
ANNALES
POLONICI MATHEMATICI

LVIII.2 (1993)

Positive solutions of nonlinear elliptic systems

by Robert Dalmasso (Grenoble)

Abstract. We study the existence and nonexistence of positive solutions of nonlinear
elliptic systems in an annulus with Dirichlet boundary conditions. In particular, L∞ a
priori bounds are obtained. We also study a general multiple linear eigenvalue problem on
a bounded domain.

1. Introduction. In this paper we investigate the existence and nonex-
istence of positive solutions of the nonlinear elliptic system

(1.1)


−∆uj = fj+1(uj+1), j = 1, . . . ,m− 1, in Ω(a, b),
−∆um = f1(u1) in Ω(a, b),
uj = 0, j = 1, . . . ,m, on ∂Ω(a, b),

where 0 < a < b < ∞, Ω(a, b) denotes the annulus {x ∈ Rn : a < |x| < b}
(n ≥ 2) and m ≥ 2 is an integer. u = (u1, . . . , um) ∈ (C2(Ω(a, b)))m is
a positive solution of (1.1) if the functions uj satisfy (1.1) and uj > 0 on
Ω(a, b) for j = 1, . . . ,m.

When m=2, Ph. Clément, D. G. de Figueiredo and E. Mitidieri [2] con-
sidered the existence of positive solutions in convex domains and
L. A. Peletier and R. C. A. M. van der Vorst [6] studied the case of a
ball. In both cases the method used to prove the existence of a positive
solution consisted of first obtaining a priori estimates on the positive solu-
tions and then applying well-known properties of compact mappings taking
a cone in a Banach space into itself (see D. G. de Figueiredo, P.-L. Lions
and R. D. Nussbaum [3]).

Our first result is the following L∞ bound for positive radial solutions
of problem (1.1).

Theorem 1.1. Let fj , j = 1, . . . ,m, satisfy the following hypotheses:

(H1) fj : [0,∞)→ R is a continuous function,
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(H2) lim infu→∞ fj(u)/u > αj > 0 and α1 . . . αm > µm1 where µ1 denotes
the principal eigenvalue of −∆ on Ω(a, b) with Dirichlet boundary
conditions.

Then there exists M > 0 such that

‖uj‖∞ ≤M , j = 1, . . . ,m,

for all positive radial solutions (u1, . . . , um) ∈ (C2(Ω(a, b)))m of (1.1).

Under some additional assumptions on the functions fj , we can use The-
orem 1.1 to establish the existence of a positive radial solution of problem
(1.1).

Theorem 1.2. Let fj , j = 1, . . . ,m, satisfy (H1), (H2). Assume more-
over that

(H3) fj(u) ≥ 0 for u > 0, j = 1, . . . ,m,
(H4) lim supu→0 fj(u)/u < βj for j = 1, . . . ,m and β1 . . . βm < µm1 .

Then problem (1.1) has at least one positive radial solution (u1, . . . , um) ∈
(C2(Ω(a, b)))m.

We have the following nonexistence result.

Theorem 1.3. Assume that one of the following conditions is satisfied :

(i)fj(s) > γjs for s > 0, j = 1, . . . ,m where γ1 . . . γm ≥ µm1 ;
(ii)fj(s) < δjs for s > 0, j = 1, . . . ,m where δj ≥ 0 for j = 1, . . . ,m

and δ1 . . . δm ≤ µm1 .

Then problem (1.1) has no positive solution (whether radial or not)
(u1, . . . , um) ∈ (C2(Ω(a, b)))m.

As an application we consider the problem

(1.2)

−∆uj = %j+1uj+1 + u
pj+1
j+1 , j = 1, . . . ,m− 1, in Ω(a, b),

−∆um = %1u1 + up11 in Ω(a, b),
uj = 0, j = 1, . . . ,m, on ∂Ω(a, b),

where %j ≥ 0 and pj > 1 for j = 1, . . . ,m. For problem (1.2) we have the
following corollary.

Corollary 1.1. (i) Assume that %1 . . . %m < µm1 . Then problem (1.2)
has at least one positive radial solution (u1, . . . , um) ∈ (C2(Ω(a, b)))m.

(ii) Assume that %1 . . . %m ≥ µm1 . Then problem (1.2) has no positive
solution (whether radial or not) (u1, . . . , um) ∈ (C2(Ω(a, b)))m.

