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Abstract. The purpose of this paper is to study the periodic boundary value problem
−u′′(t) = f(t, u(t), u′(t)), u(0) = u(2π), u′(0) = u′(2π) when f satisfies the Carathéodory
conditions. We show that a generalized upper and lower solution method is still valid, and
develop a monotone iterative technique for finding minimal and maximal solutions.

1. Introduction. In this paper we consider the following periodic bound-
ary value problem (PBVP for short) of second order:

(1.1)

(1.2)
(P)

{
−u′′(t) = f(t, u(t), u′(t)),
u(0) = u(2π), u′(0) = u′(2π).

As is well known, the method of upper and lower solutions has been
successfully applied to study this PBVP when f is a continuous function
(see [2–6, 12] and the monograph [9] and the references therein).

Here, we generalize the method of upper and lower solutions to the case
when f is a Carathéodory function. We point out that for f continuous the
classical arguments of [2–6, 9, 12] are no longer valid since the solutions are
in the Sobolev space W 2,1(I), I = [0, 2π]. Thus, if u is a solution, u′′ is not
necessarily continuous on I but only u′′ ∈ L1(I).

Our ideas are in the spirit of [7, 10] where f(t, u(t), u′(t)) = f(t, u(t)).
There, when u is bounded we deduce that u′′ is bounded, and so is u′. In our
situation, we have to find a bound for the derivative of a solution since the
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Carathéodory function.
Research of the second and third authors partially supported by DGCYT, projects

PS88-0054 and PB91-0793, and by Xunta de Galicia, project XUGA 20701A90.



222 M.-X. Wang et al.

derivative of the modified problem relative to (P) may be unbounded. To this
purpose we prove a new result (Theorem 1). Thus, we improve the results
of [8] where we require f to be locally Lipschitzian or locally equicontinuous
in some variables. The proof of some known results are included for the
convenience of the reader: For instance, Lemma 4 is taken from [10]. Also
we note that part (c) of Lemma 1 is proved in [4] and Theorem 2 is related
to the results of Adje in [1] but our proof is simpler using a convenient
modified problem.

When v and w are (generalized) lower and upper solutions relative to
(P) and v ≤ w, we denote by S[v, w] the set of solutions of (P) in the
sector [v, w] = {u ∈ W 2,1(I) : v(t) ≤ u(t) ≤ w(t) for t ∈ I} (see [7, 10]).
We generalize the monotone method [9] to obtain minimal and maximal
solutions as limits of monotone iterates.

2. The method of upper and lower solutions. We shall suppose
that f : I × R2 → R, I = [0, 2π], is a Carathéodory function, that is:

(i) for a.e. t ∈ I, the function (u, s) ∈ R2 → f(t, u, s) ∈ R is continuous,
(ii) for every (u, s) ∈ R2, the function t ∈ I → f(t, u, s) is measurable,
(iii) for every R > 0, there exists a real-valued function h(t) = hR(t) ∈

L1(I) such that

(2.1) |f(t, u, s)| ≤ h(t)

for a.e. t ∈ I and every (u, s) ∈ R2 satisfying |u| ≤ R, |s| ≤ R.

A function u ∈ W 2,1(I) is a solution of (P) if (1.1) holds for a.e. t ∈ I,
and u satisfies (1.2). When f is continuous, any solution of (P) is a classical
solution, that is, a C2-solution. If, in addition, f is 2π-periodic in t, then
any solution can be extended by periodicity to R, and then it is a periodic
solution of (1.1).

Let us say that a function v : I → R is a lower solution of (P) if
v ∈W 2,1(I),

(2.2) −v′′(t) ≤ f(t, v(t), v′(t)) for a.e. t ∈ I
and

(2.3) v(0) = v(2π), v′(0) ≥ v′(2π) .

Similarly, w : I → R is an upper solution of (P) if w ∈W 2,1(I),

(2.4) −w′′(t) ≥ f(t, w(t), w′(t)) for a.e. t ∈ I
and

(2.5) w(0) = w(2π), w′(0) ≤ w′(2π) .

