ANNALES POLONICI MATHEMATICI LVIII.1 (1993)

## On homeomorphic and diffeomorphic solutions of the Abel equation on the plane

by ZBIGNIEW LEŚNIAK (Kraków)

Abstract. We consider the Abel equation

$$\varphi[f(x)] = \varphi(x) + a$$

on the plane  $\mathbb{R}^2$ , where f is a free mapping (i.e. f is an orientation preserving homeomorphism of the plane onto itself with no fixed points). We find all its homeomorphic and diffeomorphic solutions  $\varphi$  having positive Jacobian. Moreover, we give some conditions which are equivalent to f being conjugate to a translation.

The aim of this paper is to find all homeomorphic and diffeomorphic solutions with positive Jacobian of the Abel equation

(1) 
$$\varphi[f(x)] = \varphi(x) + a$$

on the plane  $\mathbb{R}^2$ . We assume that  $a \neq (0,0)$  and f is an orientation preserving homeomorphism of the plane onto itself with no fixed points (such a homeomorphism will be called a *free mapping*). By a *curve* is meant a homeomorphic image of a straight line. A curve is said to be a *line* (an *open line* in [4]) if it is a closed set.

1. We note that the existence of homeomorphic solutions  $\varphi$  of (1) is equivalent to f being conjugate to the translation T(x) = x + a (i.e.  $f = \varphi^{-1} \circ T \circ \varphi$ , where  $\varphi$  is a homeomorphism). S. Andrea [1] has proved that a free mapping f is conjugate to a translation if and only if

(H) for all  $x, y \in \mathbb{R}^2$  there exists a curve segment C with endpoints x, y such that  $f^n[C] \to \infty$  as  $n \to \mp \infty$ , where  $f^n$  is the *n*th iterate of f.

In the present paper we give some other conditions equivalent to (H). We introduce the following conditions:

<sup>1991</sup> Mathematics Subject Classification: Primary 39B10; Secondary 54H20, 26A18. Key words and phrases: functional Abel equation, free mapping.

## Z. Leśniak

- (A) There exists a homeomorphism  $\varphi$  of the plane *onto* itself satisfying (1).
- (A') There exists a homeomorphism  $\varphi$  of the plane *into* itself satisfying (1).
- (B) There exists a line K such that
- (2)  $K \cap f[K] = \emptyset,$
- (3)  $U^0 \cap f[U^0] = \emptyset,$

(4) 
$$\bigcup_{n\in\mathbb{Z}}f^n[U^0] = \mathbb{R}^2\,,$$

where  $U^0 := M^0 \cup f[K]$  and  $M^0$  is the strip bounded by K and f[K]. (See Fig. 1.)



 $C_{\gamma} = f[C_{\gamma}]$ Fig. 2

(C) There exist a family of curves  $\{C_{\alpha} : \alpha \in I\}$  and a line K such that (5)  $f[C_{\alpha}] = C_{\alpha}$  for  $\alpha \in I$ ,

(6) 
$$C_{\alpha} \cap C_{\beta} = \emptyset \quad \text{for } \alpha, \beta \in I, \ \alpha \neq \beta,$$

(7) 
$$\operatorname{card}(K \cap C_{\alpha}) = 1 \quad \text{for } \alpha \in I,$$

(8) 
$$\bigcup_{\alpha \in I} C_{\alpha} = \mathbb{R}^2. \quad (\text{See Fig. 2.})$$

We shall show

THEOREM 1. If f is a free mapping, then conditions (A), (A'), (B) and (C) are equivalent.

## **2.** First note the following

LEMMA 1. Let  $a = (a_1, a_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$  and T(x) := x + a for  $x \in \mathbb{R}^2$ . Then there exists a homeomorphism  $\psi$  of the plane onto itself such that

$$T(x) = \psi^{-1}[\psi(x) + (1,0)]$$

Proof. Set

(9)

$$\psi(x_1, x_2) = \left(\frac{1}{a_1}x_1, -\frac{a_2}{a_1}x_1 + x_2\right) \quad \text{if } a_1 \neq 0,$$
  
$$\psi(x_1, x_2) = \left(\frac{1}{a_2}x_2, x_1\right) \quad \text{if } a_1 = 0.$$

By Lemma 1, from now on we may assume that a = (1, 0).

LEMMA 2. If f is a free mapping, then (A') implies (B).

Proof. Since  $\varphi$  is a homeomorphism,  $\varphi[\mathbb{R}^2]$  is a region. Moreover,  $\varphi[\mathbb{R}^2] = \varphi[\mathbb{R}^2] + (1,0)$ . Put  $T(x_1, x_2) := (x_1 + 1, x_2)$  and  $T^0(x_1, x_2) := (x_1, x_2)$  for  $(x_1, x_2) \in \varphi[\mathbb{R}^2]$ . Write  $L := \{(x_1, x_2) \in \varphi[\mathbb{R}^2] : x_1 = 0\}$ . Since  $T^n[L] = \{(x_1, x_2) \in \varphi[\mathbb{R}^2] : x_1 = n\}$  for  $n \in \mathbb{Z}$ , we have

(10) 
$$T^{n}[L] \cap T^{m}[L] = \emptyset \quad \text{for } n, m \in \mathbb{Z}, \ n \neq m.$$

