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Qualitative behavior of a class of second order
nonlinear differential equations on the halfline

by Svatoslav Staněk (Olomouc)

Abstract. A differential equation of the form (q(t)k(u)u′)′ = F (t, u)u′ is consid-
ered and solutions u with u(0) = 0 are studied on the halfline [0,∞). Theorems about
the existence, uniqueness, boundedness and dependence of solutions on a parameter are
given.

1. Introduction. In [6] the differential equation

(1) (k(u)u′)′ = f(t)u′ ,

where k, f ∈ C0(R+), R+ = [0,∞), was considered and the author gave suf-
ficient conditions for the existence and uniqueness of nonnegative solutions
u such that u(0) = 0, u(t) > 0 for t > 0. This problem is connected with
the description of the mathematical model of the infiltration of water. For
more details see e.g. [3]–[5]. Special cases of (1) were considered in [1], [2],
[4] and [5]. In [7] the differential equation

(2) (q(t)k(u)u′)′ = f(t)h(u)u′ ,

where q, k, f, h ∈ C0(R+), was considered and sufficient conditions for the
existence, uniqueness and boundedness of nonnegative solutions of (2) on R+

were given. Simultaneously the dependence of solutions of the differential
equation

(3) (q(t)k(u)u′)′ = λf(t)h(u)u′ , λ > 0 ,

on the positive parameter λ was studied.
In this paper we consider the differential equation

(4) (q(t)k(u)u′)′ = F (t, u)u′ ,
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where q ∈ C0(R+), k ∈ C0(R), F ∈ C0(R+ × R), which is a generalization
of (2), and study solutions u of this equation on R+ such that u(0) = 0.
We give assumptions under which any nontrivial solution of (4) is either
strictly increasing or strictly decreasing on R+ and discuss the existence,
uniqueness and boundedness of solutions. In the last section we consider the
dependence of solutions of the differential equation

(4λ) (q(t)k(u)u′)′ = λF (t, u)u′ , λ > 0 ,

on the positive parameter λ and study the boundary value problem (4λ),
limt→∞ u(t, λ) = a (∈ R−{0}). Our theorems imply all results of [6] and [7].
The proofs of existence theorems are based on the Tikhonov–Schauder fixed
point theorem, on the iterative method and on the monotone behavior of
some operators. The proofs of uniqueness are different from the ones in [6]
and [7].

2. Notations, lemmas. Consider the differential equation (4), where
q, k, F satisfy the following assumptions (R+ = [0,∞), R− = (−∞, 0]):

(H1) q ∈ C0(R+), q(t) > 0 for t ∈ (0,∞),
∫
0

ds

q(s)
<∞ ;

(H2) k ∈ C0(R), k(u)u > 0 for u ∈ R, u 6= 0 ;

(H3)
∫
0

k(s)
s

ds <∞,
0∫ k(s)

s
ds <∞,∫

−∞

k(s)
s

ds =∞,
∞∫ k(s)

s
ds =∞ ;

(H4) F ∈ C0(R+ × R), f1(t)h1(u) ≤ F (t, u) ≤ f2(t)h2(u)
for (t, u) ∈ R+ × R, where
fi ∈ C0(R+), 0 < fi(t) for t ∈ R+, fi is decreasing on R+ ,

hi ∈ C0(R), hi(u)u ≥ 0 for u ∈ R and

Hi(u) :=
u∫

0

hi(x) dx is strictly increasing on R+ ,

Ti(u) :=
0∫
u

hi(x) dx is strictly increasing on R− (i = 1, 2) ;

(H5)
∫
0

k(x)
Hi(x)

dx <∞ ,
0∫ k(x)
Ti(x)

dx <∞ ,

∞∫ k(x)
Hi(x)

dx =∞ ,
∫
−∞

k(x)
Ti(x)

dx =∞ (i = 1, 2) .
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By a solution of (4) we mean a function u ∈ C0(R+) which is continu-
ously differentiable on (0,∞) and such that u(0)=0, limt→0+ q(t)k(u(t))u′(t)
= 0, q(t)k(u(t))u′(t) is continuously differentiable on (0,∞) and (4) is sat-
isfied on (0,∞).

R e m a r k 1. It follows from (H2) and (H4) that k(0) = 0, hi(0) = 0
(i = 1, 2), and F (t, 0) = 0 for t ∈ R+. Therefore u = 0 is a solution of (4).

Lemma 1. Let u(t) be a nontrivial solution of (4). Then either u′(t) > 0
on (0,∞) or u′(t) < 0 on (0,∞).

P r o o f. Let u be a solution of (4), u 6= 0. Then

(5) q(t)k(u(t))u′(t) =
t∫

0

F (s, u(s))u′(s) ds for t ∈ (0,∞) .

Assume there exist 0 < t1 < t2 such that u′(t1) = u′(t2) = 0, u′(t) 6= 0 for
t ∈ (t1, t2). Suppose u′(t) > 0 on (t1, t2). If u(t) > 0 (resp. < 0) on (t1, t2),
then

t2∫
t1

f1(s)h1(u(s))u′(s) ds ≤
t2∫
t1

F (s, u(s))u′(s) ds (= 0)

≤
t2∫
t1

f2(s)h2(u(s))u′(s) ds ,

which contradicts
t2∫
t1

f1(s)h1(u(s))u′(s) ds ≥ f1(t2)
u(t2)∫
u(t1)

h1(s) ds > 0

(
resp.

t2∫
t1

f2(s)h2(u(s))u′(s) ds ≤ f2(t2)
u(t2)∫
u(t1)

h2(s) ds < 0
)
.