R e m a r k 1.1. Problem (1.2) is an example of a perturbed system (see
Theorem 2.1 in Section 2).
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When we are interested in positive radial solutions, the problem under
consideration reduces to the one-dimensional boundary value problem

(1.3)


−∆uj = fj+1(uj+1), j = 1, . . . ,m− 1, in (a, b),
−∆um = f1(u1) in (a, b),
uj(a) = uj(b) = 0, j = 1, . . . ,m,

where ∆ denotes the polar form of the Laplacian, i.e.

∆ = t1−n
d

dt

(
tn−1 d

dt

)
.

Our paper is organized as follows. In Section 2 we study a general mul-
tiple linear eigenvalue problem for systems. Theorems 1.1, 1.2 and 1.3 are
proved in Sections 3, 4 and 5 respectively. Finally, in Section 6 we give a
qualitative result for positive solutions (whether radial or not) of (1.1) when
the functions fj are nondecreasing.

2. A multiple linear eigenvalue problem for systems. In this sec-
tion we consider the linear eigenvalue problem

(2.1)


−∆uj = λj+1uj+1, j = 1, . . . ,m− 1, in Ω,
−∆um = λ1u1 in Ω,
uj > 0, j = 1, . . . ,m, in Ω,
uj = 0, j = 1, . . . ,m, on ∂Ω,

where Ω is a bounded domain in Rn (n ≥ 1) with smooth boundary ∂Ω and
m ≥ 2 is an integer. We denote by µ1 the principal eigenvalue of the Lapla-
cian on Ω with Dirichlet boundary conditions and ϕ1 is the corresponding
(positive) eigenfunction. We have the following theorem.

Theorem 2.1. Problem (2.1) has a solution if and only if

λj > 0, j = 1, . . . ,m, and λ1 . . . λm = µm1 .

The solution is given by uj = cjϕ1 where c1 > 0 is an arbitrary constant
and cj = c1(λ2 . . . λj)−1(λ1 . . . λm)(j−1)/m for j = 2, . . . ,m.

P r o o f. We first note that λj > 0 for j = 1, . . . ,m. Indeed assume that
there exists j ∈ {1, . . . ,m} such that λj ≤ 0. We deduce from (2.1) that
∆uj−1 ≥ 0 on Ω (where uj−1 = um if j = 1), hence uj−1 ≤ 0 on Ω by the
Maximum Principle and we reach a contradiction.

Lemma 2.1. Let a1 > 0 be arbitrary and define

aj = a1λ2 . . . λj(λ1 . . . λm)(1−j)/m for j = 2, . . . ,m.

Then, setting vj = ajuj , we have

(2.2)


−∆vj = µ1vj+1, j = 1, . . . ,m− 1, in Ω,
−∆vm = µ1v1 in Ω,
vj = 0, j = 1, . . . ,m, on ∂Ω.
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Moreover , µm1 = λ1 . . . λm.

P r o o f. Using (2.1) we easily get
−∆vj = αvj+1, j = 1, . . . ,m− 1, in Ω,
−∆vm = αv1 in Ω,
vj = 0, j = 1, . . . ,m, on ∂Ω,

where α = (λ1 . . . λm)1/m, from which we deduce that

(2.3)
{
−∆(v1 + . . .+ vm) = α(v1 + . . .+ vm) in Ω,
v1 + . . .+ vm = 0, on ∂Ω.

We have v1 + . . .+vm > 0 on Ω. Since the only positive solution of problem
(2.3) is Cϕ1 with the eigenvalue µ1 where C > 0 is a constant, we get
v1 + . . . + vm = Cϕ1 with C > 0 and α = µ1. The proof of the lemma is
complete.

To conclude the proof of the theorem we shall prove that

(2.4) v1 = . . . = vm .

We prove (2.4) by induction.
Assume that m = 2. Then from Lemma 2.1 we get

(2.5)
{
∆(v1 − v2) = µ1(v1 − v2) in Ω,
v1 − v2 = 0 on ∂Ω.