Throughout we shall suppose that v ≤ w on I. We shall consider the
following condition:
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(H1) There exists g : R+ → R+ continuous such that

|f(t, u, s)| ≤ g(|s|)
for a.e. t ∈ I with v(t) ≤ u ≤ w(t), and s ∈ R, satisfying

(2.6)
∞∫
λ

s

g(s) + C
ds =∞ ∀λ > 0 and ∀C > 0 .

Note that the usual Nagumo condition
∫∞
λ

(s/g(s)) ds =∞ implies (2.6)
when either lim sups→∞ g(s) <∞ or lim infs→∞ g(s) > 0.

Now, we give a priori estimates for the derivative of solutions of (P).

Lemma 1. Let 0 ≤ t1 < t2 ≤ 2π, u ∈ W 2,1([t1, t2]) and assume that
v ≤ u ≤ w on [t1, t2] and (1.1) is satisfied for a.e. t ∈ [t1, t2]. If (H1) holds,
then there exists a positive constant N which depends only on v, w, g and a
constant C, such that :

(a) u′(t1) ≤ C or u′(t2) ≤ C implies u′(t) ≤ N on [t1, t2].
(b) u′(t1) ≥ C or u′(t2) ≥ C implies u′(t) ≥ −N on [t1, t2].
(c) u(t1)− u(t2) = u′(t1)− u′(t2) = 0 implies |u′(t)| ≤ N on [t1, t2].

P r o o f. (a) Suppose that u′(t1) ≤ C and that

(2.7) ∀n ∈ N, ∃Tn ∈ [t1, t2] such that u′(Tn) = n .

Let n0 ∈ N be such that
n0∫
|C|

s

g(s)
ds > max

t∈I
w(t)−min

t∈I
v(t) .

By (2.7) there exists t ∈ [t1, Tn0 ] such that u′(t) = |C| and 0 ≤ |C| ≤
u′(t) ≤ n0 for all t ∈ [t, Tn0 ]. In this interval we obtain

|−u′′(t)| = |f(t, u(t), u′(t))| ≤ g(|u′(t)|)
and

u′′u′

g(u′)
≤ |−u

′′|u′

g(|u′|)
≤ u′ .

Thus,
Tn0∫̄
t

u′(t)u′′(t)
g(u′(t))

dt ≤
Tn0∫̄
t

u′(t) dt = u(Tn0)− u(t)

≤ w(Tn0)− v(t) ≤ max
t∈I

w(t)−min
t∈I

v(t) .

On the other hand,
Tn0∫̄
t

u′(t)u′′(t)
g(u′(t))

dt =
n0∫
|C|

s

g(s)
ds > max

t∈I
w(t)−min

t∈I
v(t) .
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As a consequence, there exists N > 0 such that u′(t) ≤ N on [t1, t2].
If u′(t2) ≤ C and the assertion of (a) is not satisfied, then we deduce

that property (2.7) holds.
Let n1 ∈ N be such that

n1∫
|C|

s

g(s)
ds > max

t∈I
w(t)−min

t∈I
v(t) .

By (2.7) there exists T ∈ [Tn1 , t2] such that u′(T ) = |C| and 0 ≤ |C| ≤
u′(t) ≤ n1 for all t ∈ [Tn1 , T ]. Thus,

− u
′′u′

g(u′)
≤ |−u

′′|u′

g(|u′|)
≤ u′ on [Tn1 , T ]

and

−
T∫

Tn1

u′(t)u′′(t)
g(u′(t))

dt ≤
T∫

Tn1

u′(t) dt ≤ max
t∈I

w(t)−min
t∈I

v(t) .

On the other hand,

−
T∫

Tn1

u′(t)u′′(t)
g(u′(t))

dt = −
|C|∫
n1

s

g(s)
ds =

n1∫
|C|

s

g(s)
ds > max

t∈I
w(t)−min

t∈I
v(t) .

Therefore there exists N > 0 such that u′(t) ≤ N on [t1, t2].
Analogously we prove (b). The proof of (c) is given in Lemma 3.2

of [4].

For any u ∈ X = C1(I), we define

p(t, u) =

 v(t), u < v(t),
u, v(t) ≤ u ≤ w(t),
w(t), u > w(t).