Therefore u(ξ) = 0 for a ξ ∈ (t1, t2) and then u(t) < 0 on [t1, ξ) and
ξ∫

t1

F (s, u(s))u′(s)ds ≤
ξ∫

t1

f2(s)h2(u(s))u′(s)ds ≤ f2(ξ)
0∫

u(t1)

h2(s) ds < 0 ,

which contradicts 0=
∫ ξ
t1
F (s, u(s))u′(s) ds. We can easily check that u′(t)<

0 on (t1, t2) is also impossible.
Assume u′(τ) = 0 for a τ ∈ (0,∞) and u′(t) 6= 0 for t∈ (0, τ). If u′(t) > 0

(resp. u′(t)< 0) on (0, τ), then u(t) >0 (resp. u(t)< 0) on this interval and

τ∫
0

F (s, u(s))u′(s) ds ≥
τ∫

0

f1(s)h1(u(s))u′(s) ds ≥ f1(τ)
u(τ)∫
0

h1(s) ds > 0
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(
resp.

τ∫
0

F (s, u(s))u′(s) ds ≥
τ∫

0

f2(s)h2(u(s))u′(s)ds

≥ f2(τ)
u(τ)∫
0

h2(s)ds > 0
)
,

which contradicts 0 =
∫ τ
0
F (s, u(s))u′(s) ds.

This proves u′(t) 6= 0 on (0,∞) and since u ∈ C1((0,∞)) we have either
u′(t) > 0 on (0,∞) or u′(t) < 0 on (0,∞).

R e m a r k 2. It follows from Lemma 1 that u∈A+∪A− for any nontrivial
solution u of (4), where

A+ = {u ∈ C0(R+) : u(0) = 0 , u is strictly increasing on R+} ,
A− = {u ∈ C0(R+) : u(0) = 0 , u is strictly decreasing on R+} .

Set

W+(u) =
u∫

0

k(s) ds for u ∈ R+ , W−(u) =
u∫

0

k(s) ds for u ∈ R− .

Obviously, W+ is strictly increasing on R+, and W− is strictly decreasing
on R−.

Lemma 2. If u is a solution of (4), u 6= 0, then u is a solution of the
integral equation

(6+) u(t) = W−1
+

( t∫
0

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds
)

or the integral equation

(6−) u(t) = W−1
−

(
−

t∫
0

1
q(s)

0∫
u(s)

F (u−1(x), x) dx ds
)

in the set A+ or A−, respectively. Conversely , if u ∈ Aε, ε ∈ {+,−}, is a
solution of (6ε), then u is a solution of (4) and u 6= 0. Here W−1

ε and u−1

denote the inverse functions to Wε and u, respectively.

P r o o f. Let u 6= 0 be a solution of (4). Then u ∈ A+∪A− by Remark 2
and (5) holds. If u ∈ A+ (resp. u ∈ A−), then

W+(u(t)) =
t∫

0

1
q(s)

s∫
0

F (x, u(x))u′(x) dx ds

=
t∫

0

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds
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resp. W−(u(t)) =

t∫
0

1
q(s)

s∫
0

F (x, u(x))u′(x) dx ds

= −
t∫

0

1
q(s)

0∫
u(s)

F (u−1(x), x) dx ds
)

for t ∈ R+ and u is a solution of (6+) or (6−) in A+ or A−, respectively.
Conversely, let u ∈ Aε, ε ∈ {+,−}, be a solution of (6ε). Then u(0) = 0,

u ∈ C0(R+), u is continuously differentiable on (0,∞),

(7) lim
t→0+

q(t)k(u(t))u′(t) = lim
t→0+

u(t)∫
0

F (u−1(s), s) ds = 0

and (q(t)k(u(t))u′(t))′ = F (t, u(t))u′(t) for t > 0. Consequently, u is a solu-
tion of (4) and u 6= 0.

R e m a r k 3. It follows from Lemma 2 that solving (4) is equivalent to
solving (6+) and (6−) in A+ and A−, respectively.

Set

Kj(u) =
u∫

0

k(s)
Hj(s)

ds for u ∈ R+ ,

Vj(u) =
0∫
u

k(s)
Tj(s)

ds for u ∈ R− , j = 1, 2 ,

and

k1(t) =
t∫

0

f1(s)
q(s)

ds, k2(t) = f2(0)
t∫

0

ds

q(s)
,

l1(t) = f1(0)
t∫

0

ds

q(s)
, l2(t) =

t∫
0

f2(s)
q(s)

ds ,

ϕ+(t) = K−1
1 (k1(t)) , ϕ+(t) = K−1

2 (k2(t)) ,

ϕ−(t) = V −1
1 (l1(t)) , ϕ−(t) = V −1

2 (l2(t)) for t ∈ R+ .

Obviously, limu→∞Kj(u) =∞, limu→−∞ Vj(u) =∞ (j = 1, 2) by (H5).

Lemma 3. If u ∈ Aε is a solution of (6ε), ε ∈ {+,−}, then

(8ε) ϕε(t) ≤ u(t) ≤ ϕε(t) for t ∈ R+

and
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(9+) u(t2)− u(t1) ≥ f1(t2)H1(ϕ+(t1))
t2∫
t1

dt

q(t)

×[max{k(x) : ϕ+(t1) ≤ x ≤ ϕ+(t2)}]−1 for u ∈ A+ and 0 < t1 < t2 ,

(9−) u(t1)− u(t2) ≥ −f2(t2)(T2(ϕ−(t1))
t2∫
t1

dt

q(t)

×[max{−k(x) : ϕ−(t2) ≤ x ≤ ϕ−(t1)}]−1 for u ∈ A− and 0 < t1 < t2 .

