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Some subclasses of close-to-convex functions

by Adam Lecko (Rzeszów)

Abstract. For α ∈ [0, 1] and β ∈ (−π/2, π/2) we introduce the classes Cβ(α) defined
as follows: a function f regular in U = {z : |z| < 1} of the form f(z) = z +

∑∞
n=1 anz

n,

z ∈ U , belongs to the class Cβ(α) if Re{eiβ(1 − α2z2)f ′(z)} > 0 for z ∈ U . Estimates
of the coefficients, distortion theorems and other properties of functions in Cβ(α) are
examined.

1. Denote by U = {z ∈ C : |z| < 1} the unit disk in the complex plane C.
Let P denote the class of functions p of the form p(z) = 1+p1z+p2z

2 + . . . ,
z ∈ U , which are regular in U and have a positive real part. Denote by Ω
the class of functions ω regular in U such that ω(0) = 0 and |ω(z)| < 1 for
z ∈ U . A regular function f in U is called subordinate to a regular function
F in U if there exists a function ω ∈ Ω such that f(z) = F (ω(z)), z ∈ U .
We write then f ≺ F or f(z) ≺ F (z), z ∈ U .

Definition 1.1. A function f of the form

(1.1) f(z) = z + a2z
2 + . . .+ anz

n + . . . , z ∈ U ,
regular in U belongs to the class Cβ(α), α ∈ C, β ∈ (−π/2, π/2), if

(1.2) Re{eiβ(1− α2z2)f ′(z)} > 0, z ∈ U .
We also set

C(α) =
⋃

β∈(−π/2,π/2)

Cβ(α) .

If α = |α|eiθ, θ ∈ [0, 2π), and f ∈ Cβ(α), β ∈ (−π/2, π/2), then the
function g(z) = e−iθf(eiθz), z∈U , belongs to Cβ(|α|). Thus we may assume
that α is real. By (1.2) it is sufficient to take α from the interval [0, 1] because
the assumption |α| > 1 implies that Cβ(α) = ∅ for all β ∈ (−π/2, π/2).

1991 Mathematics Subject Classification: Primary 30C45.
Key words and phrases: close-to-convex functions, close-to-convex functions with ar-

gument β, functions convex in the direction of the imaginary axis, functions of bounded
rotation with argument β.



54 A. Lecko

Hengartner and Schober [4] established that the inequality

(1.3) Re{(1− z2)f ′(z)} > 0, z ∈ U ,
characterizes the class of univalent functions f of the form

f(z) = a1z + a2z
2 + . . .+ anz

n + . . . , a1 ∈ C, |a1| = 1, z ∈ U ,
with the normalization

lim inf
z→−1

Re f(z) = inf
z∈U

Re f(z) , lim sup
z→1

Re f(z) = sup
z∈U

Re f(z)

which map U onto domains convex in the direction of the imaginary axis.
This class was denoted by CṼ2(i). The condition (1.3) implies that Re f ′(0)
= Re a1 > 0.

Following the definition of α-spiral functions (Špaček [10]) and functions
close-to-convex with argument β (Goodman and Saff [3]) we introduce in
(1.3) the factor eiβ = f ′(0). Therefore for β ∈ (−π/2, π/2) we distinguish
the class β-CV2(i) of functions f of the form (1.1) regular in U defined by
the inequality

(1.4) Re{eiβ(1− z2)f ′(z)} > 0, z ∈ U .
Thus for α = 1 and fixed β ∈ (−π/2, π/2) we have Cβ(1) = β-CV2(i).

Of course, if f ∈ β-CV2(i), β ∈ (−π/2, π/2), then the function g(z) =
eiβf(z), z ∈ U , belongs to CṼ2(i). Conversely, if f ∈ CṼ2(i), then there
exists β ∈ (−π/2, π/2) such that the function g(z) = e−iβf(z), z ∈ U ,
belongs to β-CV2(i).

For α = 0, (1.2) yields a univalence condition found independently by
Noshiro [9] and Warschawski [12]. The class of functions that satisfy this
condition:

(1.5) Re{eiβf ′(z)} > 0, z ∈ U ,
is usually denoted by P ′(β) and the functions are called of bounded rotation
with argument β.

Notice that (1.2) can be written as

Re{α2eiβ(1− z2)f ′(z) + (1− α2)eiβf ′(z)} > 0 .