Put  $L^n := T^n[L], N^n := \{(x_1, x_2) \in \varphi[\mathbb{R}^2] : x_1 \in (n, n+1)\}$  and  $W^n := N^n \cup L^{n+1}$  for  $n \in \mathbb{Z}$ . Note that

$$N^{n} = T^{n}[N^{0}] \quad \text{for } n \in \mathbb{Z} ,$$
$$W^{0} \cap W^{n} = \emptyset \quad \text{for } n \in \mathbb{Z} \setminus \{0\}, \quad \bigcup_{n \in \mathbb{Z}} W^{n} = \varphi[\mathbb{R}^{2}] .$$

Put  $K := \varphi^{-1}[L]$  and  $K^n := f^n[K]$  for  $n \in \mathbb{Z}$ . By (A'),  $\varphi \circ f^n = T^n \circ \varphi$ , whence

(11) 
$$f^n \circ \varphi^{-1} = \varphi^{-1} \circ T^n.$$

Hence

(12) 
$$K^{n} = f^{n}[\varphi^{-1}[L]] = \varphi^{-1}[T^{n}[L]] = \varphi^{-1}[L^{n}].$$

Therefore, by (10),  $K^n \cap K^m = \emptyset$  for  $n, m \in \mathbb{Z}, n \neq m$ .

Since  $K = \varphi^{-1}[L]$  and L is closed in  $\varphi[\mathbb{R}^2]$ , the curve K is a line, and so is  $K^n = f^n[K]$  for every  $n \in \mathbb{Z}$ .

For each  $n \in \mathbb{Z}$ , denote by  $M^n$  the strip bounded by  $K^n$  and  $K^{n+1}$ . Since  $\varphi$  is a homeomorphism,

(13) 
$$M^n = \varphi^{-1}[N^n] \quad \text{for } n \in \mathbb{Z}.$$

Hence by (11) we have

(14) 
$$f^n[M^0] = f^n[\varphi^{-1}[N^0]] = \varphi^{-1}[T^n[N^0]] = \varphi^{-1}[N^n] = M^n$$
  
for  $n \in \mathbb{Z}$ .

Put  $U^n := M^n \cup K^{n+1}$  for  $n \in \mathbb{Z}$ . Then by (12) and (13),

$$U^n = \varphi^{-1}[N^n \cup L^{n+1}] = \varphi^{-1}[W^n]$$

and by (14),

$$U^n = f^n[M^0 \cup f[K]] = f^n[U^0].$$

Hence

$$\bigcup_{n \in \mathbb{Z}} f^n[U^0] = \bigcup_{n \in \mathbb{Z}} U^n = \varphi^{-1} \Big[ \bigcup_{n \in \mathbb{Z}} W^n \Big] = \mathbb{R}^2$$

and

$$f[U^0] \cap U^0 = U^1 \cap U^0 = \varphi^{-1}[W^1 \cap W^0] = \emptyset$$

This completes the proof.

THEOREM 2. Let f be a free mapping of the plane onto itself and let  $a = (a_1, a_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ . Assume that condition (B) is satisfied. Let  $\varphi_0 : U^0 \cup K \to \mathbb{R}^2$  be continuous and suppose

(15) 
$$\varphi_0[f(x)] = \varphi_0(x) + a \quad for \ x \in K.$$

Then:

(a) There exists a unique solution  $\varphi$  of (1) such that

(16) 
$$\varphi(x) = \varphi_0(x) \quad \text{for } x \in U^0 \cup K.$$

This solution  $\varphi$  is continuous.

(b) If  $\varphi_0$  is one-to-one and  $\varphi_0[U^0] \cap (\varphi_0[U^0] + ka) = \emptyset$  for all  $k \in \mathbb{Z} \setminus \{0\}$  then  $\varphi$  is a homeomorphism.

(c) If  $\varphi_0$  is one-to-one,  $\varphi_0[K]$  is a line and  $\varphi_0[K] \cap D_\gamma \neq \emptyset$  for all  $\gamma \in \mathbb{R}$ , where  $D_\gamma = \{(x_1, x_2) \in \mathbb{R}^2 : a_2x_1 - a_1x_2 = \gamma\}$ , then  $\varphi$  is a homeomorphism.

(d) If  $\varphi_0$  is one-to-one,  $\varphi_0[K]$  is a line,  $\varphi_0[K] \cap D_{\gamma} \neq \emptyset$  for all  $\gamma \in \mathbb{R}$ , and  $\varphi_0[\operatorname{int} U^0] = N^0$ , where  $N^0$  is the strip bounded by  $\varphi_0[K]$  and  $\varphi_0[K] + a$ , then  $\varphi$  is a homeomorphism of  $\mathbb{R}^2$  onto itself. (See Fig. 3.)

Proof. Since  $K \cap f[K] = \emptyset$ ,

$$f^{n}[K] \cap f^{n+1}[K] = \emptyset \quad \text{for } n \in \mathbb{Z}.$$



Moreover, for each  $n \in \mathbb{Z}$ , the curve  $f^n[K]$  is a line, since so is K. Denote by  $M^n$  the strip bounded by  $f^n[K]$  and  $f^{n+1}[K]$ . Let  $U^n := M^n \cup f^{n+1}[K]$ for  $n \in \mathbb{Z}$ . Since f is a homeomorphism,

$$U^n = f^n[U^0] \quad \text{for } n \in \mathbb{Z}.$$

Furthermore, for every  $n \in \mathbb{Z}$ ,  $f^n[K]$  lies in the strip between  $f^{n-1}[K]$  and  $f^{n+1}[K]$ ,  $f^{n-1}[K] \cap M^n = \emptyset$  and  $f^{n+1}[K] \cap M^{n-1} = \emptyset$ . Otherwise we would have  $f^{n-1}[U^0] \cap f^n[U^0] \neq \emptyset$ , which contradicts (3).

