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On some generalized invariant means and their application
to the stability of the Hyers–Ulam type

by Roman Badora (Katowice)

Abstract. We present some extension of the concept of an invariant mean to a space
of vector-valued mappings defined on a semigroup. Next, we apply it to the study of the
stability of some functional equation.

1. Introduction. In this paper, (S, ·) denotes a semigroup, whereas
B(S, R) is the space of all real bounded functions defined on S.

A real linear functional M on B(S, R) is called a left (right) invariant
mean if and only if

(1) inf{f(x) : x ∈ S} ≤M(f) ≤ sup{f(x) : x ∈ S}, f ∈ B(S, R) ,

and

(2) M(yf) = M(f) (M(fy) = M(f)), y ∈ S, f ∈ B(S, R) ,

where yf and fy denote the left and right translations of f defined by

(3) yf(x) = f(yx), fy(x) = f(xy), x, y ∈ S .

A mean which is simultaneously left and right invariant is said to be two-
sided invariant or, simply, invariant .

A semigroup S which admits a left (right) invariant mean on B(S, R)
will be termed left (right) amenable. In the case where S admits a two-
sided invariant mean on B(S, R) we say that S is two-sided amenable or
just amenable.

A classical result due to J. von Neumann [17], J. Dixmier [6] and M. M.
Day [3] states that every commutative semigroup is amenable, but amenabil-
ity is a much weaker condition than commutativity. For the history, theory
and applications of amenability of semigroups and groups see, for example,
M. M. Day [4] and F. P. Greenleaf [11].
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A collection C of sets is said to have the binary intersection property (see
L. Nachbin [16] and M. M. Day [5]) if and only if every subcollection of C,
any two members of which intersect, has a non-empty intersection.

The family of all non-empty compact intervals in R has the binary in-
tersection property. Furthermore, a normed space is said to have the binary
intersection property if and only if the family of its closed balls has this
property.

In the present paper we extend the concept of an invariant mean to
some spaces of bounded vector-valued functions defined on a semigroup S.
Z. Gajda in [9] proposed some extension of this type for the space of func-
tions with values in a semi-reflexive space. We consider, in particular, the
spaces of functions with values in spaces which have the binary intersection
property.

The space of all bounded real functions on some set A with the supremum
norm has the binary intersection property. Obviously, this space is not semi-
reflexive.

In the second part of this paper we present some applications of our
results to an extension of the Hyers-Ulam stability theorem for homomor-
phisms.

2. Generalized invariant means. Now we establish a generalization
of the classical Hahn–Banach theorem.

Theorem 1. Let X and Y be two real linear spaces and let C be a transla-
tion invariant family of subsets of Y having the binary intersection property.
Assume that F : X → C satisfies

(4) F (x + y) ⊆ F (x) + F (y), x, y ∈ X,

and

(5) F (tx) = tF (x), x ∈ X, t ∈ R \ {0} .

Next , let X0 be a linear subspace of X and let L0 : X0 → Y be a linear
operator such that L0(x) ∈ F (x) for all x ∈ X0. Then there exists a linear
operator L : X → Y which is an extension of L0 and L(x) ∈ F (x) for all
x ∈ X.

This type of generalization of the Hahn–Banach theorem was considered
by W. Smajdor. We omit the proof, because it is much the same as the proof
of Theorem 1 in Z. Gajda, W. Smajdor and A. Smajdor [10].

We apply this theorem to the proof of some generalization of J. Dixmier’s
theorem (see E. Hewitt and K. A. Ross [12], Theorem 17.4). To begin with
we introduce the necessary notation and terminology.
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Definition 1. Let F be a non-void subset of the space Y S of all functions
from a semigroup S to a set Y . We say that F is left (right) invariant if
and only if f ∈ F and y ∈ S imply that yf ∈ F (fy ∈ F).

Definition 2. Let F be a left (right) invariant linear space of functions
mapping a semigroup S into a linear space Y . Let C be a family of subsets
of Y and let F : F → C. Then a linear operator M : F →Y will be called a
left (right) invariant F -mean if and only if

(6) M(f) ∈ F (f), f ∈ F ,

and

(7) M(yf) = M(f) (M(fy) = M(f)), y ∈ S, f ∈ F .