Taking γ = α2, α ∈ [0, 1], we see that the left hand side of (1.2) is a convex
combination of the left hand sides of (1.4) and (1.5). This method of defining
new classes of analytic functions is due to Mocanu [8] who introduced the
α-convex functions. This concept was used by many authors. For example,
in [1] the classes H(α), with α real, of functions f of the form (1.1) regular
in U are defined by the inequality

Re
{

(1− α)f ′(z) + α

(
1 + z

f ′′(z)
f ′(z)

)}
> 0, z ∈ U .

The class C0(α) was examined in [6].
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2. In this section estimates of the coefficients of functions in Cβ(α) are
obtained.

Theorem 2.1. If f ∈ Cβ(α), α ∈ [0, 1], β ∈ (−π/2, π/2), then f is
univalent in U .

P r o o f. For α = 0 this is shown in [9] and [12].
Let now α ∈ (0, 1]. The function

ϕα(z) =
1

2α
log

1 + αz

1− αz
, z ∈ U, ϕα(0) = 0 ,

is convex and univalent in U . Moreover, if f ∈Cβ(α), where β∈(−π/2, π/2),
then

Re
{
eiβ

f ′(z)
ϕ′α(z)

}
= Re{eiβ(1− α2z2)f ′(z)} > 0, z ∈ U .

This means that f is close-to-convex and univalent (see [5]).

Theorem 2.2. If β ∈ (−π/2, π/2), α1, α2 ∈ [0, 1] and α1 6= α2, then
Cβ(α1) 6⊆ Cβ(α2) and Cβ(α2) 6⊆ Cβ(α1).

P r o o f. Let 0 ≤ α2 < α1 ≤ 1.
1o. Let f be the solution of the equation

(2.1) eiβ(1− α2
1z

2)f ′(z) =
1 + z2

1− z2
cosβ + i sinβ, z ∈ U ,

where β ∈ (−π/2, π/2). Of course, f ∈ Cβ(α1) and by (2.1) we have

(2.2) Arg{eiβ(1−α2
2z

2)f ′(z)} = Arg
{(

1 + z2

1− z2
cosβ+ i sinβ

)
1− α2

2z
2

1− α2
1z

2

}
= Arg

{
1 + z2

1− z2
cosβ + i sinβ

}
+ Arg

1− α2
2z

2

1− α2
1z

2
,

where z ∈ U , Arg(eiβ) = β and Arg 1 = 0.
Let now z = eit, t ∈ (0, π) ∪ (π, 2π). Then

1 + z2

1− z2
= i

cos t
sin t

and

(2.3)
1 + z2

1− z2
cosβ + i sinβ = i

(
cos t
sin t

cosβ + sinβ
)
.

For fixed β ∈ (−π/2, π/2) we can choose t0 ∈ (0, π/2) such that

(2.4)
cos t0
sin t0

cosβ + sinβ > 0 .
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Set z0 = eit0 . From (2.3) and (2.4) we have

(2.5) Arg
{

1 + z2
0

1− z2
0

cosβ + i sinβ
}

=
π

2
.

On the other hand, if z = eit, where t ∈ (0, π) ∪ (π, 2π), then

(2.6)
1− α2

2z
2

1− α2
1z

2
=

1 + α2
1α

2
2 − (α2

1 + α2
2) cos 2t

1− 2α2
1 cos 2t+ α4

1

+ i
(α2

1 − α2
2) sin 2t

1− 2α2
1 cos 2t+ α4

1

.

The real part in (2.6) is positive for all t ∈ (0, π) ∪ (π, 2π). Moreover, if
α2 < α1 and t ∈ (0, π/2), then the imaginary part in (2.6) is also positive.
In particular, this holds for t0. Therefore (2.6) yields

(2.7) 0 < Arg
1− α2

2z
2
0

1− α2
1z

2
0

<
π

2
.

Using (2.5) and (2.7) we conclude that

(2.8)
π

2
< Arg

{
1 + z2

0

1− z2
0

cosβ + i sinβ
}

+ Arg
1− α2

2z
2
0

1− α2
1z

2
0

< π .

