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Some results on stability and on characterization
of K-convexity of set-valued functions

by T1z1IANA CARDINALI (Perugia), KAzIMIERZ NIKODEM (Bielsko-Biala)
and FRANCESCA PAPALINI (Perugia)

Abstract. We present a stability theorem of Ulam—Hyers type for K-convex set-valued
functions, and prove that a set-valued function is K-convex if and only if it is K-midconvex
and K-quasiconvex.

1. Introduction. In this paper we study two different problems:

(i) stability of the K-convexity of a set-valued function;
(ii) characterization of K-convex set-valued functions.

The first problem has been studied for functions: in 1941 D. H. Hyers [5]
proved that the property of additivity is stable, i.e. if a function f satisfies

(1.1) lf(x+y)— flz) - fy)| <e,

where ¢ is a given positive number, then there exists an additive function g
such that

(1.2) [f(z) —g(z)] <e.

In 1952 D. H. Hyers and S. M. Ulam [6] stated that the property of convexity
is stable, that is, for every function f : D — R, where D is a convex subset
of R”, satisfying the inequality

(1.3) fltz+ (1 —t)y) <tf(z)+ A -1)f(y) +e,

for all z,y € D, t € [0,1] and some £ > 0, there exists a convex function
g : D — R and a constant k,, depending only on the dimension of the
domain, such that

(1.4) g(x) < f(x) < g(z) + kne, VreD.
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In 1984 P. W. Cholewa [3] gave a different proof of the theorem of Hyers
and Ulam.

Later, in 1988, K. Nikodem [10]; showed that the property of quasicon-
vexity of a function is also stable.

For the second problem, in 1989 K. Nikodem [10]2 obtained the following
characterization for convex functions defined on an open subset of R":

(1.5) f is convex < f is midconvex and quasiconvex.

Next Z. Kominek [7] and F. A. Behringer [2] showed that (1.5) is also
true for functions defined on any convex subset of a real vector space, not
necessarily open.

In Section 3 of our note we prove (cf. Theorem 1) that if D is a con-
vex subset of R™, K a convex cone in R™ and B the closed unit ball of
R™, then for every set-valued function F' : D — n(R™) (cf. (2.1)) satisfy-
ing

(1.3)1 tF(x)+(1—-t)F(y) Cc Ftx+(1—t)y) + K +¢B

for all x,y € D, t € [0,1] and some ¢ > 0, there exists a convex set-valued
function G : D — n(R™) such that

(1.4), F(z) C G(z) C F(x) + K + jp4meB, Yz e D,

where the constant j,,,, depends only on the dimension of R"*™,

In Section 4 we prove (cf. Corollary 1) that if D is a convex subset of a
real vector space, K a closed convex cone of a real topological vector space
Y,t€(0,1)and F : D — C(Y) (cf. (2.2)) a set-valued function, then, under
some assumption on Y (cf. Remark 1),

(1.5)1 F is K-convex < F' is K-t-convex and K-quasiconvex.

This result contains the mentioned theorems proved in [10]2, in [7] and
in [2].

Finally, we want to observe that our Theorem 3 is a generalization to

set-valued functions of a result of N. Kuhn [8] stating that ¢-convex (single-
valued) functions are midconvex.

2. Let X be a real vector space and Y be a real topological vector space
(satisfying the Ty separation axiom). For «, 3 € R and S,T C Y we put
aS+0T={yeY :y=as+pt, s€ S, teT}. We define
(2.1) n(Y)={ScY:S#0},

(2.2) C(Y)={S CY :S compact, S # 0},
(2.3) BC(Y)={S CY : S bounded, convex, S # 0} .
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We assume that D is a nonempty convex subset of X and K is a convex
cone in Y. For fixed ¢t € (0,1), we say that a set-valued function F' : D —
n(Y) is K-t-convez if

tF(x)+ (1 -t)F(y) C Flte + (1 —t)y) + K
for all x,y € D. If t = 1/2, F is called K-midconvez.

We say that F' is K-quasiconvez if for every convex set A C Y the lower
inverse image of A — K, i.e. the set

FTA-K)={zeD:Flx)Nn(A-K) #0},

is convex (cf. [10]s, (2.5)).

In the case that Y is a normed space, let B be the closed unit ball in Y
and € a nonnegative number. We say that F': D — n(Y') is e-K-convez if
(2.4) tF(x)+(1—-t)F(y) C Ftx+(1—t)y) + K +¢B

for all z,y € D and t € [0,1]. We recall that F' is K-conver if it satisfies
(2.4) with e = 0. If F satisfies (2.4) with ¢ = 0 and K = {0} it is said to be
convex.