Further, for F as in the above definition we denote by Fl (Fr) the family
of all functions h : S → Y of the form

(8) h =
n∑

k=1

(fk − yk
fk)

(
h =

n∑
k=1

(fk − (fk)yk
)
)

,

where fk ∈ F and yk ∈ S for k = 1, . . . , n.

Now, the theorem of J. Dixmier can be reformulated in the following
way:

Theorem 2. Let F be a left (right) invariant linear space of functions
defined on a semigroup S with values in a real linear space Y. Let C be a
translation invariant family of subsets of Y having the binary intersection
property and let F : F → C satisfy

(9) F (f + g) ⊆ F (f) + F (g), f, g ∈ F ,

and

(10) F (tf) = tF (f), f ∈ F , t ∈ R \ {0} .

Then there exists a left (right) invariant F -mean on F if and only if

(11) 0 ∈ F (h)

for all functions h from the family Fl (Fr).

The above result yields a generalizaton of J. Dixmier’s theorem which we
obtain by taking for C the family of all non-empty compact convex subsets
of R and putting

F (f) = [ inf
x∈S

f(x), sup
x∈S

f(x)], f ∈ F ,

where F is a left (right) invariant linear subspace of the space of all bounded
real functions on S.
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P r o o f o f T h e o r e m 2. Let M be a left invariant F -mean on the space
F and fix h =

∑n
k=1(fk − yk

fk) with fk ∈ F and yk ∈ S (k = 1, . . . , n).
Then

M(h) = M
( n∑

k=1

(fk − yk
fk)
)

=
n∑

k=1

(M(fk)−M(fk)) = 0

and so 0 = M(h) ∈ F (h).
Conversely, if 0 ∈ F (h) for each h ∈ Fl, then let M0 : Fl → Y be the

zero operator. Since M0(h) ∈ F (h) for h ∈ Fl, Theorem 1 implies that there
exists a linear operator M : F → Y such that

M(f) ∈ F (f), f ∈ F , and M(h) = M0(h) = 0, h ∈ Fl .

Then M is a left invariant F -mean.
The proof of the “right invariant” version is analogous.

Let Y be a linear topological space. A subset A of Y is called bounded
if and only if it is absorbed by any neighbourhood of zero in the topology
of Y . The space of all bounded functions (i.e. those with bounded image)
from a semigroup S into Y will be denoted by B(S, Y ).

Theorem 3. Let (S, ·) be a left (right) amenable semigroup and let Y be a
real locally convex space. Let F be a left (right) invariant linear subspace of
B(S, Y ). Let C be a translation invariant collection of closed convex sets in
Y having the binary intersection property. Assume that the map F : F → C
satisfies (9), (10) and

(12) h(S) ⊆ F (h), h ∈ Fl (h ∈ Fr) .

Then there exists a left (right) invariant F -mean on the space F .

P r o o f. We restrict ourselves to the “left invariant” version.
Clearly, by Theorem 2 it is enough to show that 0 ∈ F (h) for every

h ∈ Fl. Suppose that there exists an h ∈ Fl such that

(13) 0 6∈ F (h) ,

and let h =
∑n

k=1(fk − yk
fk), for some fk ∈ F and yk ∈ S (k = 1, . . . , n).

Applying to the sets {0} and F (h) the separation theorem in a locally convex
space (see e.g. M. M. Day [5], Theorem 5, p. 24) we obtain the existence of
a continuous linear functional L on Y such that

(14) 0 = L(0) > sup
y∈F (h)

L(y) .

For k = 1, . . . , n let us define bounded real functions f̃k on S by

f̃k(x) = L(fk(x)), x ∈ S ,
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and let M be a left invariant mean on B(S, R), which exists by our assump-
tion. Then

0 = M
( n∑

k=1

(f̃k − yk
f̃k)
)
≤ sup

x∈S

n∑
k=1

(f̃k(x)− yk
f̃k(x))

and, on the other hand,

sup
x∈S

n∑
k=1

(f̃k(x)− yk
f̃k(x)) = sup

x∈S

n∑
k=1

(L(fk(x))− L(yk
fk(x)))

= sup
x∈S

L(h(x)) = sup
y∈h(S)

L(y) ≤ sup
y∈F (h)

L(y) < 0 ,

which is impossible. Therefore, condition (11) is satisfied.