Let now (zn), n ∈ N, where zn = rne
it0 , 0 < rn < 1, be a sequence

that converges to z0. Then there is an n0 ∈ N such that for all n > n0

inequalities (2.8) are satisfied with zn in place of z0. Finally, by (2.2) and
(2.8) for n > n0 we have

π

2
< Arg{eiβ(1− α2

2z
2
n)f ′(zn)} < π .

This means that f 6∈ Cβ(α2).
2o. Let now f be the solution of the equation

eiβ(1− α2
2z

2)f ′(z) =
1− z2

1 + z2
cosβ + i sinβ, z ∈ U .

Obviously, f ∈ Cβ(α2).
If z = eit, t ∈ (0, π/2) ∪ (π/2, 3π/2) ∪ (3π/2, 2π), then

(2.9)
1− z2

1 + z2
cosβ + i sinβ = i

(
− sin t

cos t
cosβ + sinβ

)
.

For fixed β ∈ (−π/2, π/2) we can choose t0 ∈ (0, π/2) such that

− sin t
cos t

cosβ + sinβ < 0 .

If we set z0 = eit0 , then from the above and (2.9) we have

(2.10) Arg
{

1− z2
0

1 + z2
0

cosβ + i sinβ
}

= −π
2
.
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For α2 < α1 and t = t0 the imaginary part in (2.6) is negative with α2 in
place of α1 and vice versa. Therefore

−π < Arg
1− α2

1z
2
0

1− α2
2z

2
0

< −π
2
.

Hence and from (2.10) we conclude that

−π < Arg
{

1− z2
0

1 + z2
0

cosβ + i sinβ
}

+ Arg
1− α2

1z
2
0

1− α2
2z

2
0

< −π
2
.

Thus for z ∈ U near to z0 we have

−π < Arg{eiβ(1− α2
1z

2)f ′(z)} < −π
2
.

This means that f 6∈ Cβ(α1) and ends the proof.

Now we find coefficient bounds for the class Cβ(α).

Theorem 2.3. If f ∈ Cβ(α), α ∈ (0, 1), β ∈ (−π/2, π/2) and f is of the
form (1.1), then, for all k ∈ N,

|a2k| ≤
1− α2k

(1− α2)k
cosβ ,(2.11)

|a2k+1| ≤
2 cosβ + (1− 2 cosβ)α2k − α2(k+1)

(1− α2)(2k + 1)
.(2.12)

P r o o f. By (1.2) there exists a function

q(z) = cosβ + i sinβ +
∞∑
n=1

qnz
n, z ∈ U ,

such that Re q(z) > 0 for z ∈ U and

(2.13) eiβ(1− α2z2)f ′(z) = q(z) .

Then for β ∈ (−π/2, π/2) the function

p(z) =
1

cosβ
(q(z)− i sinβ) = 1 + p1z + p2z

2 + . . .+ pnz
n + . . . , z ∈ U,

belongs to P . Moreover,

(2.14) qn = pn cosβ, n ∈ N .
Equating coefficients in (2.13) we have

(2.15)
2eiβa2 = q1, eiβ(3a3 − α2) = q2, . . . ,

eiβ [(n+ 1)an+1 − (n− 1)α2an−1] = qn .

It follows from (2.14) and (2.15) that

(2.16) an+1 =
(n− 1)α2an−1 + e−iβpn cosβ

n+ 1
.
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If n = 2k − 1, k ∈ N, then from (2.16) we have

(2.17) a2k =
e−iβ cosβ

2k

k∑
j=1

α2(k−j)p2j−1 .

Hence using the known estimates |pn| ≤ 2, n ∈ N, we obtain

|a2k| ≤
cosβ
k

k∑
j=1

α2(k−j) =
1− α2k

(1− α2)k
cosβ .

If n = 2k, k ∈ N, then (2.16) yields

(2.18) a2k+1 =
α2k + e−iβ cosβ

∑k
j=1 α

2(k−j)p2j

2k + 1
.

Hence

|a2k+1|≤
α2k + 2 cosβ

∑k
j=1 α

2(k−j)

2k + 1
=

2 cosβ + (1− 2 cosβ)α2k − α2(k+1)

(1− α2)(2k + 1)
,

for k ∈ N. This ends the proof of the theorem.