P r o o f. Let u ∈ A+ be a solution of (6+). Then (cf. (H4))

f1(t)
u(t)∫
0

h1(s) ds ≤ q(t)k(u(t))u′(t)
(

=
u(t)∫
0

F (u−1(s), s) ds
)

≤ f2(0)
u(t)∫
0

h2(s) ds ,

hence

(10)

f1(t)
q(t)

≤
( u(t)∫

0

k(s)
H1(s)

ds

)′
,

f2(0)
q(t)

≥
( u(t)∫

0

k(s)
H2(s)

ds

)′
for t ∈ (0,∞) ,

and integrating (10) from 0 to t, we obtain

t∫
0

f1(s)
q(s)

ds ≤
u(t)∫
0

k(s)
H1(s)

ds = K1(u(t)) ,

f2(0)
t∫

0

ds

q(s)
≥

u(t)∫
0

k(s)
H2(s)

ds = K2(u(t)) .

Consequently,

ϕ+(t) ≤ u(t) ≤ ϕ+(t) for t ∈ R+ .

Let 0 < t1 < t2. Then

W+(u(t2))−W+(u(t1)) =
t2∫
t1

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds

≥
t2∫
t1

1
q(s)

u(s)∫
0

f1(u−1(x))h1(x) dx ds
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≥ f1(t2)
t2∫
t1

ds

q(s)

ϕ+(t1)∫
0

h1(s) ds

= f1(t2)H1(ϕ+(t1))
t2∫
t1

ds

q(s)
,

and since

u(t2)− u(t1) =
1

k(ξ)
(W+(u(t2))−W+(u(t1))) ,

where ξ ∈ (u(t1), u(t2)) ⊂ (ϕ+(t1), ϕ+(t2)), we see that (9+) is true.
Let u ∈ A− be a solution of (6−). Then (cf. (H4))

−f2(t)
0∫

u(t)

h2(s) ds ≤ q(t)k(u(t))u′(t)
(

=
u(t)∫
0

F (u−1(s), s) ds
)

≤ −f1(0)
0∫

u(t)

h1(s) ds ,

hence

f2(t)
q(t)

≤
( 0∫
u(t)

k(s)
T2(s)

ds

)′
,

f1(0)
q(t)

≥
( 0∫
u(t)

k(s)
T1(s)

ds

)′
for t ∈ (0,∞) ,

and integrating the last inequalities from 0 to t, we obtain
t∫

0

f2(s)
q(s)

ds ≤
0∫

u(t)

k(s)
T2(s)

ds = V2(u(t)) ,

f1(0)
t∫

0

ds

q(s)
≥

0∫
u(t)

k(s)
T1(s)

ds = V1(u(t)) .

Consequently,
ϕ−(t) ≤ u(t) ≤ ϕ−(t) for t ∈ R+ .

Let 0 < t1 < t2. Then

W−(u(t2))−W−(u(t1)) = −
t2∫
t1

1
q(s)

0∫
u(s)

F (u−1(x), x) dx ds

≥ −
t2∫
t1

1
q(s)

0∫
u(s)

f2(u−1(x))h2(x) dx ds
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≥ −f2(t2)
t2∫
t1

ds

q(s)

0∫
ϕ−(t1)

h2(s)ds

= −f2(t2)T2(ϕ−(t1))
t2∫
t1

ds

q(s)
,

and since

u(t1)− u(t2) = −(1/k(ξ))(W−(u(t2))−W−(u(t1))) ,

where ξ ∈ (u(t2), u(t1)) ⊂ (ϕ−(t2), ϕ−(t1)), we see that (9−) is true.

Set Kε = {u ∈ Aε : ϕε(t) ≤ u(t) ≤ ϕε(t) for t ∈ R+, u satisfies (9ε)},
and define Tε : Kε → C0(R+) by

(Tεu)(t) = W−1
ε

( t∫
0

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds
)

ε ∈ {+,−} .

Lemma 4. Tε : Kε → Kε for each ε ∈ {+,−}.

P r o o f. We will prove T+ : K+ → K+ (the proof of T− : K− → K− is
very similar and will be omitted). Let u ∈ K+. Setting

α(t) =
t∫

0

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds−W+(ϕ+(t)) ,

β(t) =
t∫

0

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds−W+(ϕ+(t))

for t ∈ R+, we have

α′(t) =
1
q(t)

u(t)∫
0

F (u−1(x), x) dx− k(ϕ+(t))ϕ′+(t)

=
1
q(t)

[ u(t)∫
0

F (u−1(x), x) dx− f1(t)H1(ϕ+(t))
]

≥ 1
q(t)

[ u(t)∫
0

f1(u−1(x))h1(x) dx− f1(t)
ϕ+(t)∫
0

h1(x) dx
]

≥ 1
q(t)

u(t)∫
0

(f1(u−1(x))− f1(t))h1(x) dx ≥ 0 ,
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β′(t) =
1
q(t)

u(t)∫
0

F (u−1(x), x) dx− k(ϕ+(t))ϕ′+(t)

=
1
q(t)

[ u(t)∫
0

F (u−1(x), x) dx− f2(0)H2(ϕ+(t))
]

≤ 1
q(t)

[ u(t)∫
0

f2(u−1(x))h2(x)dx− f2(0)
ϕ+(t)∫
0

h2(x) dx
]

≤ 1
q(t)

u(t)∫
0

(f2(u−1(x))− f2(0))h2(x) dx ≤ 0

for t ∈ (0,∞). Since α(0) = β(0) = 0 and α′(t) ≥ 0, β′(t) ≤ 0 on (0,∞), we
have α(t) ≥ 0, β(t) ≤ 0 and consequently,

(11) ϕ
+

(t) ≤ (T+u)(t) ≤ ϕ+(t) for t ∈ R+ and u ∈ K+ .

