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A note on solutions of semilinear equations
at resonance in a cone

by Bogdan Przeradzki ( Lódź)

Abstract. A connection between the Landesman–Lazer condition and the solvability
of the equation Lx = N(x) in a cone with a noninvertible linear operator L is studied. The
result is based on the abstract framework from [5], applied to the existence of periodic
solutions of ordinary differential equations, and compared with theorems by Santanilla
(see [7]).

1. Introduction. The question of the solvability of the equation Lx =
N(x), where L is a linear noninvertible operator and N a nonlinear and
completely continuous operator, has a twenty years’ history. L is usually
assumed to be Fredholm of index zero, and the so-called Landesman–Lazer
conditions [2], [9], i.e. some integral relations between functions spanning
kerL and certain asymptotic characteristics of N , guarantee the existence of
solutions. The problem can be studied from several abstract points of view.
The most general one seems to be the approach due to J. Mawhin [3] but we
shall consider another one developed in [4]–[6]. This needs the assumption
that L is a boundary point of the set of linear invertible operators. Our
method lies in applying the continuation of L instead of N . As a result, we
obtain conditions of Landesman–Lazer type in an abstract form.

A next natural question is if there exists a solution of Lx = N(x) belong-
ing to a fixed set K. This set is usually a cone for applicational reasons—as
an example, we give the n-dimensional periodic problem

x′ = f(t, x), x(0) = x(1) ,

where we seek for a nonnegative solution, i.e.

K = {x : [0, 1]→ Rn | xj(t) ≥ 0 for t ∈ [0, 1], j = 1, . . . , n} .
This problem as well as similar ones were studied by Gaines and San-
tanilla [1] and then by Santanilla [7], [8].
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Although they used abstract resonance theorems based on Mawhin’s ap-
proach, their results can be obtained without these theorems, as Santanilla
partially noticed in [7]. This is possible since the equation Lx = N(x) is
equivalent to (L− αI)x = N(x)− αx with L− αI invertible. This reduces
the problem to the question of the existence of a fixed point for a completely
continuous operator, which is solvable by means of the Leray–Schauder con-
tinuation method.

We shall say that a theorem giving the existence of a solution to Lx =
N(x) with L noninvertible is a resonance theorem if its assertion cannot be
obtained from the solvability of Lx − αx = N(x) − αx with a fixed α 6= 0.
The author knows that the question is subtle but he believes that the results
given below are of resonance type. However, it should be stressed that our
assumptions guaranteeing the nonnegative solvability of periodic problems
are neither better nor worse than those of Santanilla.

2. General setting. Let X,Y, Z be Banach spaces, L : [λ0, λ1] →
L(Y, Z) a continuous mapping of an interval into the space of all linear
bouded operators from Y into Z such that L(λ) is a linear homeomorphism
for λ 6= λ0 and L(λ0) is a Fredholm operator with a nontrivial kernel (of
index zero). We shall assume that the inverse operators G(λ) = L(λ)−1

have the form

(2.1) G(λ) = G0(λ) +
n∑
j=1

cj(λ)〈uj(λ), ·〉wj(λ)

where G0(λ) ∈ L(Z, Y ), uj(λ) ∈ Z∗, wj(λ) ∈ Y are continuous functions of
λ having continuous extensions onto the whole interval [λ0, λ1], and cj(λ)
∈ R,

(2.2) lim
λ→λ+

0

|cj(λ)| =∞ .

Suppose that wj(λ0), j = 1, . . . , n, are linearly independent and span
kerL(λ0), and that

ImL(λ0) =
n⋂
j=1

keruj(λ0) .

It follows that the systems {wj(λ) : j = 1, . . . , n} and {uj(λ) : j = 1, . . . , n}
are linearly independent for λ sufficiently close to λ0. We can assume without
loss of generality that this holds for λ ∈ [λ0, λ1]. Moreover, suppose that
G0(λ0) is a right inverse for L(λ0), i.e. L(λ0)G0(λ0)z = z for any z ∈
ImL(λ0).

Let N : X → Z be a nonlinear continuous operator and J : Y → X
a completely continuous linear injective operator (usually, it is an inclusion
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map). The resonance problem we shall examine is

(2.3) L(λ0)y = N(Jy) .

It is equivalent to the system

(2.4)
y = G0(λ0)N(Jy) +

n∑
j=1

Cjwj(λ0) ,

〈uj(λ0), N(Jy)〉 = 0 for j = 1, . . . , n ,

where C1, . . . , Cn are arbitrary real constants.
We restrict ourselves to the case of sublinear nonlinearity:

(2.5) lim
‖x‖→∞

‖N(x)‖/‖x‖ = 0 .