We obtain the following series of results:

Lemma 2. For u ∈ X, the following two properties hold :

(a) d
dtp(t, u(t)) exists for a.e. t ∈ I.

(b) If u, um ∈ X and um
X−→ u, then{

d

dt
p(t, um(t))

}
→ d

dt
p(t, u(t)) for a.e. t ∈ I .

P r o o f. Note that if u ∈ X then u+ = max {u, 0} and u− = max {−u, 0}
are absolutely continuous. We rewrite p(t, u) = [u−v(t)]−− [u−w(t)]+ +u.
Because u, v, w ∈ X, it is enough to prove that if u, um ∈ X and um

X−→ u,
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then {
d

dt
p(t, u±m(t))

}
→ d

dt
p(t, u±(t)) for a.e. t ∈ I .

Since d
dtu

+
m(t), d

dtu
+(t) exist for a.e. t ∈ I, suppose that t0 ∈ I is such

that d
dtu

+
m(t0) and d

dtu
+(t0) exist for all m = 1, 2, . . .

If u(t0) > 0, then u(t0) = u+(t0) > 0. Therefore d
dtu

+(t0) = d
dtu(t0) and

there exists M ∈ N such that um(t0) = u+
m(t0) > 0 for all m ≥M . Thus

d

dt
u+
m(t0) =

d

dt
um(t0)→ d

dt
u(t0) .

If u(t0) < 0, then there exists M > 0 such that um(t0) < 0 for all
m ≥ M . Therefore um(t) < 0 on (t0 − δm, t0 + δm) for some δm > 0 and
then u+

m(t) = 0 on (t0 − δm, t0 + δm). Hence d
dtu

+
m(t0) = d

dtu
+(t0) = 0 and

then obviously
d

dt
u+
m(t0)→ d

dt
u+(t0) as m→∞ .

If u(t0) = 0, then u+(t0) = 0. Since d
dtu

+(t0) exists, we have d
dtu

+(t0)
= 0. It is easy to prove that d

dtu(t0) = 0.
Because d

dtu
+
m(t0) exists, we find that

d

dt
u+
m(t0) =

{
u′m(t0), um(t0) > 0,
0, um(t0) ≤ 0.

Therefore ∣∣∣∣ ddtu+
m(t0)

∣∣∣∣ ≤ ∣∣∣∣ ddtum(t0)
∣∣∣∣→ ∣∣∣∣ ddtu(t0)

∣∣∣∣ = 0 =
d

dt
u+(t0) .

Similarly, we can prove the conclusions about u−(t), and thus the proof
of Lemma 2 is complete.

Now, consider the following modified problem:

(2.8)
{
−u′′ + u = f∗(t, u, u′) + p(t, u),
u(0) = u(2π), u′(0) = u′(2π),

where f∗(t, u(t), u′(t)) = f(t, p(t, u(t)), ddtp(t, u(t))).
Since u ∈ X, d

dtp(t, u(t)) exists for a.e. t ∈ I. If t0 ∈ I is such that
d
dtp(t0, u(t0)) does not exist, then it is easy to prove that the left and right
derivatives of p(t, u(t)) at t0 must exist and both values depend only on
the X-norms of u, v and w. Therefore we can complement the values of
d
dtp(t, u(t)) in such a way that it is bounded and the bound depends only
on the X-norm of u, v and w. For any z ∈ X, the linear problem

(2.9)
{
−u′′ + u = f∗(t, z(t), z′(t)) + p(t, z(t)) ≡ σ(t),
u(0) = u(2π), u′(0) = u′(2π),
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has a unique solution u given by the formula

(2.10) u(t) = C1e
t + C2e

−t − et

2

t∫
0

σ(s)e−s ds+
e−t

2

t∫
0

σ(s)es ds

where

C1 =
1

2(e2π − 1)

2π∫
0

σ(s)e2π−s ds ,

C2 =
1

2(e2π − 1)

2π∫
0

σ(s)es ds .

Note that σ(t) = f∗(t, z(t), z′(t)) + p(t, z(t)) is measurable, |p(t, z(t))| ≤
R and

∣∣ d
dtp(t, z(t))

∣∣ ≤ R, which implies that |f∗(t, z(t), z′(t))| ≤ h(t) ∈ L1(I)
and σ ∈ L1(I).