The bound in (2.11) is sharp and achieved by the function fα,β , α ∈
(0, 1), β ∈ (−π/2, π/2), which is the solution of the differential equation

eiβ(1− α2z2)f ′α,β(z) =
1 + z

1− z
cosβ + i sinβ ,

i.e.

fα,β(z) = e−iβ
{

cosβ
1− α2

(
log

1− α2z2

(1− z)2
− 1 + α2

2α
log

1 + αz

1− αz

)
+ i sinβ

1
2α

log
1 + αz

1− αz

}
, z ∈ U .

For the third coefficient a3 we get the sharp bound

|a3| ≤
2 cosβ + α2

3
.

Equality is attained when p2 = 2eiβ in (2.18). This gives the extremal
function gα,β , α ∈ (0, 1), β ∈ (−π/2, π/2), which is the solution of the
equation

eiβ(1− α2z2)g′α,β(z) =
1 + eiβ/2z

1− eiβ/2z
cosβ + i sinβ ,

i.e.

gα,β(z) =
e−iβ cosβ

2α(α2 − eiβ)
[4αeiβ/2 log(1− eiβ/2z)

+ (α− eiβ/2)2 log(1 + αz)− (α+ eiβ/2)2 log(1− αz)]

+ ie−iβ sinβ
1

2α
log

1 + αz

1− αz
, z ∈ U .
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It is not known if the bounds for odd-numbered coefficients an, n ≥ 5, of
functions f ∈ Cβ(α), for β 6= 0, are sharp. If β = 0, then the estimates are
sharp and are the same as in Corollary 2.4 below.

Corollary 2.4. If f ∈ C(α), α ∈ (0, 1), and f is of the form (1.1), then

(2.19) |a2k| ≤
1− α2k

(1− α2)k
and |a2k+1| ≤

2− α2k − α2(k+1)

(1− α2)(2k + 1)
, k ∈ N .

The above results are sharp. The function

fα,0(z) =
1

1− α2

(
log

1− α2z2

(1− z)2
− 1 + α2

2α
log

1 + αz

1− αz

)
, z ∈ U, α ∈ (0, 1) ,

is extremal for all coefficients.
Observe that the formulas (2.16), (2.17) and (2.18) for the coefficients

also hold for α = 0 and α = 1. Therefore we can also obtain estimates in
these two cases. For α = 0, from (2.16) we have

an =
e−iβpn−1 cosβ

n
, n ∈ N .

This formula gives the well known result:

Corollary 2.5. If f ∈ P ′(β), β ∈ (−π/2, π/2), and f is of the form
(1.1), then

(2.20) |an| ≤
2
n

cosβ, n ∈ N .

In particular , for β = 0,

(2.21) |an| ≤
2
n
, n ∈ N

(see [7]).

The estimates (2.20) and (2.21) can be obtained from (2.11) and (2.12)
by putting α = 0. The following functions are extremal for the classes P ′(β)
and P ′(0), respectively:

f0,β(z) = lim
α→0

fα,β(z) = e−iβ [−e−iβz − 2 cosβ log(1− z)], z ∈ U ,

f0,0(z) = lim
α→0

fα,0(z) = −z − 2 log(1− z), z ∈ U .

Moreover, inequalities (2.21) are satisfied in the class C(0) and equality
holds for f0,0. The bounds (2.21) can be obtained from (2.19) by putting
α = 0.

For α = 1, from (2.17) and (2.18) we have

a2k =
e−iβ cosβ

2k

k∑
j=1

p2j−1, a2k+1 =
1 + e−iβ cosβ

∑k
j=1 p2j

2k + 1
, k ∈ N .



60 A. Lecko

These two formulas yield the following result due to Hengartner and Schober
(see [4], Theorem 3):

Corollary 2.6. If f ∈ β-CV2(i), β ∈ (−π/2, π/2), and f is of the form
(1.1), then

|a2k| ≤ cosβ ,(2.22)

|a2k+1| ≤
2k cosβ + 1

2k + 1
, k ∈ N .(2.23)

In particular , for β = 0,

(2.24) |an| ≤ 1, n ∈ N .