The utility of Theorem 3 depends on the existence of non-trivial examples
of families C and maps F . In the present note we concentrate our attention
on the space of all bounded functions defined on a semigroup S and taking
values in a normed space Y which has the binary intersection property.

We start with the following lemmas:

Lemma 1. If the family C has the binary intersection property , then the
family C̃ of all non-empty intersections of subfamilies of C also has the
binary intersection property.

P r o o f. Let C̃1 = {Aq : q ∈ Q} be a subfamily of C̃ any two members of
which intersect. Then for each q ∈ Q we have

Aq =
⋂
{Bq

i : i ∈ Iq}

for some subfamily {Bq
i : i ∈ Iq} of C and any two members of the family

C1 = {Bq
i : i ∈ Iq, q ∈ Q} intersect. Since C has the binary intersection

property, C1 has non-empty intersection. Therefore, the intersection of C̃1,
which coincides with the intersection of C1, is non-empty.

The following lemma is some version of the results obtained by K. Niko-
dem in [18] and by Z. Gajda, W. Smajdor and A. Smajdor in [10].

Lemma 2. Let C be a translation invariant family of subsets of the linear
space Y having the binary intersection property. Suppose that C is also in-
variant with respect to symmetry about zero. If {Ai : i∈I} and {Bq : q∈Q}
are two subfamilies of C such that⋂

{Ai : i ∈ I} 6= ∅ and
⋂
{Bq : q ∈ Q} 6= ∅ ,

then ⋂
{Ai + Bq : i ∈ I, q ∈ Q} =

⋂
{Ai : i ∈ I}+

⋂
{Bq : q ∈ Q} .
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P r o o f. The inclusion ⊇ is obvious. To prove the inverse inclusion it is
enough to show that⋂

{Ui + W : i ∈ I} ⊆
⋂
{Ui : i ∈ I}+ W

for {Ui : i ∈ I} ⊆ C̃ such that
⋂
{Ui : i ∈ I} 6= ∅ and W ∈ C̃, where C̃

denotes the family of all non-empty intersections of subfamilies of C.
Take v ∈

⋂
{Ui +W : i ∈ I}. Then for each i ∈ I there exist ui ∈ Ui and

wi ∈ W such that v = ui + wi. Hence Ui ∩ (v −W ) 6= ∅ for all i ∈ I. Since
{Ui : i ∈ I} ∪ {v −W} is a subfamily of C̃ having the binary intersection
property and any two members of this subfamily intersect, we have⋂

{Ui : i ∈ I} ∩ (v −W ) 6= ∅ .

Let u ∈
⋂
{Ui : i ∈ I} ∩ (v −W ). Then

v = u + (v − u) ∈
⋂
{Ui : i ∈ I}+ W .

Now, let (S, ·) be a semigroup and let (Y, ‖ · ‖) be a normed space which
has the binary intersection property. Under these assumptions we will prove
the following auxiliary result.

Lemma 3. Let Cb be the family of all non-empty intersections of closed
balls in Y . Then the map Fb : B(S, Y )→ Cb defined by

Fb(f) =
⋂
{B : B is a closed ball in Y and f(S) ⊆ B}, f ∈ B(S, Y ) ,

satisfies conditions (9), (10) and (12).

In the proof we will use the following fact:

R e m a r k 1. Let (Y, ‖ · ‖) be a normed space. Then for every y, ỹ ∈ Y
and r, r̃ > 0, one has

b(y, r) + b(ỹ, r̃) = b(y + ỹ, r + r̃ ) ,

where b(y, r) denotes the closed ball in Y with centre at y and radius r.

P r o o f. The inclusion ⊆ is immediate. To prove the inverse inclusion, fix
z ∈ b(y + ỹ, r + r̃ ). Then z = u + v, where

u =
r

r + r̃
(z − y − ỹ) + y and v =

r̃

r + r̃
(z − y − ỹ) + ỹ .

Moreover,

‖u− y‖ =
r

r + r̃
‖z − y − ỹ‖ ≤ r

and

‖v − ỹ‖ =
r̃

r + r̃
‖z − y − ỹ‖ ≤ r̃ .

Therefore, z ∈ b(y, r) + b(ỹ, r̃ ).