Multiplying the differential equation of (2.5) by v1−v2 and integrating over
Ω we obtain

−
∫
Ω

|∇(v1 − v2)|2 dx = µ1

∫
Ω

(v1 − v2)2 dx ,

which implies that v1 = v2.
Now we suppose that (2.4) holds for 2 ≤ m ≤ r− 1 (r ≥ 3) and we must

prove it for m = r.
If r = 2p ≥ 4, then from Lemma 2.1 we get

(−1)p∆pv1 = µp1vp+1 and (−1)p∆pvp+1 = µp1v1 on Ω ,

from which we deduce

(2.6) (−1)p∆p(v1 − vp+1) = −µp1(v1 − vp+1) .

Multiplying (2.6) by v1 − vp+1 and integrating over Ω yields

(2.7) (−1)p
∫
Ω

(v1 − vp+1)∆p(v1 − vp+1) dx = −µp1
∫
Ω

(v1 − vp+1)2 dx .

The left hand side in (2.7) is equal to∫
Ω

(∆k(v1 − v2k+1))2 dx if p = 2k ,
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and to ∫
Ω

|∇∆k(v1 − v2k+2)|2 dx if p = 2k + 1 .

In each case we get v1 = vp+1. Then using the induction hypothesis we
obtain v1 = . . . = v2p.

If r = 2p+ 1, we write

(2.8)
∑

1≤j<k≤2p+1

∫
Ω

(vj − vk)2 dx =
∑

1≤j<k≤2p+1

∫
Ω

(v2
j + v2

k − 2vjvk) dx

= 2p
2p+1∑
j=1

∫
Ω

v2
j dx− 2

∑
1≤j<k≤2p+1

∫
Ω

vjvk dx .

Now for each i ∈ {1, . . . , 2p+ 1} we define

Ai =
{

(j, k) : 1 ≤ j < k ≤ 2p+ 1 and
∫
Ω

v2
i dx =

∫
Ω

vjvk dx
}
,

Bi =
{
h ∈ {1, . . . , 2p+ 1} :

∫
Ω

v2
i dx =

∫
Ω

v2
h dx

}
.

Let s ∈ {1, . . . , 2p+ 1} be such that

{1, . . . , 2p+ 1} =
s⋃

a=1

Bia and Bia ∩Bib = ∅ for a 6= b .

We shall show that

(2.9) #Aia = #Bia · p for a = 1, . . . , s.

Then, since
∑

1≤j<k≤2p+1 1 = p(2p+1) we deduce from (2.8) and (2.9) that∑
1≤j<k≤2p+1

∫
Ω

(vj − vk)2 dx = 0

and hence v1 = . . . = v2p+1.
It remains to prove (2.9). Using the equations (2.2) and integrations over

Ω we obtain∫
Ω

v2
p+1 dx =

∫
Ω

vpvp+2 dx = . . . =
∫
Ω

v1v2p+1 dx ,∫
Ω

v2
j dx =

∫
Ω

vj−1vj+1 dx = . . . =
∫
Ω

v1v2j−1 dx

=
∫
Ω

v2p+1v2j dx = . . . =
∫
Ω

vp+jvp+j+1 dx ,

for 1 ≤ j ≤ p where v0 = v2p+1, and
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v2
j dx =

∫
Ω

vj−1vj+1 dx = . . . =
∫
Ω

v2j−2p−1v2p+1 dx

=
∫
Ω

v2j−2p−2v1 dx = . . . =
∫
Ω

vj−pvj−p−1 dx

for p+ 2 ≤ j ≤ 2p+ 1 where v2p+2 = v1. Thus we immediately get (2.9).

R e m a r k 2.1. When m = 2 Theorem 2.1 was proved by R. C. A. M. van
der Vorst [9].

As an application we consider the eigenvalue problem for the polyhar-
monic operator:

(2.10)
{

(−1)m∆mu = λu in Ω,
u = ∆u = . . . = ∆m−1u = 0 on ∂Ω.

Then we have the following corollary.

Corollary 2.1. Problem (2.10) has a solution u > 0 in Ω if and only
if λ = µm1 . The solution is given by u = Cϕ1 where C > 0.

P r o o f. Clearly λ > 0 if u is a nontrivial solution of (2.10). Now we note
that problem (2.10) is equivalent to

(2.11)


−∆uj = uj+1, j = 1, . . . ,m− 1, in Ω,
−∆um = λu1 in Ω,
uj = 0, j = 1, . . . ,m, on ∂Ω,

where u = u1. Then the Maximum Principle implies that um > 0 in Ω and
by an induction argument we get uj > 0 in Ω for j = 2, . . . ,m. Therefore
we can apply Theorem 2.1.