From [5], we quote

Theorem 1. If , for any (xm) ⊂ X such that ‖xm‖ → ∞ and ‖xm‖−1xm
→
∑
j djJwj(λ0), there exists j0 ∈ {1, . . . , n} such that

(2.6) lim sup
m→∞

sgn cj0(λ)dj0〈uj0(λ0), N(xm)〉 < 0 ,

then equation (2.3) has a solution.

S k e t c h o f p r o o f. The equations xλ = JG(λ)N(xλ), λ ∈ [λ0, λ1],
have solutions xλ by the Rothe fixed point theorem. Take λm → λ+

0 . If
(xλm

) is bounded, then it contains a convergent subsequence by compact-
ness arguments and its limit is the sought-for solution. If ‖xλm‖ → ∞,
we can repeat the above arguments for ‖xλm‖−1xλm to conclude that its
subsequence tends to

∑
diJwi(λ0). It follows that

cj(λm)〈uj(λm), N(xλm
)〉

has the same sign as dj for all j = 1, . . . , n, which contradicts (2.6).

Inequality (2.6) is called the Landesman–Lazer condition (L-L) and, in
the case of the Dirichlet boundary value problem

x′′ +m2x = f(t, x) , x(0) = x(π) = 0 ,

it is equivalent to the classical Landesman and Lazer assumption (comp.
[5]).

3. Why the L-L condition is inconsistent with cone preserva-
tion? We would like to find a solution of equation (2.3) such that Jy ∈ K
where K is a fixed cone in X, i.e.

x1, x2 ∈ K ⇒ x1 + x2 ∈ K , x ∈ K , λ ≥ 0 ⇒ λx ∈ K ,

and K is a closed subset of X. The method based on Section 2 needs the
following additional assumptions:
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(i) Jwj(λ) ∈ K,
(ii) x ∈ K ⇒ JG0(λ)N(λ) ∈ K , sgn cj(λ)〈uj(λ), N(x)〉 ≥ 0 for

λ ∈ [λ0, λ1] and j = 1, . . . , n.

They are necessary for JG(λ)N to be cone preserving mappings, so the
solutions xλ = JG(λ)N(xλ) ∈ K, and thus, there exists a sequence xλm

→
x ∈ K with x being a solution of our equation as in the proof of Theorem 1.
Since

∑
diJwi(λ0) ∈ K for d1, . . . , dn ≥ 0, we have

sgn cj(λ)
〈
uj(λ0), N

(∑
diJwi(λ0)

)〉
≥ 0 , j = 1, . . . , n ,

which contradicts the L-L condition.
We give a version of the resonance theorem for solutions in a fixed set

which is a direct consequence of Theorem 1.

Theorem 2. If all assumptions of Theorem 1 are satisfied and K is a
subset of X such that each solution of the system (2.4) belongs to K, then
equation (2.3) has a solution y with Jy ∈ K.

We shall show how this theorem works in applications.

4. Periodic nonnegative solutions of first order differential equa-
tions. Let f = (f1, . . . , fn) : [0, 1]× Rn → Rn be a Carathéodory function,
i.e. f(t, ·) : Rn → Rn is continuous for a.e. t ∈ [0, 1] and f(·, x) is measurable
for all x. Suppose that f is sublinear:

(4.1) ‖f(t, x)‖ ≤ a‖x‖% + b(t)

where a > 0, % ∈ [0, 1) and b ∈ L1(0, 1). It follows that the Nemytskĭı
operator N(x)(t) = f(t, x(t)) maps L1([0, 1],Rn) into itself and

(4.2) lim
‖x‖L1→∞

‖N(x)‖L1/‖x‖L1 = 0 .

Let K+
n = {x = (x1, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, . . . , n} and K = {φ ∈

L1([0, 1],Rn) | φ(t) ∈ K+
n for a.e. t ∈ [0, 1]}. We look for a solution of the

problem

(4.3) x′ = f(t, x) , x(0) = x(1) , x ∈ K .

Theorem 3. Suppose that

(4.4) fj(t, x1, . . . , xj−1, 0, xj+1, . . . , xn) ≤ 0

for t ∈ [0, 1], x1, . . . , xn ≥ 0, j = 1, . . . , n, and , for all j ∈ {1, . . . , n},

(4.5) inf
xi≥0,i6=j

1∫
0

lim inf
xj→∞

fj(t, x1, . . . , xn) dt > 0 .