Define  $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$  by setting

(17) 
$$\varphi(x) = \varphi_0[f^{-k}(x)] + ka, \quad x \in U^k, \ k \in \mathbb{Z}.$$

It is clear that  $\varphi$  is a unique solution of (1) satisfying (16) and that  $\varphi$  is continuous in  $\bigcup_{n \in \mathbb{Z}} \operatorname{int} U^n$ .

Take any  $x_0 \in K$ . We now show that  $\varphi$  is continuous at  $x_0$ . Let P be a closed disc with centre at  $x_0$  such that  $P \cap f^{-1}[K] \neq \emptyset$  and  $P \cap f[K] \neq \emptyset$ . Then  $P \cap f^{-1}[K]$  and  $P \cap f[K]$  are compact. Let R be an open disc with centre at  $x_0$  and radius smaller than  $\min\{\varrho(x_0, P \cap f^{-1}[K]), \varrho(x_0, P \cap f[K])\}$ , where  $\varrho$  is the Euclidean metric on the plane. Then we have

(18) 
$$R \cap f^{-1}[K] = \emptyset$$
 and  $R \cap f[K] = \emptyset$ .

Put  $R_1 := R \cap \operatorname{int} U^0$ ,  $R_2 := R \cap \operatorname{int} U^{-1}$ ,  $R_0 := R \cap K$ . Then  $\varphi(x) = \varphi_0(x)$  for  $x \in R_1$ , and  $\varphi(x) = \varphi_0[f(x)] - a$  for  $x \in R_2 \cup R_0$ . As  $x_0 \in R_0$  we hence get  $\varphi(x_0) = \varphi_0(x_0)$  by (15).

Let  $x_k \to x_0, x_k \in R$ . If  $x_k \in R_1 \cup R_0$ , then

$$\lim_{k \to \infty} \varphi(x_k) = \lim_{k \to \infty} \varphi_0(x_k) = \varphi_0(x_0) = \varphi(x_0)$$

because  $\varphi_0$  is continuous in  $R_1 \cup R_0 \subset K \cup U^0$ . If  $x_k \in R_2$ , then  $f(x_k) \in U^0$ and  $f(x_k) \to f(x_0) \in U^0$ . Thus

$$\lim_{k \to \infty} \varphi(x_k) = \lim_{k \to \infty} (\varphi_0[f(x_k)] - a) = \varphi_0[f(x_0)] - a = \varphi_0(x_0) = \varphi(x_0),$$

because  $\varphi_0$  is continuous in  $U^0$  and  $x_0 \in K$ . Consequently,  $\varphi$  is continuous at  $x_0 \in K$ .

Let  $x_0 \in \mathbb{R}^2 \setminus \bigcup_{k \in \mathbb{Z}} \operatorname{int} U^k$ . There exists an  $m \in \mathbb{Z}$  such that  $x_0 \in U^m \setminus \operatorname{int} U^m = f^{m+1}[K]$ . Let V be a neighbourhood of  $x_0$  such that  $V \cap f^m[K] = \emptyset$ and  $V \cap f^{m+2}[K] = \emptyset$  (proceed as in the proof of the existence of R satisfying (18)). Note that  $V \subset U^m \cup \operatorname{int} U^{m+1}$ , thus  $f^{-m-1}[V] \subset U^{-1} \cup \operatorname{int} U^0$  and  $f^{-m-1}[V]$  is a neighbourhood of  $f^{-m-1}(x_0) \in K$ .

Take any sequence  $\{x_k\}$  in V such that  $x_k \to x_0$ . Then  $f^{-m-1}(x_k) \to f^{-m-1}(x_0)$ . Since  $\varphi$  is continuous on K and  $f^{-m-1}(x_0) \in K$ , we have  $\varphi[f^{-m-1}(x_k)] \to \varphi[f^{-m-1}(x_0)]$ . From (17) we have

$$\varphi(x_0) = \varphi_0[f^{-m-1}(x_0)] + (m+1)a$$

and

$$\varphi(x_k) = \varphi_0[f^{-m-1}(x_k)] + (m+1)a \quad \text{for } k \in \mathbb{N}.$$

Thus  $\varphi(x_k) \to \varphi(x_0)$ . Consequently,  $\varphi$  is continuous on the plane.

Now assume, in addition, that  $\varphi$  is one-to-one in  $U^0 \cup K$  and  $\varphi_0(x) + na \notin \varphi_0[U^0]$  for all  $x \in U^0$  and  $n \in \mathbb{Z} \setminus \{0\}$ . We show that  $\varphi$  is one-to-one in the plane. Suppose  $x, y \in \mathbb{R}^2$  and  $\varphi(x) = \varphi(y)$ . By (4),  $x \in U^k$  and  $y \in U^l$  for some  $k, l \in \mathbb{Z}$ . From (17) it follows that

$$\varphi(x) = \varphi_0[f^{-k}(x)] + ka, \quad \varphi(y) = \varphi_0[f^{-l}(y)] + la$$

Therefore

4

$$\varphi_0[f^{-k}(x)] = \varphi_0[f^{-l}(y)] + (l-k)a.$$

Suppose that  $l - k \neq 0$ . Then  $\varphi_0[f^{-l}(y)] + (l - k)a \notin \varphi_0[U^0]$ , since  $f^{-l}(y) \in U^0$ . Hence  $\varphi_0[f^{-k}(x)] \notin \varphi_0[U^0]$ , which is a contradiction, since  $f^{-k}(x) \in U^0$ . Thus l = k, and consequently x = y. Note that  $\varphi$ , being a continuous one-to-one mapping of  $\mathbb{R}^2$  into  $\mathbb{R}^2$ , is a homeomorphism (see [3], p. 186).

