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Existence of solution of the nonlinear Dirichlet problem
for differential-functional equations of elliptic type

by Stanis law Brzychczy (Kraków)

Abstract. Consider a nonlinear differential-functional equation

(1) Au+ f(x, u(x), u) = 0 ,

where

Au :=
m∑

i,j=1

aij(x)
∂2u

∂xi∂xj
,

x = (x1, . . . , xm) ∈ G ⊂ Rm, G is a bounded domain with C2+α (0 < α < 1) boundary,
the operator A is strongly uniformly elliptic in G and u is a real Lp(G) function.

For the equation (1) we consider the Dirichlet problem with the boundary condition

(2) u(x) = h(x) for x ∈ ∂G .

We use Chaplygin’s method [5] to prove that problem (1), (2) has at least one regular
solution in a suitable class of functions.

Using the method of upper and lower functions, coupled with the monotone iterative
technique, H. Amman [3], D. H. Sattinger [13] (see also O. Diekmann and N. M. Temme [6],
G. S. Ladde, V. Lakshmikantham, A. S. Vatsala [8], J. Smoller [15]) and I. P. Mysovskikh
[11] obtained similar results for nonlinear differential equations of elliptic type.

A special case of (1) is the integro-differential equation

Au+ f

(
x, u(x),

∫
G

u(x) dx
)

= 0 .

Interesting results about existence and uniqueness of solutions for this equation were
obtained by H. Ugowski [17].

1. Notation, definitions and assumptions. By Cl+α(G) (l =
0, 1, 2, . . . ; 0 < α ≤ 1) we denote the space of functions f ∈ Cl(G) whose
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derivatives of order l are Hölder continuous with finite norm

|f |l+α = sup
x∈G
|k|≤l

|Dkf(x)|+ sup
x,y∈G
|k|=l,x6=y

|Dkf(x)−Dkf(y)|
‖x− y‖α

,

where ‖x‖2 =
∑m
i=1 x

2
i .

By Hm,p(G) (p ≥ 1) we denote the Sobolev space (see [1]) defined in
the following way: Hm,p(G) is the space of all functions f having weak
derivatives Dβf ∈ Lp(G) for all |β| ≤ m with finite norm

‖f‖m,p =
( ∑
|k|≤m

∫
G

|Dkf(x)|p dx
)1/p

.

We assume that the operator A (see the abstract) is strongly uniformly
elliptic, i.e., there is a µ > 0 such that

m∑
i,j=1

aij(x)ξiξj ≥ µ‖ξ‖2

for all x ∈ G and ξ = (ξ1, . . . , ξm) ∈ Rm.
Moreover, we assume that aij ∈ C0+α(G) and aij = aji (i, j = 1, . . . ,m).

The boundary ∂G is assumed to be of class C2+α, i.e., a finite union of C2+α

surfaces.
We assume that h ∈ C2+α(∂G), i.e., there is an h̃ ∈ C2+α(G) such that

h̃(x) = h(x) for all x ∈ ∂G.
A function u is called regular in G if u ∈ C0(G) ∩ C2(G).
Functions u and v regular in G and satisfying the systems of inequalities{

Au+ f(x, u(x), u) ≥ 0 for x ∈ G ,
u(x) ≤ h(x) for x ∈ ∂G ,(3) {
Av + f(x, v(x), v) ≤ 0 for x ∈ G ,
v(x) ≥ h(x) for x ∈ ∂G ,(4)

are called a lower and an upper functions for problem (1), (2) in G, respec-
tively.

Assumption A. We assume that there exists at least one pair u0, v0 of
lower and upper functions for problem (1), (2) in G such that

u0(x) ≤ v0(x) for x ∈ G .
Let u0, v0 be lower and upper functions for problem (1), (2) in G. Define

K = {(x, y, s) : x ∈ G, y ∈ [m0,M0], s ∈ 〈u0, v0〉} ,
where

m0 = min
x∈G

u0(x), M0 = max
x∈G

v0(x)
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and 〈u0, v0〉 is the segment

〈u0, v0〉 := {s ∈ Lp(G) : u0(x) ≤ s(x) ≤ v0(x) for x ∈ G} .
We assume that f : Rm × R× Lp 3 (x, y, s) 7→ f(x.y, s) ∈ R satisfies in

K the following assumptions:

(a) f(·, y, s) ∈ C0+α(G) for y ∈ [m0,M0], s ∈ 〈u0, v0〉,
(b) f(x, ·, ·) is continuous for x ∈ G,
(c) the derivative ∂f/∂y exists and is continuous, and∣∣∣∣∂f∂y (x, y, s)

∣∣∣∣ ≤ c0 in K

where c0 > 0 is a constant,
(d) f is increasing with respect to s.