Let 0 < t1 < t2 and let u ∈ K+. Then

W+((T+u)(t2))−W+((T+u)(t1)) =
t2∫
t1

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds

≥
t2∫
t1

1
q(s)

u(s)∫
0

f1(u−1(x))h1(x) dx ds

≥
t2∫
t1

f1(s)
q(s)

H1(u(s)) ds

≥ f1(t2)H1(ϕ+(t1))
t2∫
t1

ds

q(s)

and

W+((T+u)(t2))−W+((T+u)(t1)) = k(ξ)[(T+u)(t2)− (T+u)(t1)]
≤ [(T+)(t2)− (T+u)(t1)] max{k(u) : ϕ+(t1) ≤ u ≤ ϕ+(t2)}

(here ξ ∈ ((T+u)(t1), (T+u)(t2)) ⊂ (ϕ+(t1), ϕ+(t2))), hence

(12) (T+u)(t2)− (T+u)(t1)

≥ f1(t2)H1(ϕ+(t1))
t2∫
t1

ds

q(s)
[max{k(u) : ϕ+(t1) ≤ u ≤ ϕ+(t2)}]−1 .

From (11) and (12) it follows that T+u ∈ K+, therefore T+ : K+ → K+.
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3. Existence theorems

Theorem 1. Let assumptions (H1)– (H5) be satisfied. Then a solution
u ∈ Aε of (4) exists for each ε ∈ {+,−}.

P r o o f. By Lemma 2, u∈Aε is a solution of (4) if and only if u is a fixed
point of the operator Tε. We will prove that under assumptions (H1)–(H5) a
fixed point of T+ exists. The existence of a fixed point of T− can be proved
similarly.

Let X be the Fréchet space of C0-functions on R+ with the topology of
uniform convergence on compact subintervals of R+. Then K+ is a bounded
closed convex subset of X and T+ : K+ → K+ (see Lemma 4) is a continuous
operator. It follows from the inequalities (0 ≤ t1 < t2, u ∈ K+)

0 ≤W+((T+u)(t2))−W+((T+u)(t1)) =
t2∫
t1

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds

≤
t2∫
t1

1
q(s)

u(s)∫
0

f2(u−1(x))h2(x) dx ds ≤ f2(0)H2(ϕ+(t2))
t2∫
t1

ds

q(s)

and from the Arzelà–Ascoli theorem that T+(K+) is a relatively compact
subset of X. According to the Tikhonov–Schauder fixed point theorem there
exists a fixed point u+ of T+.

Theorem 2. Let assumptions (H1)– (H5) be satisfied and suppose that

(H6) F (·, u)sign(u) is decreasing on R+ for each fixed u ∈ R.

Then there exist solutions uε, vε ∈ Aε of (4) for each ε ∈ {+,−} such that
uε(t) ≤ vε(t) for t ∈ R+. Moreover ,

(13) uε(t) ≤ u(t) ≤ vε(t) , t ∈ R+ , ε ∈ {+,−} ,

for any solution u ∈ Aε of (4) and

(14) u(t) 6= v(t) , t > 0 ,

for any two different solutions u, v of (4).

P r o o f. Let assumptions (H1)–(H6) be satisfied and let u ∈ A+ be a
solution of (4). Define sequences {un} ⊂ A+, {vn} ⊂ A+ by the recurrence
formulas

u[0] = ϕ
+
, u[n+1] = T+(u[n]) ,

v[0] = ϕ+, v[n+1] = T+(v[n]) ,

for n ∈ N. Then u[0](t) ≤ u(t) ≤ v[0](t) on R+ by Lemma 3 and u[0](t) ≤
u[1](t) ≤ v[0](t), u[0](t) ≤ v[1](t) ≤ v[0](t) on R+ by Lemma 4. Since α, β ∈
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A+, α(t) ≤ β(t) for t ∈ R+ implies

(T+α)(t) = W−1
+

( t∫
0

1
q(s)

α(t)∫
0

F (α−1(x), x) dx ds
)

≤W−1
+

( t∫
0

1
q(s)

β(t)∫
0

F (β−1(x), x) dx ds
)

= (T+β)(t)

on R+ and T+ : K+ → K+ by Lemma 4, we deduce

u[0](t) ≤ u[1](t) ≤ . . . ≤ u[n](t)

≤ . . . ≤ u(t) ≤ . . . ≤ v[n](t) ≤ . . . ≤ v[1](t) ≤ v[0](t)

for t ∈ R+ and n ∈ N. Therefore the limits limn→∞ u[n](t) =: u+(t),
limn→∞ v[n](t) =: v+(t) exist for all t ≥ 0, u+(t) ≤ u(t) ≤ v+(t) on R+ and
using the Lebesgue dominated convergence theorem we see that u+, v+ ∈ K+

are solutions of (6+) and thus also solutions of (4) by Lemma 2.
Let u, v ∈ A+ be different solutions of (4). First, suppose there exists a

t1 > 0 such that u(t) < v(t) for t ∈ (0, t1) and u(t1) = v(t1). Then

0 = W+(v(t1))−W+(u(t1))