Generalized invariant means and stability 153

P r o o f o f L e m m a 3. Fix f, g ∈ B(S, Y ). Then for any closed balls B

and B̃ such that f(S) ⊆ B and g(S) ⊆ B̃ we have

(f + g)(S) ⊆ f(S) + g(S) ⊆ B + B̃

and B + B̃ is a closed ball in Y . Hence,

Fb(f + g) ⊆ B + B̃ .

By Lemma 2 this implies (9).
To prove (10) we fix f ∈ B(S, Y ) and t ∈ R \ {0}.Then

tFb(f) = t
⋂
{B : B is a closed ball in Y and f(S) ⊆ B}

=
⋂
{tB : B is a closed ball in Y and f(S) ⊆ t−1tB}

=
⋂
{B : B is a closed ball in Y and tf(S) ⊆ B} = Fb(tf) .

Evidently, the map Fb also satisfies (12).

From Theorem 3 we obtain:

Theorem 4. Let (S, ·) be a left (right) amenable semigroup and let
(Y, ‖ · ‖) be a real normed space having the binary intersection property.
Then there exists a linear operator M : B(S, Y )→ Y such that

(15) M(f) ∈ b(f), f ∈ B(S, Y ) ,

and

(16) M(yf) = M(f) (M(fy) = M(f)), f ∈ B(S, Y ), y ∈ S ,

where b(f) denotes the intersection of all closed balls in Y including f(S).

3. An application. In what follows we assume that (S, ·) is a semigroup
and (Y, ‖ · ‖) is a real normed space. A function f : S → Y is said to be
additive provided it satisfies the Cauchy functional equation

(17) f(xy) = f(x) + f(y), x, y ∈ S .

Further, f : S → Y is called approximately additive if and only if there is
an ε ≥ 0 such that

(18) ‖f(xy)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ S. For f : S → Y and x and y in S the difference

(19) f(xy)− f(x)− f(y)

is called the Cauchy difference and denoted by C(x,y)f .
S. M. Ulam [22] raised the following problem. Suppose that a function

f from a Banach space X into another Banach space Y satisfies (18). Does
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there exist an additive function a : X → Y and a k > 0 such that

‖f(x)− a(x)‖ ≤ kε, x ∈ X?

A solution to this problem (with k = 1) was given in 1941 by D. H.
Hyers [13]. Later his result was carried over to a higher level of abstraction
by J. Rätz [19] and Z. Moszner [15]. For our discussion the main motivation is
a result of L. Székelyhidi (see [20] and [21]) who pointed out that the classical
Hyers theorem holds true for functions mapping an amenable semigroup into
a reflexive space.

With the aid of Theorem 4, using the method of the proof of Székelyhidi’s
theorem, one may prove the following

Theorem 5. Let (S, ·) be a left (right) amenable semigroup and let
(Y, ‖ · ‖) be a real normed space having the binary intersection property.
If f : S → Y satisfies (18) for some ε ≥ 0, then there exists a unique
additive function a : S → Y such that

‖f(x)− a(x)‖ ≤ ε, x ∈ S .

As a consequence we get the completeness of any real normed space
having the binary intersection property. In fact, this is an immediate con-
clusion from Theorem 5 and a result of G. L. Forti and J. Schwaiger (see
[7], Theorem 7).

M. A. Albert and J. A. Baker in [1] proved that if (S, +) is a commutative
semigroup and a mapping F from the Cartesian product Sn (n ∈ N) into
some Banach space Y has bounded Cauchy difference with respect to each
variable separately, then there exists an n-additive function A : Sn → Y
such that F −A is bounded.

Now we consider another problem of this type, which was suggested to
me by Zbigniew Gajda. Let (S, ·) and (S̃, ·) be semigroups, let Y be a real
linear space and let H : S× S̃ → Y . Given x, y ∈ S and u, v ∈ S̃ we consider
the Cauchy difference operators C1

(x,y) and C2
(u,v) acting on H regarded as a

function of the first or the second variable, respectively. We will study the
stability and solutions of the functional equation

(20) C2
(u,v)C

1
(x,y)H = 0

for all x, y ∈ S and u, v ∈ S̃, i.e.