The function

f1,β(z) = lim
α→1

fα,β(z) = e−iβ
[

z

1− z
cosβ +

i sinβ
2

log
1 + z

1− z

]
,

β ∈ (−π/2, π/2), z ∈ U , makes (2.22) sharp. On the other hand, if β 6= 0,
then (2.23) is sharp only for k = 1 and for the function

g1,β(z) =
e−iβ cosβ
2(1− eiβ)

[4eiβ/2 log(1− eiβ/2z)

+(1− eiβ/2)2 log(1 + z)− (1 + eiβ/2)2 log(1− z)] +
ie−iβ

2
sinβ log

1 + z

1− z
,

z ∈ U (see [4]).
If β = 0, then (2.24) is sharp and equality is achieved by the function

f1,0(z) = lim
α→1

fα,0(z) =
z

1− z
, z ∈ U .

Moreover, the estimates (2.24) hold for the class C(1) and f1,0 is extremal
in this case.

3. Now we give some distortion theorems for the class Cβ(α).

Theorem 3.1. If f ∈ Cβ(α), α ∈ [0, 1], β ∈ (−π/2, π/2), then

(3.1) |f ′(z)| ≤
√

1 + r4 + 2r2 cos 2β + 2r cosβ
(1− α2r2)(1− r2)

=
exp

(
ar sh

2r cosβ
1− r2

)
1− α2r2

,

(3.2) |f ′(z)| ≥
√

1 + r4 + 2r2 cos 2β − 2r cosβ
(1 + α2r2)(1− r2)

=
exp

(
− ar sh

2r cosβ
1− r2

)
1 + α2r2

and

|f(z)| ≤
r∫

0

√
1 + %4 + 2%2 cos 2β + 2% cosβ

(1− α2%2)(1− %2)
d% ,(3.3)
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|f(z)| ≥
r∫

0

√
1 + %4 + 2%2 cos 2β − 2% cosβ

(1 + α2%2)(1− %2)
d%(3.4)

for z ∈ U , |z| ≤ r < 1.

P r o o f. By Lemma 5 of [4] equation (1.2) may be written as

(1− α2z2)f ′(z) =
1 + e−2iβω(z)

1− ω(z)
, z ∈ U ,

where ω ∈ Ω. Thus

(3.5) f ′(z) =
1

1− α2z2

1 + e−2iβω(z)
1− ω(z)

.

Moreover, we have

(3.6)
1 + e−2iβω(z)

1− ω(z)
≺ 1 + e−2iβz

1− z
, z ∈ U .

In view of (3.6) and by Theorem 2.3 of [11],

|1 + e−2iβr2| − |1 + e−2iβ |r
1− r2

≤
∣∣∣∣1 + e−2iβω(z)

1− ω(z)

∣∣∣∣(3.7)

≤ |1 + e−2iβr2|+ |1 + e−2iβ |r
1− r2

,

where z ∈ U , |z| ≤ r < 1. Now, the upper and lower bounds (3.1) and (3.2)
follow from (3.5) and (3.7).

The estimates (3.7) are sharp and in view of (3.6) are realized by the
function

p0(z) =
1 + e−2iβz

1− z
, z ∈ U ,

at two points z0 and z1 of modulus r. Let z0 = reiθ0(β) and z1 = reiθ1(β),
where 0 < r < 1, θ0(β), θ1(β) ∈ [0, 2π), give the lower and upper bound in
(3.7) respectively. Now, we denote by hα,β , α ∈ [0, 1], β ∈ (−π/2, π/2), the
function which is the solution of the equation (3.5) for ω = ω0 defined by

ω0(z) = −ieiθ0(β)z, z ∈ U .
The function hα,β is extremal for the lower estimate (3.2) and equality is
attained at the point z = ir.

In the same way we denote by tα,β , α ∈ [0, 1], β ∈ (−π/2, π/2), the
function which is the solution of the equation (3.5) for ω = ω1 given by

ω1(z) = eiθ1(β)z, z ∈ U .
Then tα,β gives the maximum modulus in (3.1) at the point z = r and is
extremal for the upper estimate.

Now we show the estimates (3.3) and (3.4).



62 A. Lecko

For z ∈ U , |z| = r, the upper bound (3.3) follows immediately from (3.1).
Let now ξ ∈ U , |ξ| = r, be a point such that |f(ξ)| = min{|f(z)| : |z| = r}.
Moreover, let I = [0, f(ξ)] denote the closed line segment from 0 to f(ξ).
Thus for |z| = r we have

|f(z)| ≥ |f(ξ)| =
∫
I

|dw| =
∫

f−1(I)

|f ′(z)| |dz|

≥
r∫

0

√
1 + %4 + 2%2 cos 2β − 2% cosβ

(1 + α2%2)(1− %2)
d% .