From (2.10) and the formula

(2.11) u′(t) = C1e
t − C2e

−t − et

2

t∫
0

σ(s)e−s ds+
e−t

2

t∫
0

σ(s)es ds

it is clear that u ∈ X.
Define the operator T : X → X, where T (z) = u, with u defined by

(2.10). For this operator we obtain the following result

Lemma 3. T : X → X is compact.

P r o o f. Let zm∈X, m ∈ N, zm
X−→ z, T (zm) = um, T (z) = u. We have

‖zm‖X ≤ M for some M > 0. Then p(t, zm(t)) → p(t, z(t)) for a.e. t ∈ I
and |p(t, zm(t))| ≤ M ,

∣∣ d
dtp(t, zm(t))

∣∣ ≤ N for a.e. t ∈ I and for some N
depending only on M , v and w.

Now, |f∗(t, z(t), z′(t))| ≤ h(t) ∈ L1(I) follows from (2.1). By the hy-
pothesis on f and Lemma 2 we know that f∗(t, zm(t), z′m(t)) converges to
f∗(t, z(t), z′(t)) in measure. Hence, by the Lebesgue dominated convergence
theorem,

lim
m→∞

t∫
0

σm(s)e±s ds =
t∫

0

σ(s)e±s ds

where σm(t) = f∗(t, zm(t), z′m(t)) + p(t, zm(t)).
By (2.10) and (2.11) we have limm→∞(um(t), u′m(t)) = (u(t), u′(t)) for

every t ∈ I. Because |σm(s)| ≤ h(s) + |v(s)| + |w(s)| ∈ L1(I), the se-
quence {gm(t)} = {

∫ t
0
σm(s)e±s ds} is equicontinuous, and so are {um(t)}

and {u′m(t)}.
It is obvious that {um(t), u′m(t)} is uniformly bounded. Therefore, by

the Ascoli theorem um
X−→ u. Hence T is continuous.
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Similarly, for any bounded set B ⊂ X, let B1 = {u : u = T (z) for some
z ∈ B} and B2 = {u′ : u ∈ B1}. Then B1 and B2 are equicontinuous and
uniformly bounded. Thus, there exist subsequences {um} = {Tzm} ⊂ B1

and {u′m} ⊂ B2 such that um → u and u′m → u uniformly on I. Using (2.10)
and (2.11) it is easy to prove that u(t) = u′(t). In consequence, um

X−→ u,
and this shows that T is compact.

Lemma 4. Let y ∈ W 2,1(I) and suppose that there exists M ∈ L1(I)
such that M(t) > 0 for a.e. t ∈ I and y′′(t) ≥ M(t)y(t) for a.e. t ∈ I,
y(0) = y(2π), y′(0) ≥ y′(2π). Then y(t) ≤ 0 for every t ∈ I.

P r o o f. The proof can be found in [10, Lemma 3.1] and we present it
for the sake of completeness. If X ⊂ I is such that y(t) > 0 for a.e. t ∈ X,
then y′′(t) > 0 for a.e. t ∈ X. In consequence, there exists at least one
τ ∈ I with y(τ) ≤ 0. If y(0) > 0, then there exist 0 ≤ s1 ≤ s2 ≤ 2π with
y(s1) = y(s2) = 0 and y(s) > 0 for s∈J = [0, s1)∪ (s2, 2π] ⊂ X. Thus, y′ is
nondecreasing on J and we get a contradiction since y′(0) ≥ y′(2π). Hence,
y(0) ≤ 0.

Now, if max {y(s) : s ∈ I} = y(t0) > 0, then there exist t1, t2 ∈ (0, 2π)
such that t1 < t0 < t2, y(t1) = y(t2) = 0, and y(s) > 0 for s ∈ (t1, t2). In
consequence, y′ is nondecreasing on (t1, t2), and this is not possible since
y(t1) = y(t2) = 0 and y(t0) > 0.