H(xy, uv)−H(x, uv)−H(y, uv)
−H(xy, u) + H(x, u) + H(y, u)
−H(xy, v) + H(x, v) + H(y, v) = 0

for all x, y ∈ S and u, v ∈ S̃.
It is easy to check that if A, B : S× S̃ → Y are such that A(·, u) : S → Y

is additive for any fixed u ∈ S̃ and B(x, ·) : S̃ → Y is additive for any fixed
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x ∈ S, then H : S × S̃ → Y defined by

(21) H = A + B

satisfies equation (20). Therefore, our study is similar to that of Z. Gajda
in [8] (for polynomial functions).

Theorem 6. Let (S, ·) and (S̃, ·) be left (right) amenable semigroups, let
(Y, ‖ · ‖) be a real normed space having the binary intersection property and
let ε ≥ 0. Assume that F : S × S̃ → Y satisfies

(22) ‖C2
(u,v)C

1
(x,y)F‖ ≤ ε

for all x, y ∈ S and u, v ∈ S̃. Then there exists a unique map H : S×S̃ → Y
of the form (21) which satisfies equation (20) and such that

(23) ‖F (x, u)−H(x, u)‖ ≤ ε

for all x ∈ S and all u ∈ S̃.

P r o o f. We only prove the “left version”.
Condition (22) implies that the mapping g defined by

(24) S × S 3 (x, y) 7→ F (xy, ·)− F (x, ·)− F (y, ·)

assumes values in the space AA(S̃, Y ) of all functions from S̃ into Y which
have bounded Cauchy difference.

If f ∈ AA(S̃, Y ) then there exists a constant k ≥ 0 such that

‖C(u,v)f‖ = ‖f(uv)− f(u)− f(v)‖ ≤ k

for all u, v ∈ S̃. Therefore, from Theorem 5 it follows that there exists a
unique additive function af : S̃ → Y such that the map rf = f − af is
bounded (by k) on S̃.

Let A(S̃, Y ) denote the linear subspace of AA(S̃, Y ) consisting of all
additive functions and let Ỹ stand for the quotient space AA(S̃, Y )/A(S̃, Y ).
Every element of Ỹ can be uniquely represented in the form r + A(S̃, Y ),
where r ∈ AA(S̃, Y ) is bounded, i.e. r ∈ B(S̃, Y ).

We define a norm on Ỹ by

(25) ‖r + A(S̃, Y )‖ = sup{‖r(u)‖ : u ∈ S̃}

for all r ∈ B(S̃, Y ).
Since the space Y has the binary intersection property it is evident that

so do B(S̃, Y ) and Ỹ . Moreover, for any f ∈ AA(S̃, Y ) the norm of f +
A(S̃, Y ) in Ỹ is not larger than the constant which bounds the Cauchy
difference of f .
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Theorem 4 implies that there exists a linear operator M : B(S, Ỹ )→ Ỹ
such that

(26) M(g) ∈ b(g), g ∈ B(S, Ỹ ) ,

and

(27) M(zg) = M(g), z ∈ S, g ∈ B(S, Ỹ ) .

Now we return to the map g defined by (24). Fix x ∈ S. Then the
mapping G(x, ·) : S → Ỹ defined by

G(x, y) = g(x, y) + A(S̃, Y ), y ∈ S ,

is bounded (in norm) by ε, i.e. G(x, ·) ∈ B(S, Ỹ ) for each x ∈ S. Let

h(x) = My(G(x, y)), x ∈ S ,

where the subscript y indicates that M is applied to a function of the variable
y. Then for any x ∈ S,

h(x) ∈ b
Ỹ

(0, ε) ,

where b
Ỹ

(0, ε) denotes the closed ball in (Ỹ , ‖ · ‖) with centre at zero and
radius ε (if ε = 0 then we put b

Ỹ
(0, 0) = {0}).

Therefore, for each x ∈ S there exists a (unique) function r(x) : S̃ → Y
such that

(28) h(x) = r(x) + A(S̃, Y )

and

(29) ‖r(x)(u)‖ ≤ ε, u ∈ S̃ .

Moreover,

(30) h(xx̃) = h(x) + h(x̃)−G(x, x̃), x, x̃ ∈ S .