Now we show (c). Note that  $\varphi[K] + a = \varphi[f[K]]$ . Moreover, as  $D_{\gamma} \cap \varphi_0[K] \neq \emptyset$ , we have  $D_{\gamma} \cap \varphi_0[f[K]] \neq \emptyset$ . Since  $\varphi|_{\operatorname{int} U^0}$  is continuous and one-to-one, it is a homeomorphism and  $\varphi[\operatorname{int} U^0]$  is a region. Moreover,  $\varphi(x) \notin \varphi[\operatorname{int} U^0]$ , for every  $x \in K \cup f[K]$ , since  $\varphi$  is one-to-one in  $U^0 \cup K$ . Hence each  $y \in \varphi[K] \cup \varphi[f[K]]$  is a boundary point of  $\varphi[\operatorname{int} U^0]$ , since  $\varphi_0$  is continuous on  $U^0 \cup K$ . Therefore  $\varphi[\operatorname{int} U^0] \subset N^0$ , because  $\varphi_0[K] \cap D_{\gamma} \neq \emptyset$  and  $\varphi_0[f[K]] \cap D_{\gamma} \neq \emptyset$  for  $\gamma \in \mathbb{R}$  and  $\varphi_0[K]$  is a line.

Let  $x, y \in \mathbb{R}^2$ . Then  $x \in U^k$  and  $y \in U^l$  for some  $k, l \in \mathbb{Z}$ . Assume that  $\varphi(x) = \varphi(y)$ . Then

$$\varphi_0[f^{-k}(x)] = \varphi_0[f^{-l}(y)] + (l-k)a.$$

Since  $\varphi_0[U^0] \subset N^0 \cup \varphi_0[f[K]]$ , we have l-k=0, whence x=y. Thus  $\varphi$  is continuous and one-to-one, and hence a homeomorphism.

Assume, in addition, that  $\varphi_0[\operatorname{int} U^0] = N^0$ . Put  $W^0 := N^0 \cup (\varphi[K] + a)$ . Then  $W^0 = \varphi[U^0]$ . Let  $y \in \mathbb{R}^2$ . Then there exists an  $n \in \mathbb{Z}$  such that  $y - na \in W^0$ . Take an  $x \in U^0$  such that  $\varphi(x) = y - na$ . Then by (1),

$$\varphi[f^n(x)] = \varphi(x) + na = y.$$

Thus  $\varphi[\mathbb{R}^2] = \mathbb{R}^2$ . Consequently,  $\varphi$  is a homeomorphism of  $\mathbb{R}^2$  onto itself satisfying (1). This completes the proof.

Obviously, we also have the following

 $\operatorname{Remark} 1$ . Let f be a free mapping of the plane onto itself and let  $a = (a_1, a_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ . Assume that condition (B) is satisfied. Let  $\varphi$  be any homeomorphic solution of equation (1). Let  $\varphi_0 := \varphi|_{U^0 \cup K}$ . Then

(a)  $\varphi_0$  is one-to-one and  $\varphi_0[U^0] \cap (\varphi_0[U^0] + ka) = \emptyset$  for  $k \in \mathbb{Z} \setminus \{0\}$ ; (b) if  $\varphi$  is a homeomorphism of  $\mathbb{R}^2$  onto itself, then  $\varphi_0$  is one-to-one,  $\varphi_0[K]$  is a line,  $\varphi_0[K] \cap D_{\gamma} \neq \emptyset$  for  $\gamma \in \mathbb{R}$ , and  $\varphi_0[\operatorname{int} U^0] = N^0$ , where  $D_{\gamma}$ and  $N^0$  are as in the statement of Theorem 2.

From part (d) of Theorem 2 we have

COROLLARY 1. If f is a free mapping, then (B) implies (A).

From Lemma 2, Corollary 1 and the fact that (A) implies (A') we have

COROLLARY 2. Let f be a free mapping. Then conditions (A), (A') and (B) are equivalent.

Now we are going to prove

LEMMA 3. Let f be a free mapping. Then (A) implies (C).

Proof. Put  $L := \{(x_1, x_2) \in \mathbb{R}^2 : x_1 = 0\}$ , and  $D_{\alpha} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1 = 0\}$  $x_2 = \alpha$  for  $\alpha \in \mathbb{R}$ . Let  $K := \varphi^{-1}[L]$  and  $C_{\alpha} := \varphi^{-1}[D_{\alpha}]$  for  $\alpha \in \mathbb{R}$ , where  $\varphi$  is a homeomorphism satisfying  $\varphi \circ f = T \circ \varphi$  with  $T(x_1, x_2) = (x_1 + 1, x_2)$ for  $x_1, x_2 \in \mathbb{R}$ . Let  $I := \mathbb{R}$ . Since  $f \circ \varphi^{-1} = \varphi^{-1} \circ T$  and  $T[D_\alpha] = D_\alpha$  for  $\alpha \in \mathbb{R}$ , we have

$$f[C_{\alpha}] = \varphi^{-1}[T[D_{\alpha}]] = \varphi^{-1}[D_{\alpha}] = C_{\alpha} \quad \text{for } \alpha \in \mathbb{R}$$