Lemma 5. Let u ∈ W 2,1([t1, t2]), h ∈ L1([t1, t2]) and c be constant ,
−u′′(t) = f(t), with |f(t)| ≤ h(t) for a.e. t ∈ [t1, t2]. Then there exists a
constant N > 0 depending only on c and h such that :

(a) u′(t1) ≤ c or u′(t2) ≤ c implies u′(t) ≤ N on [t1, t2].
(b) u′(t1) ≥ c or u′(t2) ≥ c implies u′(t) ≥ −N on [t1, t2].

P r o o f. (a) If u′(t1) ≤ c, taking into account that u′′(t) ≤ |−u′′(t)| =
|f(t)| ≤ h(t), we obtain

u′(t) ≤ u′(t1) +
t∫

t1

h(s) ds ≤ c+ ‖h‖1 on [t1, t2] .

If u′(t2) ≤ c, then from −u′′(t) ≤ |−u′′(t)| = |f(t)| ≤ h(t) we get

u′(t) ≤ u′(t2) +
t∫

t2

h(s) ds ≤ c+ ‖h‖1 on [t1, t2] .

(b) If u′(t1) ≥ c, then −u′(t) ≤ −u′(t1) + ‖h‖1 ≤ −c + ‖h‖1 on [t1, t2],
that is, u′(t) ≥ −N on [t1, t2].

If u′(t2) ≥ c, then −u′(t) ≤ −u′(t2) +‖h‖1 ≤ −c+‖h‖1, i.e. u′(t) ≥ −N
on [t1, t2].



228 M.-X. Wang et al.

Using the previous lemmas we obtain the following a priori estimate for
the solutions of problem (2.8).

Theorem 1. There exists a constant M > 0 such that if λ ∈ [0, 1], u ∈ X
and u = λTu, then ‖u‖X ≤M .

P r o o f. The equation u = λTu is equivalent to

(2.12)
{
−u′′ + u = λf∗(t, u(t), u′(t)) + λp(t, u(t)),
u(0) = u(2π), u′(0) = u′(2π).

We divide the proof into two parts:

S t e p 1: Estimate for u(t). Let I0 = (0, 2π), A1 = {t ∈ I0 : u(t) > w(t)}.
We distinguish two cases:

(1.a) I0 = A1. Then, for a.e. t ∈ I0 we have

−u′′(t) + u(t) = λf(t, w(t), w′(t)) + λw(t) ≤ −λw′′(t) + λw(t) .

Hence, y(t) = u(t)− λw(t) satisfies{
y′′(t) ≥ y(t) for a.e. t ∈ I0,
y(0) = y(2π), y′(0) ≥ y′(2π).

From Lemma 4 we conclude that y ≤ 0, that is, u ≤ λw ≤ C on I.

(1.b) I0 6= A1. Thus, there exists s1 ∈ I0 such that u(s1) ≤ w(s1). We
first prove that there exists a positive constant C depending only on w such
that u(0) ≤ C. Obviously this is true if u(0) ≤ w(0).

In case u(0) > w(0), let y(t) = u(t)− λw(t). We suppose that y(0) > 0
since y(0) ≤ 0 implies that u(0) ≤ λw(0).

For y′(0) ≥ 0, let t0 = sup{t ∈ I : y(s) > 0 for s ∈ [0, t)} and

t∗ = sup{t ∈ [0, s1) : u(s) > w(s) for s ∈ [0, t)} .
Then t∗ ≤ s1 < 2π, u(t∗) = w(t∗) and u > w on [0, t∗).

We shall prove that t0 > t∗. If not, y′′(t) ≥ y(t) > 0 for a.e. t ∈ [0, t0)
and y′(t) > y′(0) ≥ 0. Hence, y′(t0) > y′(0) > 0. By the definition of t0 we
see that t0 = 2π, and y′(2π) > y′(0). This implies that w′(2π) < w′(0), a
contradiction with (2.5). This shows that t0 > t∗.

Therefore y′′(t) ≥ y(t) > 0 for a.e. t ∈ [0, t∗) and thus y′(t) > y′(0) ≥ 0.
This implies that y(0) ≤ y(t∗) = u(t∗) − λw(t∗) = (1 − λ)w(t∗) and that
u(0) ≤ λw(0) + (1− λ)w(t∗) ≤ C.