=
t1∫
0

1
q(s)

[ v(s)∫
0

F (v−1(x), x) dx−
u(s)∫
0

F (u−1(x), x) dx
]
ds

≥
t1∫
0

1
q(s)

[ u(s)∫
0

(F (v−1(x), x)− F (u−1(x), x)) dx
]
ds

and since (cf. (H6)) F (v−1(x), x) − F (u−1(x), x) ≥ 0 for x ∈ [0, u(t1)] we
have necessarily F (v−1(x), x)− F (u−1(x), x) = 0 for x ∈ [0, u(t1)]. Then

W+(v(t1))−W+(u(t1)) =
t1∫
0

1
q(s)

v(s)∫
u(s)

F (v−1(x), x) dx ds > 0 ,

which contradicts W+(v(t1))−W+(u(t1)) = 0.
Secondly, assume there exist 0 < t1 < t2 such that u(t1) = v(t1), u(t2) =

v(t2), u(t) 6= v(t) for t ∈ (t1, t2), for example assume

u(t) > v(t) for t ∈ (t1, t2) .

Then u′(t1) ≥ v′(t1), u′(t2) ≤ v′(t2) and

0 ≤ q(t1)k(u(t1))(u′(t1)− v′(t1))− q(t2)k(u(t2))(u′(t2)− v′(t2))(15)

=
u(t1)∫
u(t2)

[F (u−1(x), x)− F (v−1(x), x)] dx .
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On the other hand, since u(t2) > u(t1) and (cf. (H6)) F (u−1(x), x) −
F (v−1(x), x) ≥ 0 on [u(t1), u(t2)] we have

u(t1)∫
u(t2)

[F (u−1(x), x)− F (v−1(x), x)] dx ≤ 0 ,

therefore in virtue of (15), u′(t1) = v′(t1), u′(t2) = v′(t2) and F (u−1(x), x)−
F (v−1(x), x) = 0 for x ∈ [u(t1), u(t2)]. Then

0 = (W+(u(t2))−W+(u(t1)))− (W+(v(t2))−W+(v(t1)))(16)

=
t2∫
t1

1
q(s)

u(s)∫
v(s)

F (u−1(x), x) dx ds

and since H1(u(t))−H1(v(t)) > 0 on (t1, t2),
t2∫
t1

1
q(s)

u(s)∫
v(s)

F (u−1(x), x) dx ds ≥ f1(t2)
t2∫
t1

1
q(s)

u(s)∫
v(s)

h1(x) dx ds

= f1(t2)
t2∫
t1

1
q(s)

(H1(u(s))−H1(v(s))) ds > 0 ,

which contradicts (16). Hence u(t) 6= v(t) for t ∈ (0,∞). For ε = − the
proof is similar.

4. Bounded solutions

Theorem 3. Let assumptions (H1)–(H5) be satisfied. Then

(i) any nontrivial solution of (4) is bounded (on R+) if and only if∫∞
0
ds/q(s) <∞,
(ii) any nontrivial solution of (4) is unbounded (on R+) if and only if∫∞

0
ds/q(s) =∞.

P r o o f. We will prove our theorem for ε = + (the case ε = − is similar).
First observe that either

∫∞
0
ds/q(s) <∞ or

∫∞
0
ds/q(s) =∞ .

(a) If
∫∞
0
ds/q(s) <∞ then by Lemma 3 any solution of (4) is bounded.

(b) Let
∫∞
0
ds/q(s) =∞ and u ∈ A+ be a solution of (4). Then u 6= 0,

W+(u(t))

=
t∫

0

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds ≥
t∫

0

1
q(s)

u(s)∫
0

f1(u−1(x))h1(x) dx ds

and since 06≡(
∫ u(s)

0
f1(u−1(x))h1(x)dx)′≥0 on R+ we see limt→∞W+(u(t))

=∞, hence limt→∞ u(t) =∞.



Nonlinear equations on the halfline 77

Let u ∈ A+ be a solution of (4). Since u is strictly increasing on R+ (by
Lemma 1), u is either bounded or unbounded on R+. Accordingly, either∫∞
0
ds/q(s) <∞ or

∫∞
0
ds/q(s) =∞ by (b) and (a) above.

5. Uniqueness theorems. Let assumptions (H1)–(H5) be satisfied. By
Theorem 1 equation (4) has at least one solution in A+ and at least one
solution in A−. Since u = 0 is also a solution of (4), we see that under
assumptions (H1)–(H5) equation (4) admits at least three different solutions.
In the next theorems we will give sufficient conditions for the existence of
just three different solutions of (4).

Theorem 4. Let assumptions (H1)–(H5) be satisfied. Moreover , assume
that

(H7) There exists an ε > 0 such that :

(i) |F (t1, u)−F (t2, u)| ≤ L|t1− t2|min{|h1(u)|, |h2(u)|} for (ti, u)
∈ [0, ε]× [−ε, ε] (i = 1, 2), where L > 0 is a constant ,

(ii) the modulus of continuity γ(t) (:= sup{|q(t1)− q(t2)| : t1, t2 ∈
[0, ε], |t1 − t2| ≤ t}) of q on [0, ε] satisfies

lim sup
t→0+

γ(t)/t <∞ ;

(H8) The function F (t, u) locally satisfies a Lipschitz condition on (0,∞)
× (R− {0}) with respect to t.