Moreover, note that

$$C_{\alpha} \cap C_{\beta} = \varphi^{-1}[D_{\alpha} \cap D_{\beta}] = \emptyset \quad \text{for } \alpha, \beta \in \mathbb{R}, \ \alpha \neq \beta,$$
$$\bigcup_{\alpha \in \mathbb{R}} C_{\alpha} = \varphi^{-1} \Big[\bigcup_{\alpha \in \mathbb{R}} D_{\alpha}\Big] = \varphi^{-1}[\mathbb{R}^{2}] = \mathbb{R}^{2}$$

and

$$\operatorname{card}(K \cap C_{\alpha}) = \operatorname{card} \varphi^{-1}[L \cap D_{\alpha}] = \operatorname{card}(L \cap D_{\alpha}) = 1$$

for  $\alpha \in \mathbb{R}$ . This completes the proof.

THEOREM 3. Let f be a free mapping. Then condition (C) implies (B).

Proof. Suppose that (C) holds.

1. First, we show that for the line K which appears in (C),  $K \cap f[K] = \emptyset$ . Suppose  $x_0 \in K \cap f[K]$ . On account of (8),  $x_0 \in C_\alpha$  for some  $\alpha \in I$ . By (5) we get  $f^{-1}(x_0) \in C_\alpha$ , and clearly  $f^{-1}(x_0) \in K$ . Since  $\operatorname{card}(K \cap C_\alpha) = 1$ ,  $x_0 = f^{-1}(x_0)$ . Hence  $x_0$  is a fixed point of f, a contradiction.

2. Now we prove that

 $\operatorname{card}(f^n[K] \cap C_\alpha) = 1 \quad \text{for } \alpha \in I \text{ and } n \in \mathbb{Z}.$ 

Fix any  $\alpha \in I$ . Let  $n \in \mathbb{Z} \setminus \{0\}$ . Take  $x_0 \in K \cap C_{\alpha}$ . By (5),

$$f^n(x_0) \in f^n[K] \cap C_\alpha$$
.

Suppose there exist  $y_1, y_2 \in f^n[K] \cap C_\alpha$  such that  $y_1 \neq y_2$ . Then  $f^{-n}(y_1)$ ,  $f^{-n}(y_2) \in K \cap C_\alpha$  and  $f^{-n}(y_1) \neq f^{-n}(y_2)$ , which contradicts (7).

3. Let  $x \in C_{\alpha}$ . We now prove that, for every  $n \in \mathbb{Z}$ ,  $f^{n+1}(x)$  lies between  $f^n(x)$  and  $f^{n+2}(x)$  on the curve  $C_{\alpha}$ . For any  $x, y \in C_{\alpha}$  denote by  $\langle x, y \rangle$  the segment of  $C_{\alpha}$  with endpoints x, y. Let  $(x, y) := \langle x, y \rangle \setminus \{x, y\}$ .

Let  $n \in \mathbb{Z}$ . If  $f^{n+2}(x) \in (f^n(x), f^{n+1}(x)) \subset C_{\alpha}$ , then

$$f(\langle f^n(x), f^{n+1}(x) \rangle) = \langle f^{n+2}(x), f^{n+1}(x) \rangle \subset \langle f^n(x), f^{n+1}(x) \rangle.$$

Hence by Brouwer's Theorem f has a fixed point, which is impossible. Similarly, if  $f^n(x) \in (f^{n+1}(x), f^{n+2}(x)) \subset C_{\alpha}$ , then

$$f^{-1}(\langle f^{n+1}(x), f^{n+2}(x) \rangle) = \langle f^{n+1}(x), f^n(x) \rangle \subset \langle f^{n+1}(x), f^{n+2}(x) \rangle.$$

Hence  $f^{-1}$  has a fixed point, contradiction again. Thus

(19) 
$$f^{n+1}(x) \in (f^n(x), f^{n+2}(x))$$

4. Now we show that (3) holds. Since,  $f^n[K]$  is a line for all  $n \in \mathbb{Z}$ ,  $\mathbb{R}^2 \setminus f^n[K]$  consists of two unbounded regions, called the *side domains* of  $f^n[K]$ . Since  $K \cap f[K] = \emptyset$ , we have  $f^n[K] \cap f^{n+1}[K] = \emptyset$  for all  $n \in \mathbb{Z}$ . For each  $n \in \mathbb{Z}$ , denote by  $M^n$  the strip between the lines  $f^n[K]$  and  $f^{n+1}[K]$ . Let  $M^n_+$  be the side domain of  $f^{n+1}[K]$  which does not contain the line  $f^n[K]$ , and  $M^n_-$  the side domain of  $f^n[K]$  which does not contain  $f^{n+1}[K]$ . Then

$$M^n_- \cup f^n[K] \cup M^n \cup f^{n+1}[K] \cup M^n_+ = \mathbb{R}^2 \quad \text{for } n \in \mathbb{Z}.$$

Now we show that  $f^{n+2}[K] \subset M^n_+$  for  $n \in \mathbb{Z}$ . Suppose otherwise. Then for some  $n \in \mathbb{Z}$ ,

