n t_{n}}\left|X^{n}(t)\right| \leq j_{n}\right\}
$$

is greater than $1-1 / n$. Analogously, if n is even, then $b_{n} \in C^{2}(\mathbb{R})$ is decreasing in $\left[-1-j_{n-1},-j_{n-1}\right], b_{n}(x)=b_{n-1}(x)$ for $x \geq-j_{n-1}$ and $b_{n}(x)=-\alpha_{n}$ for $x \leq-1-j_{n-1}$, where

$$
\alpha_{n}=\left(8 n I_{2}^{n-1}\right)^{-1} e^{-2\left(1+j_{n-1}\right)}
$$

The constants t_{n} and j_{n} are chosen in such a way that $t_{n}>(n-1) t_{n-1}$, $j_{n}>j_{n-1}$ and the probability of the event

$$
F_{n, j_{n}}=\left\{\inf _{t \geq t_{n}} X^{n}(t) \geq 0 \text { and } \max _{0 \leq t \leq n t_{n}}\left|X^{n}(t)\right| \leq j_{n}\right\}
$$

is greater than $1-1 / n$. The functions b_{n} can be chosen in such a way that the sequences $\left\{b_{n}^{\prime}\right\}$ and $\left\{b_{n}^{\prime \prime}\right\}$ are uniformly bounded. Let $b(x)=\lim _{n \rightarrow \infty} b_{n}(x)$. Then $b \in C^{2}(\mathbb{R})$. Since $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty, b(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Let $X(t)$ be the solution of Eq. (4.1) with the initial condition $X(0)=0$. Since $b(x)=b_{n}(x)$ for $|x| \leq j_{n}$, we have $X(t)(\omega)=X^{n}(t)(\omega)$ for $t \in\left[0, n t_{n}\right]$ and $\omega \in F_{n, j_{n}}$ (see [1]). This gives

$$
\operatorname{Prob}\left\{(-1)^{n} X(t) \geq 0 \text { for } t \in\left[t_{n}, n t_{n}\right]\right\} \geq \operatorname{Prob}\left\{F_{n, j_{n}}\right\} \geq 1-1 / n
$$

Thus $p(t) \geq 1-1 / n$ for even n and $t \in\left[t_{n}, n t_{n}\right]$, and $p(t) \leq 1 / n$ for odd n and $t \in\left[t_{n}, n t_{n}\right]$. The last inequalities imply (1.8) and (1.9).

References

[1] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, Berlin 1972.
[2] A. K. Gushchin and V. P. Mikhailov, The stabilization of the solution of the Cauchy problem for a parabolic equation with one space variable, Trudy Mat. Inst. Steklov. 112 (1971), 181-202 (in Russian).
[3] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228.
[4] R. Rudnicki, Asymptotical stability in L^{1} of parabolic equations, J. Differential Equations, in press.
[5] Z. Schuss, Theory and Applications of Stochastic Differential Equations, Wiley, New York 1980.

INSTITUTE OF MATHEMATICS
INSTITUTE OF MATHEMATICS

SILESIAN UNIVERSITY

 POLISH ACADEMY OF SCIENCES STAROMIEJSKA 8/6BANKOWA 14
40-007 KATOWICE, POLAND 40-013 KATOWICE, POLAND