2. Main results. Throughout this paper we assume all assumptions of
the first section to hold.

Theorem 1. The problem (1), (2) has at least one regular solution u
such that

u0(x) ≤ u(x) ≤ v0(x) for x ∈ G .

Before going into the proof of the theorem we establish some lemmas
and make a few remarks.

From assumption (c) it follows that for k > c0,

(5)
∂f

∂y
+ k > 0 in K .

Let β be a sufficiently regular function defined on G. Denote by P the
operator P : β 7→ γ = Pβ, where γ is the (supposedly unique) solution of
the boundary value problem

(6)
{

(A− kI)γ = −[f(x, β(x), β) + kβ(x)] in G ,
γ(x) = h(x) on ∂G .

The operator P is the composition of the nonlinear operator F : β 7→ δ,
where

(7) Fβ(x) := −[f(x, β(x), β) + kβ(x)] = δ(x)

and the linear operator G : δ 7→ γ, where γ is the (supposedly unique)
solution of the linear problem

(8)
{

(A− kI)γ = δ(x) in G ,
γ(x) = h(x) on ∂G .

F is the Nemytskĭı operator. It is sometimes also called the superposition
operator, composition operator , or substitution operator . More information
about it can be found in [4].
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Lemma 1. (i) F maps C0+α(G) into C0+α(G) and is a bounded and
continuous operator between these spaces.

(ii) P maps C0+α(G) into C0+α(G) and is compact.

P r o o f. Assumption (c) implies that f satisfies the Lipschitz condition
with respect to y. Therefore arguing as in [8, 7] we get (i).

Since the operator A is strongly uniformly elliptic, aij ∈ C0+α(G), the
domain G is bounded, ∂G ∈ C2+α, h ∈ C2+α(∂G) and δ ∈ C0+α(G),
by the Schauder theorem [14] (see [9]) problem (8) has a unique solution
γ ∈ C2+α(G) such that

(9) |γ|2+α ≤ c1(|δ|0+α + |h̃|2+α) ,

where c1 > 0 is independent of δ and h.
We define a constant operator G1 : C0+α(G) → C2+α(G) by denoting,

for every h ∈ C0+α(G), by G1(h) the unique solution of problem (8) with
δ(x) = 0 in G.

Similarly, we define a linear operator G2 : C0+α(G) → C2+α(G) by
denoting, for every δ ∈ C0+α(G), by G2(δ) the unique solution of problem
(8) with h(x) = 0 on ∂G.

It is easy to see that G(δ) = G1(h) + G2(δ). It follows from (9) that
G2 is continuous. Consequently, since G1 is constant with respect to δ, G is
continuous. Thus the operator

G ◦ F : C0+α(G)→ C2+α(G)

is bounded and continuous.
Since ∂G ∈ C2+α, the identity operator

I : C2+α(G)→ C0+α(G)

is compact (see [19]). Hence the operator

P = I ◦ G ◦ F : C0+α(G)→ C0+α(G)

is compact. This completes the proof of Lemma 1.

Lemma 2. (i) F induces a bounded and continuous operator Lp(G) →
Lp(G).

(ii) P induces a compact operator Lp(G)→ Lp(G).

P r o o f. Recall that G is bounded and f satisfies assumptions (a)–(c).
Assumption (c) implies that f satisfies the Lipschitz condition with respect
to y. Therefore arguing as in [18, 7] (see also [16]) we conclude that F
maps Lp(G) into Lp(G). Hence the nonlinear operator F is bounded and
continuous.