Then equation (4) admits just three different solutions.

P r o o f. Assume u1, u2 ∈ A+ are solutions of (4) and assume on the
contrary u1 6= u2. First, we will prove u1(t) = u2(t) on an interval [0, b],
b > 0. Setting Aj = limt→∞ uj(t) and wj = u−1

j (j = 1, 2), we see 0 < Aj ≤
∞, wj : [0, Aj)→ R+ are continuous strictly increasing functions and

w′j(x) = k(x)q(wj(x))
[ x∫

0

F (wj(s), s) ds
]−1

for x ∈ (0, Aj), j = 1, 2 .

Hence

wj(x) =
x∫

0

k(s)q(wj(s))
[ s∫

0

F (wj(t), t) dt
]−1

ds for x ∈ (0, Aj), j = 1, 2 ,

and thus for x ∈ [0,min(A1, A2)) we have

(17) w1(x)−w2(x) =
x∫

0

(q(w1(s))−q(w2(x)))k(s)
[ s∫

0

F (w2(t), t) dt
]−1

ds

+
x∫

0

q(w1(s))k(s)∫ s
0
F (w1(t), t) dt

∫ s
0
F (w2(t), t) dt

s∫
0

(F (w2(t), t)− F (w1(t), t)) dt ds .
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Let ε > 0 be as in assumption (H7) and set a = min{u1(ε), u2(ε)}, X(x) =
max{|w1(s) − w2(s)| : 0 ≤ s ≤ x} for x ∈ [0, a]. Suppose X(x) > 0 for
x ∈ (0, a]. Then (cf. (H7))

|q(w1(x))− q(w2(x))| ≤ γ(X(x)) for x ∈ [0, a]

and using (H7) and (17) we have

|w1(x)− w2(x)| ≤
x∫

0

γ(X(s))k(s)∫ s
0
f1(w2(t))h1(t)dt

ds

+L
x∫

0

q(w1(s))k(s)∫ s
0
f1(w1(t))h1(t) dt

∫ s
0
f1(w2(t))h1(t) dt

s∫
0

|w2(t)− w1(t)|h1(t) dt ds

≤ γ(X(x))
f1(ε)

K1(x) + LX(x)
K1(x)
f2
1 (ε)

max{q(t) : 0 ≤ t ≤ ε}

for 0 ≤ x ≤ a. Hence

X(x) ≤ (Bγ(X(x)) + CX(x))K1(x), x ∈ [0, a] ,

where B = 1/f1(ε), C = B2Lmax{q(t) : 0 ≤ t ≤ ε}, and therefore

γ(X(x))
X(x)

K1(x) ≥ (1/B)(1− CK1(x)), x ∈ (0, a] .

Then (cf. (H7))

lim
x→0+

γ(X(x))
X(x)

K1(x) = 0 ,

which contradicts limx→0+(1/B)(1 − CK1(x)) = 1/B > 0. This proves
u1(t) = u2(t) for t ∈ [0, b] with a positive number b.

Secondly, assume [0, c] is the maximal interval where u1(t) = u2(t). De-
fine Y (t) = max{|u2(s) − u1(s)| : c ≤ s ≤ t}, α(t) = min{u1(t), u2(t)},
β(t) = max{u1(t), u2(t)} for t ≥ c. Then Y (c) = 0, α(c) = β(c), 0 ≤
β(t)− α(t) ≤ Y (t) > 0 for t > c. From the equality (t ≥ c)

W+(u2(t))−W+(u1(t))

=
t∫
c

1
q(s)

[ u2(s)∫
u1(c)

F (u−1
2 (x), x) dx−

u1(s)∫
u2(c)

F (u−1
1 (x), x) dx

]
ds

it follows that

W+(u2(t))−W+(u1(t)) =
t∫
c

1
q(s)

[ u2(s)∫
u1(c)

(F (u−1
2 (x), x)− F (u−1

1 (x), x)) dx

+
u1(s)∫
u2(s)

F (u−1
1 (x), x) dx

]
ds for t ∈ [c,∞) .
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By assumption (H8) there exist positive numbers ε0 and K such that
|F (t1, u)−F (t2, u)| ≤ K|t1−t2| for (tj , u) ∈ [c, c+ε0]×[u1(c), u1(c)+ε0]. Set
ε = min{ε0, β−1(ε0 + u1(c))− c}, m = min{u′1(x) : c ≤ x ≤ α−1(β(c+ ε))}
(> 0 by Lemma 1), M = max{F (u−1

1 (x), x) : α(c) ≤ x ≤ β(c+ ε)}. Then

|F (u−1
2 (x), x)−F (u−1

1 (x), x)| ≤ K|u−1
2 (x)−u−1

1 (x)| for x ∈ [α(c), α(c+ε)]

and for x ∈ [c, c+ ε] we have

|u−1
1 (u2(x))− x| = |u−1

1 (u2(x))− u−1
1 (u1(x))| = |(u−1

1 )′(ξ)| |u2(x)− u1(x)|
= (1/|u′1(η)|)|u2(x)− u1(x)| ≤ (1/m)|u2(x)− u1(x)| ≤ Y (x)/m ,

where ξ ∈ (α(x), β(x)) and η = u−1
1 (ξ) ∈ [u−1

1 (α(x)), u−1
1 (β(x))] ⊂

[c, α−1(β(c+ ε))]. Consequently,

|u−1
1 (x)− u−1

2 (x)| ≤ (1/m)Y (u−1
2 (x)) for x ∈ [u1(c), u2(c+ ε)] .