R e m a r k 2.2. Let (λ, u) be a solution of (2.10) with u 6≡ 0. As before
we write (2.10) as (2.11) with u = u1. Then, applying Lemma 3.9 of [9] we
get

(2.12) mλ
∫
Ω

u2
1 dx =

1
2

∫
∂Ω

( ∑
1≤j≤m

∇uj · ∇um−j+1

)
(ν · x) ds

where ν is the outward normal on ∂Ω. Then after normalizing u so that
‖u‖ = 1 in L2(Ω) we obtain

λ =
(−1)m−1

2m

∫
∂Ω

( ∑
1≤j≤m

∇∆j−1u · ∇∆m−ju
)

(ν · x) ds .

When m = 1, this relation was found by F. Rellich [7].
Now if u > 0 in Ω, by Theorem 2.1 we have uj = cjϕ1 where c1 > 0

is an arbitrary constant and cj = c1λ
(j−1)/m for j = 2, . . . ,m. We deduce
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from (2.12) that

µ1 = λ1/m =
1
2

∫
∂Ω
|∇u|2(ν · x) ds∫
Ω
u2 dx

.

3. Proof of Theorem 1.1. We shall prove that there exists M > 0
such that

(3.1) ‖uj‖∞ ≤M , j = 1, . . . ,m,

for all positive solutions (u1, . . . , um) ∈ (C2([a, b]))m of (1.3).
Let ϕ1 ∈ C2([a, b]) be a positive eigenfunction associated with µ1. By

(H2), there exist Kj > 0 for j = 1, . . . ,m such that

fj(u) ≥ αju−Kj for u ≥ 0 and j = 1, . . . ,m.

Now let (u1, . . . , um) ∈ (C2([a, b]))m be a positive solution of (1.3). Then,
C denoting a generic positive constant, we have

(3.2) µm1

b∫
a

tn−1ϕ1u1 dt = −µm−1
1

b∫
a

tn−1u1∆ϕ1 dt

= −µm−1
1

b∫
a

tn−1ϕ1∆u1 dt = µm−1
1

b∫
a

tn−1ϕ1f2(u2) dt

≥ α2µ
m−1
1

b∫
a

tn−1ϕ1u2 dt− C ≥ . . .

≥ α2 . . . αjµ
m−j
1

b∫
a

tn−1ϕ1fj+1(uj+1) dt− C

≥ α2 . . . αj+1µ
m−j
1

b∫
a

tn−1ϕ1uj+1 dt− C

for j = 1, . . . ,m where fm+1 = f1, αm+1 = α1 and um+1 = u1. From (3.2)
we deduce that

(3.3)
b∫
a

ϕ1uj dt ≤ C and
b∫
a

ϕ1|fj(uj)| dt ≤ C

for j = 1, . . . ,m where C is again a generic positive constant. Now we have

(3.4) uj(t) =
b∫
a

G(t, s)fj+1(uj+1(s)) ds , j = 1, . . . ,m,

for t ∈ [a, b], where G(t, s) denotes the Green’s function of the operator −∆
on (a, b) with Dirichlet boundary conditions. We easily show that



208 R. Dalmasso

G(t, s) =
s

(n− 2)tn−2(bn−2 − an−2)

×
{

(sn−2 − an−2)(bn−2 − tn−2), a ≤ s ≤ t ≤ b,
(tn−2 − an−2)(bn−2 − sn−2), a ≤ t ≤ s ≤ b,

if n ≥ 3, and

G(t, s) =
s

ln b− ln a

{
(ln b− ln t)(ln s− ln a), a ≤ s ≤ t ≤ b,
(ln t− ln a)(ln b− ln s), a ≤ t ≤ s ≤ b,

if n = 2. Define

%(t) = (t− a)(b− t) for a ≤ t ≤ b .
Then we have

(3.5) 0 ≤ G(t, s) ≤ c1%(s) for a ≤ t, s ≤ b
and

(3.6) c2% ≤ ϕ1 ≤ c3% on [a, b]

for some positive constants cj , j = 1, 2, 3. From (3.3)–(3.6) we easily get
uj(t) ≤ C for t ∈ [a, b] and j = 1, . . . ,m where C is a positive constant, and
(3.1) is proved.