For y′(0) < 0, we have y′(2π) ≤ y′(0) < 0, y(2π) = y(0) > 0,
u(2π) − w(2π) = u(0) − w(0) > 0. Choosing t1 = inf{t ∈ I : y(s) > 0
for s ∈ (t, 2π]} and t = inf{t ∈ (s1, 2π] : u(s) > w(s) for s ∈ (t, 2π]} and
reasoning as in the previous case we again obtain u(0) ≤ C.

We decompose A1 =
⋃

(ai, bi) so that u(t) > w(t) for t ∈ (ai, bi) and

(2.13) −y′′(t) + y(t) ≤ 0 for a.e. t ∈ (ai, bi) .
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By the definition of ai and bi we obtain y(ai) = (1 − λ)w(ai) and y(bi) =
(1− λ)w(bi). In consequence, there exists C ∈ R such that

(2.14) y(ai) ≤ C and y(bi) ≤ C .
Now, (2.13) and (2.14) imply that y(t) ≤ C+1 for t ∈ (ai, bi). Therefore,

u(t) ≤ C + 1 + λw(t) ≤ M on A1. Obviously, u ≤ M on I \ A1 and thus
u ≤M on I.

Similarly, we can prove that u ≥ −M on I. Hence |u(t)| ≤ M for any
t ∈ I.

S t e p 2: Estimate for u′(t). Let B = {t ∈ I : v(t) < u(t) < w(t)}. Sup-
pose that B 6= ∅. Then p(t, u(t)) = u(t) for t ∈ B and u(t) ≤ v(t) or
u(t) ≥ w(t) for t ∈ I \B. We write B =

⋃
(ai, bi) since B is an open set. For

(ai, bi), only one of the following situations hold:

(2.i) 0 < ai < bi < 2π, [u(ai)− v(ai)] · [w(ai)− u(ai)] = 0, [u(bi)− v(bi)] ·
[w(bi)− u(bi)] = 0 and v(t) < u(t) < w(t) for t ∈ (ai, bi).

(2.ii) ai = 0 or bi = 2π.

In the first situation we have p(t, u(t)) = u(t) and d
dtp(t, u(t)) = u′(t).

Now, consider the following four cases:

(2.i.I) u(ai) = v(ai) and u(bi) = v(bi). Then u′(ai) ≥ v′(ai) and u′(bi) ≤
v′(bi). Thus,

−u′′ = λf(t, u, u′) + (λ− 1)u ≡ f̃(t, u, u′) ,

|f̃(t, u, u′)| ≤ g(|u′|) + C ≡ g̃(|u′|)
and, by the hypothesis (H1),

∞∫
λ

s

g̃(s) +K
ds =∞ ∀λ > 0 and ∀K > 0 .

By Lemma 1 we know that there exists a constant N depending only on
g, v and w such that |u′| ≤ N on [ai, bi].

(2.i.II) u(ai) = w(ai) and u(bi) = w(bi). Then |u′| ≤ N on [ai, bi].

(2.i.III) u(ai) = v(ai) and u(bi) = w(bi). Then u′(ai) ≥ v′(ai) and
u′(bi) ≥ w′(bi). By Lemma 1, u′(t) ≥ −N on [ai, bi].

If u′(ai) = v′(ai) or u′(bi) = w′(bi), then by Lemma 1, u′ ≤ N on [ai, bi].
Otherwise u′(ai) > v′(ai) and u′(bi) > w′(bi). Let a = inf{t : u′(s) > v′(s)
for s∈ (t, ai)} and b = sup{t : u′(s) > w′(s) for s∈ (bi, t)}. Then a < ai <
bi < b, u′(a) ≥ v′(a) and u′(b) ≥ w′(b). Moreover, u′ > v′ on (a, ai) and
u′ > w′ on (bi, b).

Now, u(ai) = v(ai) and u(bi) = w(bi) imply that u > w on (bi, b] and
u < v on [a, ai). We conclude that (u′(a) − v′(a)) · (u′(b) − w′(b)) = 0.
Otherwise, u′(a) > v′(a) and u′(b) > w′(b). Therefore a = 0 and b = 2π by
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the definitions of a and b. Thus u(0) < v(0) ≤ w(0) = w(2π) < u(2π), and
this is a contradiction.