(20) 
$$f^{n+2}[K] \subset M^n_- \cup f^n[K] \cup M^n ,$$

since  $f^{n+2}[K] \cap f^{n+1}[K] = \emptyset$ . Take any  $x_0 \in K$ . By (8),  $x_0 \in C_\alpha$  for some  $\alpha \in I$ . By (5),  $f^n(x_0) \in C_\alpha$  for all  $n \in \mathbb{Z}$ . From (20) we obtain  $f^{n+2}(x_0) \in M^n_- \cup f^n[K] \cup M^n$ . Thus by (19),

$$C_{\alpha} \subset M^n_- \cup f^n[K] \cup M^n \cup \{f^{n+1}(x_0)\},\$$

since

$$f^{n}(x_{0}), f^{n+2}(x_{0}) \in M_{-}^{n} \cup f^{n}[K] \cup M^{n}, \quad f^{n+1}[K] \cap C_{\alpha} = \{f^{n+1}(x_{0})\}$$

and  $C_{\alpha}$  has no self-intersections. Consequently, we have shown that for each  $\alpha \in I$ ,

$$C_{\alpha} \subset M^n_- \cup f^n[K] \cup M^n \cup f^{n+1}[K] = \mathbb{R}^2 \setminus M^n_+$$

which contradicts (8). Thus  $f^{n+2}[K] \subset M^n_+$  for all  $n \in \mathbb{Z}$ . Hence  $M^n$ ,  $n \in \mathbb{Z}$ , are mutually disjoint and  $f^n[K] \cap K = \emptyset$  for  $n \in \mathbb{Z} \setminus \{0\}$ . Since f is a homeomorphism, we have

(21) 
$$f^n[M^0] = M^n \quad \text{for } n \in \mathbb{Z}.$$

Thus  $f^n[M^0] \cap M^0 = \emptyset$  for  $n \in \mathbb{Z} \setminus \{0\}$ . Moreover, for every  $n \in \mathbb{Z} \setminus \{0\}$ ,  $f^n[M^0 \cup f[K]] \cap (M^0 \cup f[K]) = (f^n[M^0] \cup f^{n+1}[K]) \cap (M^0 \cup f[K]) = \emptyset$ . Thus, for all  $n \in \mathbb{Z} \setminus \{0\}$ ,  $f^n[U^0] \cap U^0 = \emptyset$ , where  $U^0 = M^0 \cup f[K]$ .

5. To complete the proof we show that

$$\bigcup_{n\in\mathbb{Z}}f^n[U^0]=\mathbb{R}^2\,.$$

For each  $\alpha \in I$  let  $K \cap C_{\alpha} =: \{x_{\alpha}\}$  and  $C_{\alpha}^{0} = (x_{\alpha}, f(x_{\alpha})) \subset C_{\alpha}$ . First, we show that  $\bigcup_{\alpha \in I} C_{\alpha}^{0} = M^{0}$ .

Suppose that  $x_0 \in C^0_{\alpha}$  and  $x_0 \notin M^0$ . Then  $C^0_{\alpha}$  has either a common point with K different from  $x_{\alpha}$  or a common point with f[K] different from  $f(x_{\alpha})$ , which is impossible.

For each  $\alpha \in I$  denote by  $C_{\alpha}^{0+}$  the set of all  $x \in C_{\alpha}$  such that  $f(x_{\alpha}) \in (x_{\alpha}, x) \subset C_{\alpha}$ , and by  $C_{\alpha}^{0-}$  the set of all  $x \in C_{\alpha}$  such that  $x_{\alpha} \in (x, f(x_{\alpha})) \subset C_{\alpha}$ .

Take any  $x_0 \in M^0$ . Then  $x_0 \in C_\alpha$  for some  $\alpha \in I$ . Suppose that  $x_0 \in C_\alpha^{0+}$ . Since  $\operatorname{card}(C_\alpha \cap f[K]) = 1$  and  $f(x_\alpha) \in C_\alpha \cap f[K]$ , we have  $C_\alpha^{0+} \cap f[K] = \emptyset$ . Hence  $C_\alpha^{0+}$  is contained either in  $M_+^0$  or in  $M_-^0 \cup K \cup M^0$ . Since  $f^2(x_0) \in C_\alpha^{0+} \cap M_+^0$ , we have  $C_\alpha^{0+} \subset M_+^0$ , whence  $x_0 \in M_+^0$ , but this is impossible, since  $x_0 \in M^0$ .

Now suppose  $x_0 \in C_{\alpha}^{0-}$ . Since  $\operatorname{card}(C_{\alpha} \cap K) = 1$  and  $x_{\alpha} \in C_{\alpha} \cap K$ , we have  $C_{\alpha}^{0-} \cap K = \emptyset$ . Hence  $C_{\alpha}^{0-}$  is contained either in  $M_{-}^{0}$  or in  $M^0 \cup f[K] \cup M_{+}^{0}$ . Since  $f^{-1}(x_0) \in C_{\alpha}^{0-} \cap M_{-}^{0}$ , we have  $C_{\alpha}^{0-} \subset M_{-}^{0}$ , whence  $x_0 \in M_{-}^{0}$ , and this is also impossible. Consequently,

(22) 
$$\bigcup_{\alpha \in I} C^0_{\alpha} = M^0.$$

For every  $\alpha \in I$  and every  $n \in \mathbb{Z}$ , let  $C_{\alpha}^{n} := (f^{n}(x_{\alpha}), f^{n+1}(x_{\alpha})) \subset C_{\alpha}$ . Since f is a homeomorphism, we have by (5),

(23) 
$$C_{\alpha}^{n} = f^{n}[C_{\alpha}^{0}] \text{ for } \alpha \in I \text{ and } n \in \mathbb{Z}.$$