4. Proof of Theorem 1.2.
We shall prove that problem (1.3) has at least one positive solution

(u1, . . . , um) ∈ (C2([a, b]))m. The proof makes use of a fixed point theo-
rem originally due to Krasnosel’skĭı [5] and Benjamin [1]. Here we use the
following modified version.

Proposition 4.1 ([3], p. 56). Let C be a cone in a Banach space X and
Φ : C → C a compact map such that Φ(0) = 0. Assume that there exist
numbers 0 < r < R such that

(i) u 6= θΦ(u) for θ ∈ [0, 1] and u ∈ C such that ‖u‖ = r,
(ii) there exists a compact map F : BR × [0,∞) → C (where B% =

{u ∈ C : ‖u‖ < %}) such that F (u, 0) = Φ(u) for ‖u‖ = R, F (u, x) 6= u
for ‖u|| = R and 0 ≤ x < ∞ and F (u, x) = u has no solution u ∈ BR for
x ≥ x0.

Then if U = {u ∈ C : r < ‖u‖ < R}, one has

iC(Φ,BR) = 0, iC(Φ,Br) = 1, iC(Φ,U) = −1,

where iC(Φ,W ) denotes the fixed point index of Φ on W . In particular , Φ
has a fixed point in U .

Now let X denote the Banach space (C([a, b]))m endowed with the norm

‖u‖ = max
1≤j≤m

(‖uj‖∞)
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where u = (u1, . . . , um). Define the cone

C = {u ∈ X : u ≥ 0}
where u = (u1, . . . , um) ≥ 0 means that uj ≥ 0 for j = 1, . . . ,m. For
(u, x) ∈ C × [0,∞) we define

F (u, x)(t) = (F2(u, x)(t), . . . , Fm(u, x)(t), F1(u, x)(t)) for t ∈ [a, b]

where

Fj(u, x)(t) =
b∫
a

G(t, s)fj(uj(s) + x) ds ,

and
Φ(u) = F (u, 0) .

We shall show that the hypotheses of Proposition 4.1 are satisfied. By (H3)
and (3.5), F maps C × [0,∞) into C. Since G is continuous, it is well-
known that F is compact. (H1), (H3) and (H4) imply that fj(0) = 0 for
j = 1, . . . ,m, hence Φ(0) = 0.

By (H4) we can choose r > 0 such that fj(s) ≤ βjs for 0 ≤ s ≤ r and
j = 1, . . . ,m. Suppose that there exist θ ∈ [0, 1] and u ∈ C with ‖u‖ = r
such that u = θΦ(u). Then

−∆uj = θfj+1(uj+1), j = 1, . . . ,m− 1, in (a, b),
−∆um = θf1(u1), in (a, b),
uj(a) = uj(b) = 0, j = 1, . . . ,m.

By the Maximum Principle, for each j ∈ {1, . . . ,m}, uj > 0 on (a, b) or
uj ≡ 0 on [a, b]. Now, if there exists i ∈ {1, . . . ,m} such that ui ≡ 0 on
[a, b], we easily show that uj ≡ 0 on [a, b] for j = 1, . . . ,m. Thus uj > 0 on
(a, b) for j = 1, . . . ,m. With the notations of Section 3 we have

µm1

b∫
a

tn−1ϕ1u1 dt = −µm−1
1

b∫
a

tn−1u1∆ϕ1 dt

= −µm−1
1

b∫
a

tn−1ϕ1∆u1 dt = µm−1
1 θ

b∫
a

tn−1ϕ1f2(u2) dt

≤ β2µ
m−1
1

b∫
a

tn−1ϕ1u2 dt ≤ . . . ≤ β1 . . . βm

b∫
a

tn−1ϕ1u1 dt

and we reach a contradiction because the integrals are nonzero. Thus con-
dition (i) of Proposition 4.1 is satisfied.

By (H2), there exists x0 > 0 such that

(4.1) fj(s+ x) ≥ αj(s+ x) ≥ αjs
for s ≥ 0, x ≥ x0 > 0 and j = 1, . . . ,m.



210 R. Dalmasso

We shall show that

(4.2) F (u, x) 6= u for all u ∈ C and x ≥ x0 .