If u′(b) = w′(b), then −u′′ = λf(t, w,w′) + λw − u ≤ λh(t) + c for a.e.
t ∈ (bi, b]. By integration,

u′(t) ≤ λ
b∫
t

h(s) ds+ 2πc+ u′(b)

= w′(b) + λ
b∫
t

h(s) ds+ 2πc ≤ C on (bi, b] .

Hence u′(bi) ≤ C. Using again Lemma 1 we have u′(t) ≤ N on [ai, bi]. If
u′(a) = v′(a), then similarly we see that u′(t) ≤ N on [ai, bi]. Hence |u′| ≤ N
on [ai, bi].

(2.i.IV) If u(bi) = v(bi) and u(ai) = w(ai), then analogously to (2.i.III),
|u′| ≤ N on [ai, bi].

To show (2.ii), suppose ai = 0; the boundary conditions for v, u and w
imply that bi = 2π.

Let a = sup{t ∈ I : v(s) < u(s) < w(s) for s ∈ [0, t)}. Then u(a) = v(a)
or u(a) = w(a).

If u(a) = v(a), then it is clear that u′(a) ≤ v′(a). Lemma 1 implies
u′(t) ≤ N for a.e. t ∈ [0, a]. If u′(a) = v′(a) we obtain u′(t) ≥ −N ;
therefore u′(a) < v′(a).

Now, let t0 = sup{t ∈ I : u′(s) < v′(s) for s ∈ (a, t)}.
If u′(t0) < v′(t0) we obtain t0 = 2π and u(2π) < v(2π), which is a

contradiction. In consequence, u′(t0) = v′(t0) and t0 < 2π. In the interval
(a, t0) we have

−u′′ = λ f(t, v, v′) + λ v − u ≥ −λh+ C .

Thus

−
t0∫
t

u′′(s) ds ≥ K

and u′(t) ≥ K + v′(t0) = K1 on (a, t0). By continuity u′(a) ≥ K1, and
Lemma 1 implies |u′| ≤ N on [0, a].

If u(a) = w(a), the reasoning is analogous.
If bi = 2π, we obtain |u′| ≤ N on [b, 2π] for

b = inf{t ∈ I : v(s) < u(s) < w(s) for s ∈ (t, 2π]} .
Thus, we obtain |u′(t)| ≤ N for all t ∈ B ∪D, with

D = {ai, bi ∈ (0, 2π) :
either (ai, bi) ∈ B; or [0, bi) ∈ B; or (ai, 2π] ∈ B} .
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If B 6= I0, let B1 = {t ∈ I : u(t) < v(t)}, B2 = {t ∈ I : u(t) > w(t)}.
Then B1 6= I and B2 6= I.

First we suppose that B1 6= ∅ and B2 6= ∅. Decompose B1 =
⋃

(ai, bi)
and B2 =

⋃
(ci, di).

For (ai, bi), we have one of the following possibilities:

(2.A) 0 < ai < bi < 2π.
(2.B) ai = 0 or bi = 2π.

In the first case u′(ai) ≤ v′(ai) and u′(bi) ≥ v′(bi). Since −u′′ =
λf(t, v, v′) + λv − u, Lemma 5 implies |u′| ≤ N on [ai, bi].

In the second situation, we first consider ai = 0. Then u(0) < v(0) and
u(2π) < v(2π), that is, bi = 2π. In consequence, there exists a ∈ (0, 2π) such
that u(a) = v(a) and u(t) < v(t) on [0, a). Thus, without loss of generality,
we can assume u′(a) > v′(a) (otherwise, Lemma 5 implies |u′| ≤ N on [0, a]).

Now, if v(a) < w(a), let b = sup{t ∈ I : v(s) < w(s) for s ∈ [a, t)}.
Hence, there exists t ≤ b such that u′(t) > v′(t) on [a, t). Therefore v(t) <
u(t) < w(t) on [a, t), and consequently a ∈ D. Thus |u′(a)| ≤ N and
Lemma 5 assures that |u′| ≤ N on [0, a].