Then problem (4.3) has a solution.
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P r o o f. Define g : [0, 1]× Rn → Rn by

gj(t, x) = fj(t, |x1|, . . . , |xj−1|, xj , |xj+1|, . . . , |xn|)

for t ∈ [0, 1], x1, . . . , xn ∈ R, xj ≥ 0, and

gj(t, x) = fj(t, |x1|, . . . , |xj−1|, 0, |xj+1|, . . . , |xn|)−
√
|xj |

for t ∈ [0, 1], xj < 0. It is obvious that g is a Carathéodory function with
property (4.1) and that the sets of solutions of (4.3) and of

x′ = g(t, x) , x(0) = x(1) , x ∈ K ,

are the same. Hence we can study the second problem. The function g has
property (4.5) and, instead of (4.4),

(4.6) gj(t, x) < 0 for xj < 0 , lim
xj→−∞

gj(t, x) = −∞

uniformly with respect to t, x1, . . . , xj−1, xj+1, . . . , xn.
Put X = Z = L1([0, 1],Rn), Y = {φ : [0, 1] → Rn | φ is absolutely

continuous (φ′ ∈ L1), φ(0) = φ(1)}, Jφ = φ, L(λ)φ = φ′ − λφ, λ0 = 0,
N(x)(t) = g(t, x(t)). It is easy to see that all conditions of Section 2 are
satisfied with

G0(λ)h(t) = eλt
t∫

0

e−λsh(s) ds

− (eλ − 1)−1(eλ − eλ(t+1))
1∫

0

e−λsh(s) ds ,

cj(λ) = −(eλ − 1)−1eλ ,

〈uj(λ), h〉 =
1∫

0

e−λshj(s) ds ,

wj(λ)(t) = (0, . . . , 0, 1, 0, . . . , 0) (1 in the jth place) ,

for j = 1, . . . , n. By (4.5), for ‖xm‖ → ∞, ‖xm‖−1xm → d ∈ Rn in L1 with
dj > 0, and

〈uj(0), N(xm)〉 > 0 .

On the other hand, by (4.6), this number is negative if dj < 0. It suffices to
notice that sgn cj(λ) = −1 for any j to get the L-L condition.
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System (2.4) has the following form:

x(t) =
t∫

0

g(s, x(s)) ds+ (d1, . . . , dn) ,

1∫
0

g(s, x(s)) ds = 0 .

If, for a solution x of this system, xj(t0) < 0, then the function xj would
have a negative minimum xj(t1) < 0, while 0 = x′j(t1) = gj(t1, x(t1)) < 0
from (4.6). Thus, all solutions of this system belong toK and, by Theorem 2,
we obtain the assertion.

R e m a r k 1. Taking an interval [λ0, 0] instead of [0, λ1], we have sgn cj(λ)
= +1, and inequalities (4.4), (4.5) can be reversed:

fj(t, x1, . . . , xj−1, 0, xj+1, . . . , xn) ≥ 0 ,

sup
xi≥0,i6=j

1∫
0

lim sup
xj→∞

fj(t, x1, . . . , xn) dt < 0 .

R e m a r k 2. The assumptions of this theorem concerning f are posed
only on the boundary of the cone K (and at infinity which can be treated
as a boundary point of K), while in [7], f should be controlled also in the
interior of K. It is not clear if inequality (4.5) can be weakened to ≥.

R e m a r k 3. In fact, f can be defined only on [0, 1] ×K+
n and (4.1) is

necessary only for x ∈ K+
n . Moreover, one can consider the nonlinearity

with linear growth after [5], [6], which means that % = 1 in (4.1). However,
this restricts the problem to classical solutions with f continuous, X = Z =
C([0, 1],Rn), Y = {φ ∈ C1([0, 1],Rn) | φ(0) = φ(1)}, since the sup-norms
work better. If

γ = lim sup
‖x‖→∞

sup
t
‖f(t, x)‖/‖x‖ < 1 ,

then assumptions (4.4) and (4.5) for all j’s guarantee the solvability of (4.3).

5. Second order differential equations and their nonnegative
solutions. We deal with the equation

(5.1) x′′ = f(t, x, x′)

where f : [0, 1]× Rn × Rn → Rn is a Carathéodory function such that

‖f(t, x, x′)‖ ≤ a1‖x‖% + a2‖x′‖% + b(t)

with a1, a2 ≥ 0, % < 1 and b ∈ L1(0, 1). Now, the Nemytskĭı operator

N(x)(t) = f(t, x(t), x′(t))
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maps the Sobolev space X = W 1,1([0, 1],Rn) of all functions x : [0, 1]→ Rn
integrable with the first derivative into Z = L1([0, 1],Rn), and N : X → Z
is sublinear. We denote by K+

n and K the same cones as in Section 4, but
K ⊂ W 1,1 now. Notice that a solution in K of equation (5.1) need not
be a solution in K of the corresponding first order system. We look for a
1-periodic solution of (5.1), i.e. the boundary conditions are

(5.2) x(1)− x(0) = 0 = x′(1)− x′(0) ,

belonging to K.

