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On the spectrum of A(Ω) and H∞(Ω)

by Urban Cegrell (Ume̊a)

Abstract. We study some properties of the maximal ideal space of the bounded
holomorphic functions in several variables. Two examples of bounded balanced domains
are introduced, both having non-trivial maximal ideals.

1. Introduction. Let Ω be a domain (open, bounded and connected) in
Cn. Denote by H(Ω) the analytic functions on Ω, H∞(Ω) = H(Ω)∩L∞(Ω)
and by A(Ω) the functions in H(Ω) that are continuously extendable to Ω.

Let M be the spectrum of H∞(Ω) and MA the spectrum of A(Ω). If
m ∈ MA, we have the projection πm = (m(z1), . . . ,m(zn)), Ω̃ = {m ∈
M : πm ∈ Ω} and X = Ω̃ \ Ω̃ where we take the closure in the Gelfand
topology. We write ShM (ShMA) for the Shilov boundary of M (MA)
and f̂ for the Gelfand transform of f ∈ H∞(Ω). Note that ShMA ⊂ X,
πX ⊂ ∂Ω and that π(M) ⊂ π(MA) for if m ∈M then m operates on A so
that z ∈ π(M)⇒ z ∈ π(MA).

The purpose of this paper is to study the following statements:

1. πM = Ω.
1′. πMA = Ω.
2. If πm ∈ Ω, then mf = f(πm), ∀f ∈ H∞(Ω).
2′. If πm ∈ Ω, then mf = f(πm),∀f ∈ A(Ω).
3. If πm ∈ ∂Ω, f ∈ H∞(Ω), then there is an m0 ∈ X so that π(m0) =

π(m) and f̂(m0) = f̂(m).

The Gleason problem is to decide if the coordinate functions z1 − z0
1 , . . .

. . . , zn − z0
n generate every maximal ideal {f ∈ A(Ω) : f(z0) = 0}, z0 ∈ Ω.

An obvious obstruction to the Gleason problem is the failure of 2′, which is
one of the motivations for us to study the statements above.
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2. The case ΩbC. In the case when Ω is a domain in C, we will prove
that all statements are true.

Proposition 1. If ψ ∈ L∞(Ω) then

V (z) =
∫
Ω

ψ(ξ) dξ ∧ dξ̄
ξ − z

is continuous on C and ∂V/∂z = ψ on Ω.

P r o o f o f 1 a n d 1′. If m ∈MA then mz ∈ Ω for otherwise 1
z−mz ∈

A(Ω) and so

1 = m1 = m(z −mz)m
(

1
z −mz

)
= 0 ,

which is a contradiction.

P r o o f o f 2. If mz = ξ ∈ Ω, then

f(z) = f(ξ) + (z − ξ)f(z)− f(ξ)
z − ξ

where f(z)−f(ξ)
z−ξ ∈ H∞(Ω). Hence, mf = f(ξ) = f(πm), ∀f ∈ H∞(Ω).

In the same way 2′ follows.

P r o o f o f 3. Assume that 3 is not true. Then there exist m∈M with
πm = ξ ∈ ∂Ω and g ∈ H∞(Ω) with mg = 0 but |g(z)| ≥ d near ξ in
Ω. Choose χ ∈ D(B(ξ, r)) so that χ ≡ 1 near ξ and |g(z)| ≥ δ > 0 on
Ω ∩B(ξ, r). Then

∂χ

∂z
(z − πm)g

∈ C(Ω)

so by Proposition 1, there is a λ ∈ C(C) with

∂λ

∂z
=

∂χ

∂z
(z − πm)g

.

Define

g1 =
χ

g
− (z − πm)λ , g2 =

1− χ
z − πm

+ λg .

Then ∂g1/∂z = ∂g2/∂z = 0 so g1, g2 ∈ H∞(Ω) and g1g + g2(z − πm) = 1,
which is a contradiction since mg = 0.

Corollary. Suppose f1, . . . , fm−1 ∈ A(Ω) and fm ∈ H∞(Ω) such that∑m
j=1 |fj |2 ≥ δ > 0 on Ω. Then there exist g1, . . . , gm ∈ H∞(Ω) such that∑m
j=1 fjgj = 1.
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3. The case Ω b Cn

Theorem 1. Suppose Ω is a domain in Cn such that

(i) πMA = Ω,
(ii) for every z0 ∈ ∂Ω, there is a ball B(z0, r) such that the analytic

polynomials are dense in A(Ω ∩B(z0, r)).

Then MA ∼= Ω.