Indeed, suppose that there exist u ∈ C and x ≥ x0 such that F (u, x) = u.
Then

−∆uj(t) = fj+1(uj+1(t) + x), j = 1, . . . ,m− 1, t ∈ (a, b),
−∆um(t) = f1(u1(t) + x), t ∈ (a, b),
uj(a) = uj(b) = 0, j = 1, . . . ,m.

If u ≡ 0 then fj(x) = 0 for j = 1, . . . ,m, a contradiction to (4.1). Thus
u 6≡ 0. Therefore uj > 0 in (a, b) for j = 1, . . . ,m as before. Now with the
notations of the proof of (3.1) we have

µm1

b∫
a

tn−1ϕ1u1 dt = −µm−1
1

b∫
a

tn−1u1∆ϕ1 dt

= −µm−1
1

b∫
a

tn−1ϕ1∆u1 dt = µm−1
1

b∫
a

tn−1ϕ1f2(u2 + x) dt

≥ α2µ
m−1
1

b∫
a

tn−1ϕ1u2 dt ≥ . . . ≥ α1 . . . αm

b∫
a

tn−1ϕ1u1 dt

and this yields a contradiction because the integrals are nonzero. Thus (4.2)
holds and the third condition of (ii) is satisfied.

Now we note that the constant in (3.1) can be chosen independently of
the parameter x ∈ [0, x0] for each fixed x0 ∈ (0,∞) if we consider positive
solutions of (1.3) for the family of nonlinearities fj,x(t) = fj(t + x), t ≥ 0.
Thus we can find a constant R > r such that

(4.3) F (u, x) 6= u for all x ∈ [0, x0] and u ∈ C with ‖u‖ = R .

Therefore (4.2) and (4.3) prove the second condition of (ii).
Thus we may apply Proposition 4.1 to conclude that Φ has a nontrivial

fixed point u ∈ C. Using the same arguments as before we can show that
any nontrivial fixed point of Φ in C yields a positive solution of (1.3) in
(C2([a, b]))m. The proof of the theorem is complete.

5. Proof of Theorem 1.3. Since the proof makes use of similar argu-
ments we only prove (i). Let (u1, . . . , um) ∈ (C2(Ω(a, b)))m be a positive
solution of (1.1), whether radial or not. With the notations of Section 3 we
show as before that

µm1
∫
Ω

ϕ1u1 dx = −µm−1
1

∫
Ω

u1∆ϕ1 dx
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= −µm−1
1

∫
Ω

ϕ1∆u1 dx = µm−1
1

∫
Ω

ϕ1f2(u2) dx

> γ2µ
m−1
1

∫
Ω

ϕ1u2 dx > . . . > γ1 . . . γm
∫
Ω

ϕ1u1 dx

and this yields a contradiction because the integrals are nonzero.

6. A qualitative result. In this section we give a qualitative result for
positive solutions (whether radial or not) (u1, . . . , um) ∈ (C2(Ω(a, b)))m of
the problem

(6.1)


−∆uj = fj+1(uj+1), j = 1, . . . ,m− 1, in Ω(a, b),
−∆um = f1(u1) in Ω(a, b),
uj = 0 on |x| = b for j = 1, . . . ,m,

where the functions fj satisfy

(H5) fj ∈ C1 and f ′j ≥ 0 for j = 1, . . . ,m.

The following theorem is an extension to systems of a theorem obtained
by B. Gidas, W.-M. Ni and L. Nirenberg (see [4], Theorem 2, p. 210).

Theorem 6.1. Assume (H5). Let (u1, . . . , um) ∈ (C2(Ω(a, b)))m be a
positive solution of (6.1). Then

x · ∇uj(x) < 0 for
a+ b

2
≤ |x| < b and j = 1, . . . ,m .

P r o o f. The proof makes use of a lemma proved by W. C. Troy ([8],
Lemma 4.3, p. 408). We note that, with the notations of Lemma 4.3 in [8],
the condition ui ≡ 0 on ∂Ω for i = 1, . . . , n is not needed: we only need
ui ≡ 0 on ∂Ω ∩ {x ∈ Rn : x1 > λ1} for i = 1, . . . , n. Then the proof is the
same as in the scalar case (see [4]).

R e m a r k 6.1. Note that, as in the scalar case, no condition is imposed
on the boundary |x| = a and the result holds without any sign condition on
the fj .
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