Hence, for all  $n \in \mathbb{Z}$ , we get by (21) and (22),

$$M^n = f^n[M^0] = \bigcup_{\alpha \in I} f^n[C^0_\alpha] = \bigcup_{\alpha \in I} C^n_\alpha$$

Let  $x_0 \in \mathbb{R}^2$ . If there exists an  $n \in \mathbb{Z}$  such that  $x_0 \in f^n[K]$ , then  $x_0 \in f^{n-1}[U^0]$ . Now assume that  $x_0 \in \mathbb{R}^2 \setminus \bigcup_{n \in \mathbb{Z}} f^n[K]$ . Then  $x_0 \in C_\alpha$  for some  $\alpha \in I$ . Since  $f^n(x_\alpha) \to \infty$  as  $n \to \mp \infty$  (see [1], Prop. 1.2), there is an  $n \in \mathbb{Z}$  such that  $x_0 \in C_\alpha^n$ . Hence by (22) and (23),

$$x_0 \in f^n[C^0_\alpha] \subset f^n[M^0] \subset f^n[U^0].$$

Consequently,  $\mathbb{R}^2 = \bigcup_{n \in \mathbb{Z}} f^n[U^0]$ . This completes the proof.

Note that Theorem 1 is a consequence of Corollary 2, Lemma 3 and Theorem 3.

Moreover, from the proof of Theorem 3 we have the following

COROLLARY 3. Let f be a free mapping. Let K be a line on the plane. If K satisfies condition (C), then it also satisfies (B).

**3.** In this section we study diffeomorphic solutions of equation (1). First we quote the following

LEMMA 4 (see [5]). If the functions f and  $\varphi$  are of class  $C^p$  (p > 0) in a region  $U \subset \mathbb{R}^n$  such that  $f[U] \subset U$ , then for  $x \in U$ ,

$$\frac{\partial^q}{\partial x_{i_1} \dots \partial x_{i_q}} \varphi[f(x)] = \sum_{k=1}^q \sum_{j_1,\dots,j_k=1}^n b_{i_1\dots i_q}^{j_1\dots j_k}(x) \varphi_{j_1\dots j_k}[f(x)],$$

 $q = 1, \ldots, p, where$ 

$$\varphi_{i_1\dots i_k}(x) = \frac{\partial^k}{\partial x_{i_1}\dots \partial_{i_k}} \varphi(x)$$

 $b_{i_1...i_q}^{j_1...j_k}(x)$  may be expressed by means of sums and products of  $a_i^j(x), \ldots$  $\ldots, a_{i_1,...,i_{q-k+1}}^j(x), a_{i_1,...,i_k}^j(x) = \frac{\partial^k}{\partial x_{i_1}...\partial x_{i_k}} f_j(x), \ k = 1, \ldots, p, \ and \ f = (f_1, \ldots, f_n).$  Consequently,  $b_{i_1...i_q}^{j_1...j_k}$  are of class  $C^{p-q+k-1}$ . In particular,

$$b_{i_1...i_q}^{j_1...j_q}(x) = a_{i_1}^{j_1}(x) \cdot \ldots \cdot a_{i_q}^{j_q}(x).$$

Now let f be a free mapping. Assume that condition (B) is satisfied.

DEFINITION (see [5]). Let  $\psi$  be a continuous function defined in  $U^0 \cup K$ , p times continuously differentiable in int  $U^0$ . We write

$$\psi_{i_1\dots i_k}(x_0) = \lim_{\substack{x \to x_0 \\ x \in \text{int } U^0}} \frac{\partial^k}{\partial x_{i_1} \dots \partial x_{i_k}} \psi(x), \quad k = 1, \dots, p$$

for  $x_0 \in K \cup f[K]$  (provided this limit exists). The function  $\psi$  is said to be of class  $C^p$  in  $U^0 \cup K$  if all the functions  $\psi, \psi_i, \ldots, \psi_{i_1 \ldots i_p}$  are continuous in  $U^0 \cup K$ .

All diffeomorphic solutions of equation (1) having positive Jacobian can be obtained from the following

THEOREM 4. Let f be a free  $C^p$  mapping of the plane having positive Jacobian at every  $x \in \mathbb{R}^2$  and let  $a = (a_1, a_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ . Assume that condition (B) is satisfied. Let  $\psi$  be a  $C^p$  function from  $U^0 \cup K$  into the plane which satisfies

$$\psi[f(x)] = \psi(x) + a \quad \text{for } x \in K ,$$
  
$$\sum_{k=1}^{q} \sum_{j_1, \dots, j_k=1}^{2} b_{i_1 \dots i_q}^{j_1 \dots j_k}(x) \psi_{j_1 \dots j_k}[f(x)] = \psi_{i_1 \dots i_q}(x)$$

for  $x \in K$ ,  $q = 1, ..., p, i_1, ..., i_q = 1, 2$ , where the functions  $b_{i_1...i_q}^{j_1...j_k}$  are those occurring in Lemma 4. Then there exists a unique solution  $\varphi$  of equation (1) such that

$$\varphi(x) = \psi(x) \quad \text{for } x \in U^0 \cup K$$

This solution is of class  $C^p$  in the plane. Moreover, if  $\psi$  is one-to-one, the Jacobian,  $\operatorname{jac}_x \psi$ , is positive for  $x \in \operatorname{int} U^0$ , and  $\operatorname{det}[\psi_1(x), \psi_2(x)] > 0$  for  $x \in K \cup f[K]$ , and either

$$\psi[U^0] \cap (\psi[U^0] + ka) = \emptyset \quad for \ k \in \mathbb{Z} \setminus \{0\}$$

or

$$\psi[K] \cap D_{\gamma} \neq \emptyset \quad for \ \gamma \in \mathbb{R} \quad and \quad \psi[K] \ is \ a \ line$$

where  $D_{\gamma} = \{(x_1, x_2) \in \mathbb{R}^2 : a_2 x_1 - a_1 x_2 = \gamma\}$ , then  $\varphi$  is an orientation preserving diffeomorphism of class  $C^p$  having positive Jacobian.