If δ ∈ Lp(G), then using the Agmon–Douglis–Nirenberg theorem [2] (see
[9]) and repeating the same arguments as in the proof of Lemma 1, we
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can show that problem (8) has a unique weak solution γ ∈ H2,p(G), which
satisfies

(10) ‖u‖2,p ≤ c2(‖δ‖Lp + ‖h̃‖2,p) ,
where c2 > 0 and c2 does not depend on δ and h. Hence

G : Lp(G)→ H2,p(G) .

By (10) and using a similar argument to the proof of Lemma 1 one can
show that the operator G is continuous. Thus G ◦ F : Lp(G) → H2,p(G) is
bounded and continuous. Since the identity operator I : H2,p(G)→ Lp(G)
is compact (see [20]), the composition P = I ◦ G ◦ F : Lp(G) → Lp(G) is
compact. This completes the proof of Lemma 2.

Lemma 3. (i) Let β1 and β2 be any regular functions such that β1, β2

∈ K. Then the operator P is increasing , i.e., β1(x) < β2(x) in G implies
Pβ1(x) < Pβ2(x) in G.

(ii) If β is an upper (resp. a lower) function for problem (1), (2) in G,
then Pβ(x) < β(x) (resp. Pβ(x) > β(x)) in G.

P r o o f. (i) Let β1(x) < β2(x) in G. Setting γ1 = Pβ1 and γ2 = Pβ2

from (8) it follows that

(11)

 (A− kI)(γ2 − γ1) = −[f(x, β2(x), β2)− f(x, β1(x), β1)]
−k[β2(x)− β1(x)] in G,

γ2(x)− γ1(x) = 0 on ∂G.

From this, by the monotonicity of f with respect to s we get

(A− kI)(γ2 − γ1)
≤ −[f(x, β2(x), β1)− f(x, β1(x), β1)]− k(β2(x)− β1(x))
= −[fy(x, β1(x) + θ(β2(x)− β1(x)), β1) + k](β2(x)− β1(x)) ,

where 0 < θ < 1. Consequently, by (5) we have

(12)
{

(A− kI)(γ2 − γ1) ≤ 0 in G ,
γ2(x)− γ1(x) = 0 on ∂G .

By the strong maximum principle [12], either γ2(x)− γ1(x) ≡ 0 or γ2(x)−
γ1(x) > 0 in G.

We claim that γ2(x) − γ1(x) > 0. Indeed, suppose for a contradiction
that γ2(x) − γ1(x) ≡ 0; then by (11), β2(x) − β1(x) ≡ 0 in G, contrary to
our assumption that β1(x) < β2(x).

(ii) Putting γ = Pβ and using (6) and (4) we get

(A− kI)(γ − β) = (A− kI)γ − (A− kI)β
= −[f(x, β(x), β) + kβ(x)]−Aβ + kβ(x)
= −[Aβ + f(x, β(x), β)] ≥ 0 in G
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and
γ(x)− β(x) = h(x)− β(x) ≤ 0 on ∂G .

Hence, by the strong maximum principle, either γ(x)− β(x) ≡ 0 or γ(x)−
β(x) > 0 in G. Since β is not a solution of (1) (when β is a solution of
(1) then Theorem 1 holds), the case γ(x) − β(x) ≡ 0 cannot occur. Hence
γ(x) < β(x) in G and the proof of Lemma 3 is complete.

P r o o f o f T h e o r e m 1. Let P be defined as before. By induction, we
define two sequences of functions {un} and {vn} by setting

u1 = Pu0, un = Pun−1, n = 1, 2, . . . ,
v1 = Pv0, vn = Pvn−1, n = 1, 2, . . .

Now we show that {un} is increasing (resp. {vn} is decreasing) and converges
to a solution of problem (1), (2) in G. Since u0 and v0 are regular, by
Lemma 1 we see that un, vn ∈ C2+α(G). Since v0 is an upper function for
problem (1), (2) in G, by Lemma 3, we obtain

v1(x) = Pv0(x) < v0(x) in G .

Consequently, by monotonicity of P we get

vn(x) = Pvn−1(x) < vn−1(x) in G, n = 1, 2, . . .