The estimates (3.3), (3.4) are sharp and realized by the functions hα,β and
tα,β .

Corollary 3.2. If f ∈ C(α), α ∈ (0, 1), then

(3.8)
1− r

(1 + r)(1 + α2r2)
≤ |f ′(z)| ≤ 1 + r

(1− r)(1− α2r2)
,

(3.9)
1

1 + α2

[
log

(1 + r)2

1 + α2r2
− (1− α2)

1
α

arctan(αr)
]

≤ |f(z)| ≤ 1
1− α2

[
log

1− α2r2

(1− r)2
− 1 + α2

2α
log

1 + αr

1− αr

]
,

where z ∈ U , |z| = r < 1.

The estimates (3.8) and (3.9) are sharp. The upper and lower bounds
are achieved when β = 0. In this case θ1(0) = 0, θ0(0) = π and, respec-
tively, ω1(z) = z, ω0(z) = iz. The extremal functions hα,0 and tα,0 have the
following form:

hα,0(z) = fα,0(z) =
1

1− α2

(
log

1− α2z2

(1− z)2
− 1 + α2

2α
log

1 + αz

1− αz

)
, z ∈ U ,

tα,0(z) =
i

1 + α2

(
2 log(1− iz) +

1
2αi

(α− i)2 log(1 + αz)

− 1
2αi

(α+ i)2 log(1− αz)
)
, z ∈ U .

The function tα,0 can be rewritten as

tα,0(z) =
i

1 + α2

(
2 log(1− iz)− log(1− α2z2)− 1− α2

2iα
log

1 + αz

1− αz

)
=

i

1 + α2

(
log

(1− iz)2

1− α2z2
+ (1− α2)

1
α

arctan(αiz)
)
.

Putting α = β = 0 in (3.1)–(3.4) we obtain known results (see [7]):
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Corollary 3.3. If f ∈ P ′(0), then
1− r
1 + r

≤ |f ′(z)| ≤ 1 + r

1− r
,(3.10)

2 log(1 + r)− r ≤ |f(z)| ≤ −2 log(1− r)− r(3.11)

for z ∈ U , |z| = r < 1.

The functions

h0,0(z) = −z − 2 log(1− z), z ∈ U ,
and

t0,0(z) = lim
α→1

tα,0(z) = i log(1− iz)2 − z, z ∈ U ,

are respective extremal functions for the upper and lower bounds.

The next corollary is obtained from Theorem 3.1 by putting α = 0 and
β = 1 (see [4]).

Corollary 3.4. If f ∈ C0(1), then
1− r

(1 + r)(1 + r2)
≤ |f ′(z)| ≤ 1

(1− r)2
,(3.12)

1
2

log
(1 + r)2

1 + r2
≤ |f(z)| ≤ r

1− r
(3.13)

for z ∈ U , |z| = r < 1.

The functions

h1,0(z) =
z

1− z
, z ∈ U, and t1,0(z) =

i

2
log

(1− iz)2

1− z2
, z ∈ U ,

are extremal.
In the limit cases as α tends to 0 or to 1, the bounds (3.8) and (3.9) give

sharp results for the classes C(0) and C(1) that agree with (3.10), (3.11)
and with (3.12), (3.13) respectively.

The lower bound in (3.9) yields

Corollary 3.5. If f ∈ C(α), α ∈ (0, 1], then f(U) contains the disk

(3.14) |w| < 1
1 + α2

[
log

4
1 + α2

− (1− α2)
1
α

arctanα
]

(see [6]).

The constant on the right hand side of (3.14) is best possible and the
function tα,0 is extremal.

For the class C(0) the following result is known (see [2]):

Corollary 3.6. If f ∈ C(0), then f(U) contains the disk

|w| < 2 log 2− 1 .
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This constant can be obtained from (3.14) by letting α→ 0.

If α = 1, then Corollary 3.5 reduces to the result obtained by Hengartner
and Schober [4]:

Corollary 3.7. If f ∈ C(1), then f(U) contains the disk

|w| < 1
2 log 2 .
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