Therefore (r = max{u′2(t) : c ≤ t ≤ c+ ε})

|W+(u2(t))−W+(u1(t))|

≤
t∫
c

1
q(s)

[
K

u2(s)∫
u1(c)

|u−1
2 (x)− u−1

1 (x)|dx+
β(s)∫
α(s)

F (u−1
1 (x), x) dx

]
ds

≤
t∫
c

1
q(s)

[
K

u2(s)∫
u1(c)

(Y (u−1
2 (x))/m) dx+M(β(s)− α(s))

]
ds

≤
t∫
c

1
q(s)

[
(rK/m)

s∫
c

Y (x) dx+MY (s)
]
ds

≤
t∫
c

1
q(s)

[(Kr(s− c)/m) +M ]Y (s) ds ≤ ((Kεr/m) +M)Y (t)
t∫
c

ds

q(s)

for t ∈ [c, c+ ε]. Since (t ∈ [c, c+ ε])

|W+(u2(t))−W+(u1(t))| = k(ξ)|u2(t)− u1(t)| ,

where ξ ∈ (α(t), β(t)) ⊂ [α(c), β(c+ ε)], we have

|u2(t)− u1(t)| ≤ [(Kεr/m) +M ](Y (t)/p)
t∫
c

ds

q(s)
,

with p = min{k(u) : α(c) ≤ u ≤ β(c+ ε)} (> 0), hence

Y (t) ≤ [(Kεr/m) +M ](Y (t)/p)
t∫
c

ds

q(s)
, t ∈ [c, c+ ε] .
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Then

1 ≤ [(Kεr/m) +M ](1/p)
t∫
c

ds

q(s)
,

for c < t ≤ c+ ε, which is impossible. This proves u1(t) = u2(t) for t ∈ R+.
The uniqueness of solutions of (4) in A− can be treated quite analogously.

Theorem 5. Suppose that assumptions (H1)–(H7) are satisfied. Then
equation (4) admits just three different solutions.

P r o o f. It is sufficient to prove that under assumptions (H1)–(H7), uε =
vε, ε = +,−, where uε, vε are defined in Theorem 2. If for example, u+ 6= v+
then u+(t) < v+(t) on (0,∞) by Theorem 2. Since assumptions (H1)–(H5)
and (H7) imply (see the first part of the proof of Theorem 4) u+(t) = v+(t)
on an interval [0, b] (b > 0), we have a contradiction.

6. Dependence of solutions on a parameter. Consider the differ-
ential equation

(18λ) (q(t)k(u)u′)′ = λF (t, u)u′, λ > 0 ,

depending on the positive parameter λ.

Theorem 6. Suppose that assumptions (H1)–(H6) are satisfied. Then
for each ε ∈ {+,−} there exist solutions uε(t;λ), vε(t;λ) of (18λ) such that
uε(t;λ) ≤ vε(t;λ) for t ∈ R+. Moreover ,

uε(t;λ) ≤ u(t;λ) ≤ vε(t;λ), t ∈ R+ ,

for any solution u(t;λ) ∈ Aε of (18λ) and

(19)
u+(t;λ1) < u+(t;λ2) , v+(t;λ1) < v+(t;λ2) ,
u−(t;λ1) > u−(t;λ2) , v−(t;λ1) > v−(t, λ2)

for all t ∈ R+ and 0 < λ1 < λ2.

P r o o f. The first part of the statement follows from Theorem 2. Set

(20)
ϕ+(t;λ) = K−1

1 (λk1(t)) , ϕ+(t;λ) = K−1
2 (λk2(t)) ,

ϕ−(t;λ) = V −1
1 (λl1(t)) , ϕ−(t;λ) = V −1

2 (λl2(t))

for t ∈ R+, λ > 0. Since (18λ) can be rewritten in the form(
q(t)
λ
k(u)u′

)
= F (t, u)u′, λ > 0 ,

we have (see Lemma 3)

u(t2)− u(t1) ≥ λf1(t2)H1(ϕ+(t1;λ))
t2∫
t1

dt

q(t)
(21+)

× [max{k(x) : ϕ+(t1;λ) ≤ x ≤ ϕ+(t2;λ)}]−1
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for any solution u ∈ A+ of (18λ) and 0 < t1 < t2, and

u(t1)− u(t2) ≥ − λf2(t2)T2(ϕ−(t1;λ))
t2∫
t1

dt

q(t)
(21−)

× [max{−k(x) : ϕ−(t2;λ) ≤ x ≤ ϕ−(t1;λ)}]−1

for any solution u ∈ A− of (18λ) and 0 < t1 < t2.
Set Kλ,ε = {u ∈ Aε : ϕε(t;λ) ≤ u(t) ≤ ϕε(t;λ) for t ∈ R+, u satisfies