P r o o f. Given f ∈ A(Ω), consider the uniform algebra B on MA gener-
ated by f ◦ π and A(Ω). It then follows from [3, Lemma 9.1, p. 93] that B
and A(Ω) have the same Shilov boundary. But f = f ◦ π on ShMA, which
proves the theorem.

R e m a r k 1. If Ω is pseudoconvex with C1-boundary, then by [5,
Lemma 3], (ii) holds true everywhere.

R e m a r k 2. If Ω is pseudoconvex with smooth boundary, then using
the estimates for ∂ from [6] and the Koszul complex one can prove that (i)
holds true (cf. [5]). Therefore, in this case MA ∼= Ω.

R e m a r k 3. Let Ω be strictly pseudoconvex with C3-boundary. Then 2
and 2′ hold (cf. [8, pp. 292 and 350]). Note that, via Remark 2, 1′ holds for
all pseudoconvex sets of type Sδ.

Also, every boundary point is a peak point ([8, 1.14]) so Theorem 2 of
[1] applies, which means that 3 is true in this case.

4. The case Ω b C2. In this section, we consider domains in C2.

Proposition 2. Suppose that Ω has the property that for every ∂-
closed (0, 1)-form t with coefficients in L∞(Ω) (C(Ω)), there is a function
T ∈ L∞(Ω) (C(Ω)) with ∂T = t. Then 1 and 2 (1′ and 2′) hold true.
Furthermore, 3 holds at all peak points for A(Ω).

P r o o f. Let (z0
1 , z

0
2) 6∈ Ω be given. Consider

g1 =
z1 − z0

1

|z1 − z0
1 |2 + |z2 − z0

2 |2
− (z2 − z0

2)λ ,

g2 =
z2 − z0

2

|z1 − z0
1 |2 + |z2 − z0

2 |2
+ (z1 − z0

1)λ

where λ ∈ L∞(Ω) and solves

∂λ = t =
z2 − z0

2

(|z1 − z0
1 |2 + |z2 − z0

2 |2)2
dz1 −

z1 − z0
1

(|z1 − z0
1 |2 + |z2 − z0

2 |2)2
dz2 .

Since ∂t = 0 and since the coefficients of t are uniformly bounded on Ω, λ
exists.
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This means that g1 and g2 are analytic and bounded on Ω. Furthermore,
1 = g1(z1 − z0

1) + g2(z2 − z0
2) so (z0

1 , z
0
2) 6∈ πM .

To prove 2, we prove that Gleason’s problem can be solved. Assume that
πm = (0, 0) ∈ Ω, f ∈ H∞(Ω) and f(0) = 0. We wish to prove that mf = 0.
If p is the Taylor expansion of f around zero of degree three, then f − p
vanishes to order four near zero. Therefore, the ∂-closed (0, 1)-form

t =
(f − p)z2

(|z1|2 + |z2|2)2
dz1 −

(f − p)z1

(|z1|2 + |z2|2)2
dz2

has uniformly bounded coefficients on Ω.
By assumption, there is a function λ ∈ L∞(Ω) so that ∂λ = t. Therefore,

the functions

g1 =
(f − p)z1

|z1|2 + |z2|2
− z2λ , g2 =

(f − p)z2

|z1|2 + |z2|2
+ z1λ

are in H∞(Ω). Furthermore, f − p = z1g1 + z2g2 so f = p + z1g1 + z2g2,
which solves the Gleason problem, gives mf = 0 and completes the proof
of 2.

1′ and 2′ are proved analogously. The proof of 3 is in [1].

R e m a r k 4. Fornæss and Øvrelid [2] proved the Gleason property for
A(Ω) when Ω is real-analytic, and Noell [7] when Ω is of finite type. Thus
2′ holds true in those cases.

5. Balanced H∞-domains. A domain in Cn is called an H∞-domain
if it is its own H∞-envelope of holomorphy. A subset Ω in Cn is said to be
balanced if λΩ ⊂ Ω, ∀λ ∈ C, |λ| ≤ 1.

Let Hm denote the homogeneous polynomials of degree m and

Ho(Cn) = {ϕ ∈ PSH(Cn) : ϕ 6= 0, ϕ(λx) = |λ|ϕ(x), ∀λ ∈ C, ∀x ∈ Cn}
where PSH(Cn) denote the plurisubharmonic functions on Cn. For a domain
in Cn containing 0 we define the homogeneous extremal function

ψΩ = sup{|Q|1/ degQ : Q ∈ HdegQ, |Q| ≤ 1 on Ω} .
Then ψ∗Ω ∈ Ho where ∗ denotes the usual regularization.