Proof. Define  $\varphi$  by setting

(24) 
$$\varphi(x) = \psi[f^{-k}(x)] + ka, \quad x \in U^k, \ k \in \mathbb{Z},$$

where  $U^k = f^k[U^0]$ . For p = 0 we have Theorem 1. Let p > 0. From (24) it follows that  $\varphi$  is of class  $C^p$  in  $\bigcup_{k \in \mathbb{Z}} \operatorname{int} U^k$ .

Let  $x_0 \in K$ . Then there exists an open disc R with centre at  $x_0$  such that  $R \cap f^{-1}[K] = \emptyset$  and  $R \cap f[K] = \emptyset$  (see the proof of Theorem 2). The proof of  $\varphi$  being  $C^p$  in R runs in the same way as that of Theorem 3.1 in [5], part 2.

Let  $x_0 \in \mathbb{R}^2 \setminus \bigcup_{k \in \mathbb{Z}} \text{ int } U^k$ . There is an  $m \in \mathbb{Z}$  such that  $f^{-m-1}(x_0) \in K$ . We have already proved that  $\varphi$  is  $C^p$  in a neighbourhood R of  $f^{-m-1}(x_0)$ . The function  $f^{m+1}$  is a  $C^p$  map of R onto a neighbourhood  $f^{m+1}[R]$  of  $x_0$ . Since  $\varphi$  is a solution of (1), we have

$$\varphi(x_0) = \varphi[f^{-m-1}(x_0)] + (m+1)a$$

Hence  $\varphi$  is  $C^p$  in  $f^{m+1}[R]$ .

Now assume, in addition, that  $\psi$  is one-to-one,  $\psi(x) + ka \notin \psi[U^0]$  for  $x \in U^0$  and  $k \in \mathbb{Z} \setminus \{0\}$  [or  $\psi[K] \cap D_{\gamma} \neq \emptyset$  for all  $\gamma \in \mathbb{R}$  and  $\psi[K]$  is a line],  $jac_x \psi > 0$  for  $x \in int U^0$  and  $det[\psi_1(x), \psi_2(x)] > 0$  for  $x \in K \cup f[K]$ . On account of Theorem 2,  $\varphi$  is a homeomorphism.

If  $x \in U^0$ , then  $\operatorname{jac}_x \varphi = \operatorname{jac}_x \psi > 0$ . If  $x \in f[K]$ , then  $\operatorname{jac}_x \varphi = \det[\psi_1(x), \psi_2(x)] > 0$ , since  $(\partial \varphi / \partial x_1)(x) = \psi_1(x)$  and  $(\partial \varphi / \partial x_2)(x) = \psi_2(x)$  for  $x \in f[K]$ . Thus  $\operatorname{jac}_x \varphi > 0$  for  $x \in U^0$ .

Let  $x \in \mathbb{R}^2$ . Then  $x \in f^n[U^0]$  for some  $n \in \mathbb{Z}$ . Since  $\varphi(x) = \varphi[f^{-n}(x)] + na$ , we have

$$\operatorname{jac}_{x} \varphi = \operatorname{jac}_{f^{-n}(x)} \varphi \cdot \operatorname{jac}_{x} f^{-n}$$
.

Hence  $\operatorname{jac}_x \varphi > 0$ , since  $f^{-n}(x) \in U^0$  and  $\operatorname{jac}_x f^{-n} > 0$ . Thus  $\varphi$  preserves orientation. Since  $\varphi$  is invertible and of class  $C^p$ , and  $\operatorname{jac}_x \varphi \neq 0$  for  $x \in \mathbb{R}^2$ ,  $\varphi^{-1}$  is  $C^p$  (see e.g. [6], p. 205). This completes the proof.

## References

- S. A. Andrea, On homeomorphisms of the plane which have no fixed points, Abh. Math. Sem. Hamburg 30 (1967), 61–74.
- [2] —, The plane is not compactly generated by a free mapping, Trans. Amer. Math. Soc. 151 (1970), 481–498.
- [3] R. Engelking and K. Sieklucki, *Topology. A Geometric Approach*, Sigma Ser. Pure Math. 4, Heldermann, Berlin 1992.
- T. Homma and H. Terasaka, On the structure of the plane translation of Brouwer, Osaka Math. J. 5 (1953), 233–266.
- [5] M. Kuczma, On the Schröder equation, Rozprawy Mat. 34 (1963).
- [6] R. Sikorski, Advanced Calculus. Functions of Several Variables, Monograf. Mat. 52, PWN, Warszawa 1969.
- M. C. Zdun, On continuous iteration groups of fixed-point free mapping in R<sup>2</sup> space, in: Proc. European Conference on Iteration Theory, Batschuns 1989, World Scientific, Singapore 1991, 362–368.

INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY OF CRACOW PODCHORĄŻYCH 2 30-084 KRAKÓW, POLAND

> Reçu par la Rédaction le 1.8.1990 Révisé le 16.3.1992 et 10.5.1992