Indeed, for any x, x̃ ∈ S, from the left invariance of M , we get

h(x) + h(x̃)−G(x, x̃) = My(F (xy, ·)− F (x, ·)− F (y, ·) + A(S̃, Y ))

+ My(F (x̃y, ·)− F (x̃, ·)− F (y, ·) + A(S̃, Y ))

− [F (xx̃, ·)− F (x, ·)− F (x̃, ·) + A(S̃, Y )]

= My(F (xx̃y, ·)− F (x, ·)− F (x̃y, ·) + A(S̃, Y ))

+ My(F (x̃y, ·)− F (x̃, ·)− F (y, ·) + A(S̃, Y ))

− [F (xx̃, ·)− F (x, ·)− F (x̃, ·) + A(S̃, Y )]

= My(F (xx̃y, ·)− F (xx̃, ·)− F (y, ·) + A(S̃, Y ))
= My(G(xx̃, y)) = h(xx̃) .
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This means that

(31) F (xx̃, ·) + r(xx̃)− F (x, ·)− r(x)− F (x̃, ·)− r(x̃) ∈ A(S̃, Y )

for all x, x̃ ∈ S.
Moreover, condition (31) states that the Cauchy difference of the function

S 3 x 7→ F (x, ·) + r(x)

is in the linear subspace A(S̃, Y ) of Y S̃ . Therefore, the theorem of K. Baron
[2] (see also Z. Gajda [8], Lemma 1) guarantees the existence of an additive
function a from S into Y S̃ such that

F (x, ·) + r(x)− a(x) ∈ A(S̃, Y ), x ∈ S .

Hence, for every x ∈ S, there exists an additive function B(x, ·) : S̃ → Y
such that

F (x, u) + r(x)(u)− a(x)(u) = B(x, u), u ∈ S̃ .

Now, let us put

A(x, u) = a(x)(u), x ∈ S, u ∈ S̃ .

Then A(·, u) : S → Y is additive for each u ∈ S̃ and

F (x, u)−A(x, u)−B(x, u) = −r(x)(u), x ∈ S, u ∈ S̃ .

Therefore, the mapping H : S × S̃ → Y defined by

H(x, u) = A(x, u) + B(x, u), x ∈ S, u ∈ S̃ ,

is of the form (21) and moreover, by (29),

‖F (x, u)−H(x, u)‖ = ‖r(x)(u)‖ ≤ ε

for all x ∈ S and all u ∈ S̃, which ends the existence part of the proof.
To prove uniqueness, suppose that H, H̃ : S × S̃ → Y satisfy equation

(20) and inequality (23). Then from (20), by induction, we have

H(x2n

, u2n

) = 2nH(x2n

, u) + 2nH(x, u2n

)− 4nH(x, u)

and

H̃(x2n

, u2n

) = 2nH̃(x2n

, u) + 2nH̃(x, u2n

)− 4nH̃(x, u)

for all x ∈ S, u ∈ S̃, n ∈ N. By (23) we get
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‖H(x, u)− H̃(x, u)‖
= 4−n‖H(x2n

, u2n

)− 2nH(x2n

, u)− 2nH(x, u2n

)

− H̃(x2n

, u2n

) + 2nH̃(x2n

, u) + 2nH̃(x, u2n

)‖

≤ 4−n{‖H(x2n

, u2n

)− F (x2n

, u2n

)‖+ ‖F (x2n

, u2n

)− H̃(x2n

, u2n

)‖

+ 2n‖H(x2n

, u)− F (x2n

, u)‖+ 2n‖F (x2n

, u)− H̃(x2n

, u)‖

+ 2n‖H(x, u2n

)− F (x, u2n

)‖+ 2n‖F (x, u2n

)− H̃(x, u2n

)‖}

≤ 4−n{2ε + 2n2ε + 2n2ε} −→
n→∞

0 ,

which yields H = H̃.

This theorem states that equation (20) is stable on amenable semigroups
and moreover (with ε = 0) that any solution of this equation is of the form
(21). This leads to the following

Theorem 7. Let (S, ·) and (S̃, ·) be left (right) amenable semigroups, let
(Y, ‖ · ‖) be a real normed space having the binary intersection property and
let H : S × S̃ → Y satisfy equation (20). Then H is of the form (21).
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Reçu par la Rédaction le 17.6.1992
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