F :D — n(Y) is said to be weakly K-upper bounded on a set A C D iff

(2.5)  there exists a bounded set B C Y such that A C F~(B — K).
Finally, we denote by
GrF={(z,y) e XxY:2zeD, ye F(x)}
the graph of the set-valued function F.

3. In this section we present, for e- K-convex set-valued functions, a the-
orem analogous to the stability theorem for functions proved by D. H. Hyers
and S. M. Ulam in [6] and by P. W. Cholewa in [3].

Using a method similar to Cholewa’s [3] we first prove

LEMMA 1. Let X be a real vector space, Y a normed space, D a convex
subset of X and K a convex cone in Y. If a set-valued function F' : D — n(Y)
is e-K-convex, then for allp € N, zg,...,x, € D and to,...,t, € [0,1] with
to+...+t, =1, we have

(3.1) toF(zo) + ... +t,F(x,) C F(toxo + ... +tyxy) + K + j,eB

where j, = min{k,, hy}, k, = (p* + 3p)/(2p + 2), and h, = m € N is such
that 2m~1 < p < 2™,

Proof. For p =1 the inclusion (3.1) is clear because j; = k1 = hy = 1.
Now fix p > 1 and assume that (3.1) holds for all natural n < p. Take
zo,...,xp € D and to,...,t, € [0,1] with to + ... +t, = 1. Without loss
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of generality we may assume that tgp > 1/(p+1). Let t =¢; + ...+, and
ti=t;/tfori=1,...,p;thent <p/(p+1). Thus

(3.2)  toF(z0) + ...+ tpF(xp) = toF (xo) + t{t F(x1) + ... + 1, F(xp)]
C toF(xo) + t[F(thzr + ... +t,xp) + K + kp_16B|
C Fltozo + ... +tyay) + K +eB + ]%kzp,laB
= F(toxo+ ...+ tpxp) + K + kpeB.

Now, let m € N be such that 2m~1 < p < 2™, Put r = [p/2]; then r < 21
and p—r —1 < 2™~ ! Settinga =ty +... +t, and b =1t,11 + ... +1,, we
have

(3.3)  toF(m0) + ...+ t,F(x,)

=a [tOF(mO) +..F ZF(xT)] + b[trgl F(xp1) +..o + Z?F(ifp)]

a

t t’l’ t'r t
CaF<£x0+...+ax7«) +bF<;1xT+1+...+pxp>

+ K 4 ah,eB + bhy,_,_1eB
C F(toxo+ ...+ tpzp) + K+ (1 + ah, +bhy_r_1)eB
C F(toxo+ ...+ tpzp) + K+ [1+a(m—1)+b(m—1)eB
= F(toxo+ ... +tprp) + K+ hpeB.
From (3.2) and (3.3) we obtain the assertion.

THEOREM 1. Let D be a convex subset of R™ and K be a convexr cone
in R™. If a set-valued function F : D — n(R™) is e-K-convex, then there
exists a conver set-valued function G : D — n(R™) such that

F(z) CcG(z) C F(z) + K + jnymeB
forall x € D.

Proof. Let W be the convex hull of the graph of F'. We define G: D —

n(R™) by

Glx)={yeR": (z,y) e W}, zxz€D.
Then G is convex because GrG = W is convex. Moreover, F'(x) C G(x)
for all x € D. To prove the second inclusion fix an x € D and take an

arbitrary y € G(z). Then (z,y) € W. By the Carathéodory Theorem (cf.
[12], Theorem 17.1) we have

n+m

(z,y) = Z (@i, vi)

=0
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with some (x;,y;) € GrF and tg,...,them € [0,1], to + ... + typm = 1.
Hence, using Lemma 1, we get

n+m n4+m

Yy = Z t;y; € Z tZF(JIz) C F(.T) + K +jn+m€B.
i=0 i=0
Since this holds for all y € G(z), the proof is complete.

4. In this section we give two necessary and sufficient conditions for a
set-valued function to be K-convex. We first need the following lemma which
is an analogue of a result obtained for functions by C. T. Ng and K. Nikodem
(cf. [9], Lemma 6).

LEMMA 2. Let K be a closed convex cone in a real topological vector space
Y. If F:[0,1] — C(Y) is K-midconvex on [0,1] and K-convex on (0,1),
then it is K-convez on [0, 1].

Proof. Fix z,y € [0,1] and ¢t € (0,1), and put z = tx + (1 — t)y. Let
u=(x+2)/2and v = (y + 2)/2. Then u,v € (0,1) and z = tu + (1 — t)v.
Since F is K-convex on (0,1) we get

(4.1) tF(u)+(1—-t)F(v) C F(2)+ K .
On the other hand, by the K-midconvexity of F' on [0, 1],
F F F F
(4.2) W CFw)+K and W CFv)+ K.