Proposition 3. Suppose Ω is a balanced domain. Then every f ∈
H∞(Ω) extends to Ω∗ = {z ∈ Cn : ψ∗Ω < 1} and Ω∗ is an H∞-domain.
Every f ∈ A(Ω∗) can be uniformly approximated on Ω by polynomials.

P r o o f. Let f ∈ H∞(Ω) . We can assume that f is non-constant and
|f | ≤ 1 on Ω. Near zero, we have

f(z) =
∞∑
j=0

( ∑
|α|=j

aαz
α
)
.
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Let z ∈ Ω; then

f(λz) =
∞∑
j=0

∑
|α|=j

(aαzα)λj , |λ| ≤ 1, λ ∈ C .

By Cauchy’s inequality,∣∣∣ ∑
|α|=j

aαz
α
∣∣∣ ≤ sup

|λ|=1

|f(λz)| < 1

so |
∑
|α|=j aαz

α|1/j < 1 on Ω and therefore on Ω∗ by the definition of ψ∗Ω .
Hence, the series

∑∞
j=0

∑
|α|=j aαz

α converges normally in Ω∗ and extends
f to H∞(Ω∗), which proves the first part of the proposition.

Assume now that f ∈ A(Ω∗). Let ε > 0 be given and choose 0 < r < 1
such that supz∈Ω̄ |f(z) − f(rz)| < ε. By the above, supz∈Ω |

∑
aαz

α| ≤ 1,
therefore,

∑p
j=0

∑
|α|=j(aαz

α)rj uniformly convergs on Ω to f(rz). The
proposition is proved.

Theorem 2 (Siciak). Let h ∈ Ho(Cn) and consider D = {z ∈ Cn :
h < 1} where we assume D to be bounded. Then the following conditions
are equivalent.

(i) D is an H∞-domain,
(ii) h = ψ∗D,

(iii) D = (D̂)◦,
(iv) the set N(h) = {a ∈ Cn : h is discontinuous at a} is pluripolar.

Lemma 1. Assume U is a subharmonic function and that the Lebesgue
measure of N(U) = {a ∈ Cn : U discontinuous at a} is zero. Then
{U < 1}

◦
= {U < 1}.

The proof is left to the reader. It is based on the fact that if two sub-
harmonic functions are equal almost everywhere, they are equal.

We now construct two examples.

Example 1. Let (aj) be a sequence of complex numbers contained and
dense in {x ∈ C : |x| = 1}. Define

h(x, y) = eΣ∞j=1αj log |x−ajy|, (x, y) ∈ C2 ,

where (αj)∞j=1 is a sequence of positive numbers with
∑∞
j=1 αj = 1. Then

h ∈ Ho(C2) and

N(h) =
{

(x, y) ∈ C2 : |x| = |y| and
∞∑
j=1

αj log |x− ajy| > −∞
}

so N(h) is a non-pluripolar set of vanishing Lebesgue measure. If we define
D = {(x, y) ∈ C2 : h(x, y) + max(|x|, |y|) < 1} then
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(i) D is pseudoconvex and balanced,
(ii) D

◦
= D by Lemma 1,

(iii) D is not an H∞-domain, by Theorem 2. The H∞-envelope is the
bidisc by Proposition 3.

An example of this nature was given in Siciak [10, Ex. 5.3] (see also
Sibony [9, Prop. 1] where a Hartogs domain Ω is given with properties (i)
and (ii)) but our construction is much more elementary.

Example 2. Let (aj)∞j=1 and (αj)∞j=1 be as in Example 1. Define

W (x, y, z) = eΣ∞j=1αj max(log |x−ajy|,log |z|) + max(|x|, |y|, |z|) ,
(x, y, z) ∈ C3. Then W ∈ Ho(C3) so D = {W < 1} is a balanced, pseudo-
convex set and N(W ) ⊂ {z = 0}, a pluripolar set. Thus

(i)D
◦

= D by Lemma 1,
(ii) D is an H∞-domain by Theorem 2,

(iii) D̂ 6= D since {(x, y, 0) : |x| ≤ 1, |y| ≤ 1} ⊂ D̂ by Example 1.

This gives a counterexample to a problem of Siciak [10, Problem 4.2], who
proved [Th. 4.1] that such an example cannot be found in C2.

R e m a r k 5. Let Ω be a balanced domain in C2. Then 2′ holds true and
MA ∼= {z ∈ Cn : ψ∗Ω < 1}.

R e m a r k 6. Let Ω be a balanced domain in Cn. Then 2′ holds true. By
Example 2, πMA may be strictly larger than {z ∈ Cn : ψ∗Ω < 1}.
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