Theorem 4. If

(5.3) fj(t, x1, . . . , xj−1, 0, xj+1, . . . , xn, y1, . . . , yn) ≤ 0

for t ∈ [0, 1], (x1, . . . , xn) ∈ K+
n , (y1, . . . , yn) ∈ Rn and j = 1, . . . , n, and ,

for each j ∈ {1, . . . , n},

(5.4) inf
y∈Rn

inf
xi≥0,i6=j

1∫
0

lim inf
xj→∞

fj(t, x, y) dt > 0 ,

then BVP (5.1)–(5.2) has a nonnegative solution.

P r o o f. Let Y = {φ ∈W 2,1([0, 1],Rn) | φ(1)−φ(0) = 0 = φ′(1)−φ′(0)}
where W 2,1 stands for the Sobolev space of functions integrable with the first
and second derivatives. Let L(λ)x = x′′+λx and let g : [0, 1]×Rn×Rn → Rn
be a function replacing f , with the properties (5.4) and

(5.5) gj(t, x, y) < 0 for xj < 0 , lim
xj→−∞

gj(t, x, y) = −∞

uniformly with respect to t, xi ≥ 0 for i 6= j, y ∈ Rn. We do not find the
Green operator explicitly as above since it is difficult to decompose it into
regular (G0(λ)) and irregular parts. We can use the fact that the problem
is self-adjoint and G(λ) has the form given by the Hilbert–Schmidt theory:

G(λ) = (G1(λ), . . . , Gn(λ)) ,

Gj(λ)z =
∑
m∈Z

(λ− 4m2π2)−1(zj , em)em , j = 1, . . . , n ,

where (·, ·) denotes the scalar product in L2(0, 1), em(t) = exp(2imπt) for
m ∈ Z. This is an integral operator with kernel

G̃j(t, s;λ) =
∑
m∈Z

(λ− 4m2π2)−1em(t− s) .

Obviously, it is a real continuous function if λ 6= 4m2π2 and its t-derivative
is also continuous. It follows that G(λ) maps Z into Y and is the inverse of
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L(λ). Put

Gj0(λ)z =
∑

m∈Z\{0}

(λ− 4m2π2)−1(zj , em)em ,

G0(λ) = (G1
0(λ), . . . , Gn0 (λ)) ,

cj(λ) = λ−1 , 〈uj(λ), z〉 = (zj , e0) , wj(λ) = e0 ,

for j = 1, . . . , n, Jy = y, N(x)(t) = g(t, x(t), x′(t)), and finally, λ1 < 0.
If ‖xk‖ → ∞, ‖xk‖−1xk → d ∈ Rn, ‖xk‖−1x′k → 0 in L1([0, 1]; Rn) and

dj < 0, we have

lim sup
k→∞

sgn cj(λ)dj〈uj(0), N(xk)〉 = dj lim inf
k→∞

1∫
0

gj(t, xk(t), x′k(t)) dt < 0

by (5.5). If dj ≥ 0 for j = 1, . . . , n, then from (5.4) the lim sup is again
negative for some j. The L-L condition holds.

On the other hand, equation (5.1) does not admit periodic solutions
x such that xj(t0) < 0 for a certain t0 and j ∈ {1, . . . , n}, since such a
function has a minimum xj(t1) < 0 where x′j(t1) = 0 and x′′j (t1) ≥ 0, which
contradicts (5.5).

All remarks to Theorem 3 except Remark 1 can be repeated here. The
norm of the operator JG0(0) (necessary to find an estimate of γ, cf. [5])
cannot be easily calculated. One can consider a simpler case: f independent
of x′, and

‖f(t, x)‖ ≤ a‖x‖+ b(t)
where b ∈ L2(0, 1). This enables one to work in L2([0, 1],Rn) where ‖JG0(0)‖
= (2π)−2.

R e m a r k 4. All arguments can be repeated if the periodic boundary
condition (5.2) is replaced by the Neumann condition:

x′(0) = 0 = x′(1) .

The corresponding Dirichlet problem x(0) = 0 = x(1) is not of resonance
type.
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