Therefore, by (4.2) and (4.1),

tF(z)+ (1 —t)F(y) + F(2) Ct(F(z)+ F(2)) + (1 —t)(F(y) + F(2))
C2tF(u)+2(1 —t)F(v) + K
C2F(2)+ KCF(2)+ F(2)+ K.

The set F(z) + K is convex and closed, and F(z) is bounded; so the law of
cancellation (cf. [11]) yields the assertion.

THEOREM 2. Let X be a real vector space, Y a real topological vector
space, D a convex subset of X and K a closed convex cone in Y. More-
over, assume that there exists a family (By)n, Bn € BC(Y) (cf. (2.3)), such
that

(4.3) Y= JB.-K).
neN

Then a set-valued function F: D — C(Y) is K-convez if and only if it is
K-midconvex and K-quasiconverz.
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Proof. The necessity is trivial (cf. [10]3, Theorem 2.9). Now suppose F is
K-midconvex and K-quasiconvex. Fix z,y€ D, and define H : [0,1] — C(Y)
by

(4.4) H(t)=F({tz+(1—-t)y), Vte]|0,1].
Clearly H is K-quasiconvex; therefore for all n € N, the set
(4.5) H (B,—K)={te[0,1]: Ht)N (B, — K) # 0}
is an interval in R. In view of (4.3) we have

U B (B. - K)=10,1],

neN

and so we can find a natural number p such that
(4.6) int H (B, — K)#0.

By the K-midconvexity of F' it follows that H is K-midconvex on [0, 1], and
(cf. (4.5) and (4.6)) H is weakly K-upper bounded (cf. (2.5)) on H ™ (B,—K),
which has nonempty interior; then using Corollary 3.3 of [10]3 we deduce
that H is K-continuous on (0,1). Consequently, H is K-convex on (0,1)
(cf. [10]3, Theorem 3.1 or [1], Theorem 4.2) and so it follows by Lemma 2
that H is K-convex on [0,1]. Therefore, by (4.4),

tF(x)+ (1 —t)F(y) =tH(1)+(1—-t)H(0) C H(t)+ K
=F(tz+(1-t)y)+ K,
which proves the K-convexity of F.
Remark 1. The assumption (4.3) is trivially satisfied if Y is a normed
space. It is also fulfilled if there exists an order unit in Y, i.e. an element
e€Y such that for every y €Y we can find an n€N with y€ne — K (then

we can assume B,, = {ne}). In particular, if int K # (), then every element
of int K is an order unit in Y.

THEOREM 3. Let X be a real vector space, Y be a real topological vector
space, D a convex subset of X and K a closed convex cone in Y. Let t be a
fized number in (0,1). If a set-valued function F : D — C(Y) is K-t-convez,
then it 1s K-midconvex.

Proof. Observe first that F'(x) 4+ K is convex for all x € D because
tF(z)+ (1 —t)F(z) C F(z)+ K
and F(z) + K is closed.
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Let z,y € D; using the K-t-convexity of F' we get

t(1—t)F(x) +t(1 —t)F(y) + [1 — 2¢(1 — t)]F<x ; y>
Joore ()| + o rw 0 -op(TE)]
ctF((l—t) +t;ry>+(1—t)F<ty+(1_t)x‘;y>+K

() e

C2t(l —t)F (

> -2t 4)]1?(“””?) VK.

Since the set 2t(1 — t)F (%Y%) + K is convex and closed and the set
[1—2t(1—t)] (ﬂ) bounded, by the law of cancellation we obtain

1 — ) F(z) + t1 — ) F(y) C 2t(1 — t)F(”“" ;r y) + K.

Hence
1

SIF(@) + Fy) © F<“‘;y> +K,

which was to be proved.

Remark 2. In the case of real (single-valued) functions the above result
is a consequence of the theorem of N. Kuhn [8]. The idea of the presented
proof is taken from Lemma 1 of [4].

As an immediate consequence of Theorems 2 and 3 we obtain the fol-
lowing

COROLLARY 1. Let X be a real vector space, Y a real topological vector
space, D a conver subset of X, K a closed conver cone in Y and t a fized
number in (0,1). Moreover, assume that there exists a family (By,)n, By €

BC(Y), such that
Y = J (B, - K)

neN
Then a set-valued function F': D — C(Y) is K-convez if and only if it is
K-t-convex and K-quasiconvex.

Remark 3. Observe that, in the case where K = {0}, it is sufficient to
require that the values of the set-valued function in Lemma 2, Theorem 2,
Theorem 3 and Corollary 1 are closed and bounded (and not necessarily
compact). The corresponding proofs are similar to those given above.
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