Arguing as above we get un−1(x) < un(x) in G,n = 1, 2, . . . Since the
operator P is monotone, by Assumption A it follows that

u1(x) = Pu0(x) ≤ Pv0(x) = v1(x) in G

and consequently un(x) ≤ vn(x) in G, n = 1, 2, . . . Therefore we get

(13) u0(x) < u1(x) < . . . < un(x) < . . . < vn(x) < . . . < v1(x) < v0(x) inG.

By virtue of (13) we can set

(14) v(x) = lim
n→∞

vn(x) for each x ∈ G

and we see that u0(x) ≤ v(x) ≤ v0(x) for x ∈ G. Analogously we can define

(15) u(x) = lim
n→∞

un(x) for each x ∈ G ,

which satisfies u0(x) ≤ u(x) ≤ v0(x) for x ∈ G.
To complete the proof we must show that u and v are regular solutions

of problem (1), (2) in G.
If we could prove that the sequences {un} and {vn} are bounded in

C0+α(G), then since the operator P is compact and monotone, the sequences
{Pun} and {Pvn} would be convergent in C0+α(G).

Since it is not possible to prove that for any elliptic operator A the se-
quences {un} and {vn} are bounded in C0+α(G), we must find another way.
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The inequality (13) implies that {un} and {vn} are bounded in Lp(G).
Since P is increasing and compact in Lp(G) (see Lemma 2), the sequences
{Pun} and {Pvn} are converging in Lp(G). It is easy to see that

u = lim
n→∞

Pun = lim
n→∞

P2un−1 = Pu ∈ Lp(G)

and
v = lim

n→∞
Pvn = lim

n→∞
P2vn−1 = Pv ∈ Lp(G).

Since u, v ∈ Lp(G) and

G ◦ Fu = u ,(16)
G ◦ Fv = v ,(17)

by the Agmon–Douglis–Nirenberg theorem we obtain

(18) u, v ∈ H2,p(G) .

Now using the well known fact that for p > m the Sobolev space H2,p(G) is
continuously imbedded in C0+α(G), 0 < α < 1 (see [9]), and by (18) we get

(19) u, v ∈ C0+α(G) .

Applying now the Schauder theorem to the equalities (16), (17) and by (19)
we get

u, v ∈ C2+α(G) .
Hence u and v are regular solutions of problem (1), (2) in G. Moreover, since
the sequences {un}, {vn} are monotone, by (13)–(15) we see that

(20) u0(x) ≤ u(x) ≤ v(x) ≤ v0(x) for x ∈ G .
In general u(x) 6= v(x).

R e m a r k 1. The solutions u and v are minimal and maximal solutions
of problem (1), (2) in the set K, i.e., if w is any solution of problem (1), (2)
such that u0(x) ≤ w(x) ≤ v0(x), then u(x) ≤ w(x) ≤ v(x) in G.

Indeed, if w is such a solution, then w = Pw. Hence, by monotonicity of
P we have

w(x) = Pw(x) ≤ Pv0(x) = v1(x) in G .

By induction we get w(x) ≤ vn(x) in G, so w(x) ≤ limn→∞ vn(x) = v(x)
in G.

Arguing as above we obtain u(x) = limn→∞ un(x) ≤ w(x) in G.

R e m a r k 2. Uniqueness of solution for a system of differential-functional
equations of elliptic type has been studied by M. Malec [10]. He gave some
criterion for uniqueness under stronger assumptions.
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[14] J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung ,
Math. Z. 38 (1934), 257–282.

[15] J. Smol ler, Shock Waves and Reaction-Diffusion Equations, Springer, New York
1983.

[16] N. M. Temme (ed.), Nonlinear Analysis, Vol. II, MC Syllabus 26.2, Mathematisch
Centrum, Amsterdam 1976.

[17] H. Ugowski, On integro-differential equations of parabolic and elliptic type, Ann.
Polon. Math. 22 (1970), 255–275.

[18] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators,
Holden-Day, San Francisco 1964.

[19] J. Wloka, Funktionalanalysis und Anwendungen, de Gruyter, Berlin 1971.
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