(21ε)} and define Tλ,ε : Kλ,ε → C0(R+) by

(Tλ,εu)(t) = W−1
ε

(
λ

t∫
0

1
q(s)

u(s)∫
0

F (u−1(x), x) dx ds
)
,

where ε ∈ {+,−}, λ > 0. Then (cf. Lemma 4) Tλ,ε : Kλ,ε → Kλ,ε. Next set

u
[0]
λ,ε(t) = ϕε(t;λ), u

[n+1]
λ,ε (t) = (Tλ,εu

[n]
λ,ε)(t) ,

v
[0]
λ,ε(t) = ϕε(t;λ), v

[n+1]
λ,ε (t) = (Tλ,εv

[n]
λ,ε)(t)

for t ∈ R+, n ∈ N, λ > 0 and ε ∈ {+,−}. Then the limits

lim
n→∞

u
[n]
λ,ε(t) =: uε(t;λ) , lim

n→∞
v
[n]
λ,ε(t;λ) =: vε(t;λ)

exist for t ∈ R, λ > 0, ε ∈ {+,−}.
Let 0 < t1 < t2 and let for example ε = + (for the case ε = −, the proof

is similar). Then

ϕ+(t;λ1) < ϕ+(t;λ2) , ϕ+(t;λ1) < ϕ+(t;λ2)

and for each α, β ∈ A+ with α(t) < β(t) on (0,∞) we have

(Tλ1,+α)(t) = W−1
+

(
λ1

t∫
0

1
q(s)

α(s)∫
0

F (α−1(x), x) dx ds
)

< W−1
+

(
λ2

t∫
0

1
q(s)

β(s)∫
0

F (β−1(x), x) dx ds
)

= (Tλ2,+β)(t) ,

and therefore

u
[n]
λ1,+

(t) < u
[n]
λ2,+

(t), v
[n]
λ1,+

(t) < v
[n]
λ2,+

(t) for t ∈ (0,∞) , n ∈ N .

Hence

u+(t;λ1) ≤ u+(t;λ2), v+(t;λ1) ≤ v+(t;λ2) for t ∈ R+ .

If r(t0;λ1) = r(t0;λ2) for a t0 > 0, where r is either u+ or v+, then (rj(t) =
r(t;λj) on R+, j = 1, 2)
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r1(t0) = W+

(
λ1

t0∫
0

1
q(s)

r1(s)∫
0

F (r−1
1 (x), x) dx ds

)

< W+

(
λ2

t0∫
0

1
q(s)

r2(s)∫
0

F (r−1
2 (x), x) dx ds

)
= r2(t0) ,

which is a contradiction.

Theorem 7. Let
∫∞
0
ds/q(s) < ∞ and let assumptions (H1)–(H7) be

satisfied. Then for each a ∈ R, a 6= 0, there exists a unique λ0 > 0 such that
equation (18λ) for λ = λ0 has a (necessarily unique) solution u(t;λ0) with

lim
t→∞

u(t;λ0) = a .

P r o o f. By Theorem 5 equation (18λ) has a unique solution u+(t;λ) ∈
A+ and a unique solution u−(t;λ) ∈ A− for each λ > 0 and moreover
the finite limits limt→∞ u+(t;λ) (> 0) and limt→∞ u−(t;λ) (< 0) exist by
Theorem 3. Define

g+(λ) = lim
t→∞

u+(t;λ), g−(λ) = lim
t→∞

u−(t;λ) for λ > 0 .

Then g+ : (0,∞) → (0,∞) and g− : (0,∞) → (−∞, 0). In view of Theo-
rem 6, g+ is increasing on (0,∞) and g− is decreasing on (0,∞). If for exam-
ple g+(λ1) = g+(λ2) for some 0 < λ1 < λ2, then setting r1(t) = u+(t;λ1),
r2(t) = u+(t;λ2) for t ∈ R+ we have r1(t) < r2(t) on (0,∞), r−1

1 (t) > r−1
2 (t),

F (r−1
1 (t), t) < F (r−1

2 (t), t) for t ∈ (0, g+(λ1)), hence

g+(λ1) =
∞∫
0

1
q(s)

r1(s)∫
0

F (r−1
1 (x), x) dx ds

<
∞∫
0

1
q(s)

r2(s)∫
0

F (r−1
2 (x), x) dx ds = g+(λ2) ,

a contradiction. Consequently, g+ is strictly increasing, and g− is strictly
decreasing. To prove our theorem it is enough to show that g+ and g−
map (0,∞) onto (0,∞) and (−∞, 0), respectively. We prove for example
that g+ maps (0,∞) onto itself. First, we see from ϕ+(t;λ) ≤ u+(t;λ) ≤
ϕ+(t;λ), where ϕ+, ϕ+ are defined by (20), that limλ→0+ g+(λ) = 0 and
limλ→∞ g+(λ) = ∞. Secondly, assume, on the contrary, limλ→λ0− g+(λ) <
limλ→λ0+ g+(λ) for a λ0 > 0. Setting v1(t) = limλ→λ0− u+(t;λ), v2(t) =
limλ→λ0+ u+(t;λ) for t ≥ 0, we get v1 6= v2. Using the Lebesgue dominated
convergence theorem as λ → λ0− and λ → λ0+ in the equality (rλ(t) =
u+(t;λ) for (t;λ) ∈ R+ × (0,∞))
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rλ(t) = W+

(
λ

t∫
0

1
q(s)

rλ(s)∫
0

F (r−1
λ (x), x) dx ds

)
we see that

vj(t) = W+

(
λ0

t∫
0

1
q(s)

vj(s)∫
0

F (v−1
j (x), x) dx ds

)
for t ≥ 0, j = 1, 2 .

Therefore v1, v2 are solutions of (18λ) for λ = λ0, and consequently v1 = v2,
a contradiction.
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