On the other hand, if v(a) = w(a) and v′(a) < u′(a) < w′(a) there exists
a subinterval (a, a + δ) ⊂ (0, 2π) such that v < u < w on (a, a + δ); then
a ∈ D and |u′(a)| ≤ N . Again, Lemma 5 implies |u′| ≤ N on [0, a].

If v(a) = w(a) and u′(a) = w′(a), Lemma 5 implies |u′| ≤ N on [0, a].
Finally, if v(a) = w(a) and u′(a) > w′(a) there exists t0 ∈ (0, 2π) such

that u > w on (a, t0) with u′(t0) = w′(t0). Therefore −u′′ = λ f(t, v, v′) +
λ v − u on (a, t0) and u′(t) ≤ w′(t0) + c for all t ∈ (a, t0). The continuity of
u′ and Lemma 5 imply |u′| ≤ N on [0, a].

If bi = 2π the proof is analogous.
For the set B2 the reasoning is similar.
Thus, we obtain |u′(t)| ≤ N for all t ∈ E∪F ≡ S, where E = B∪B1∪B2

and

F = {ai, bi ∈ (0, 2π) :
either (ai, bi) ∈ E; or [0, bi) ∈ E; or (ai, 2π] ∈ E} .

If t ∈ I\S, then obviously either u(t) = v(t) or u(t) = w(t). Also there
exists {xn} ⊂ F , xn 6= t for all n ∈ N, such that t = limn→∞ xn because
if there exists δ > 0 such that I ∩ (t − δ, t + δ) ∩ F = ∅ then t ∈ S. Since
|u′(xn)| ≤ N for all {xn} ⊂ F we obtain |u′(t)| = |limn→∞ u′(xn)| ≤ N for
all t ∈ I\S.

This completes the proof of Theorem 1.

Theorem 2. Suppose that v(t) ≤ w(t) are lower and upper solutions of
(P), respectively. If (H1) holds, then there exists a solution u of (P) such
that u ∈ [v, w].
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P r o o f. Let X = C1(I). By Lemma 2, d
dtp(t, u(t)) exists for a.e. t ∈ I.

Problem (2.8) is equivalent to the functional equation u = Tu, with T
defined as in Lemma 3. By Theorem 1 we know that every solution of
u = λTu satisfies ‖u‖X ≤M for some constant M > 0. In consequence, the
Shaefer theorem [11] implies that there exists a solution u of problem (2.8).

Finally, we prove that every solution u of (2.8) is such that u ∈ [v, w],
that is, u is a solution in [v, w] of problem (P). Indeed, suppose that u > w
on [0, 2π]. Then

−u′′ + u = f(t, w,w′) + w ≤ −w′′ + w .

Since (u − w)(0) = (u − w)(2π) and (u − w)′(0) ≥ (u − w)′(2π), Lemma 4
implies that u ≤ w on [0, 2π], which is a contradiction. Consequently, there
exists s ∈ [0, 2π] such that u(s) ≤ w(s). If there exists s1 ∈ [0, 2π] with
u(s1)>w(s1), and there exists t1 < t2 in (0, 2π) such that u > w on (t1, t2),
with (u− w)(t1) = (u− w)(t2) = 0, then in the interval (t1, t2) we have

−u′′ + u = f(t, w,w′) + w ≤ −w′′ + w .

This, together with the boundary conditions, implies that u ≤ w on (t1, t2),
which is a contradiction.

Therefore, suppose that there exist t1 ≤ t2 in (0, 2π) such that u > w
on [0, t1) ∪ (t2, 2π] with (u−w)(t1) = (u−w)(t2) = 0. In both intervals we
have (u− w)′′ ≥ u− w > 0.

If (u−w)′(0) ≥ 0 then (u−w)′(t) > 0 for any t ∈ [0, t1) and (u−w)(t1) >
(u− w)(0) > 0, which is not possible.

On the other hand, if (u − w)′(0) < 0, we obtain (u − w)′(2π) < 0. In
consequence, (u− w)′ < 0 on (t2, 2π] and (u− w)(t2) > (u− w)(2π) > 0.

Therefore u ≤ w on the interval I. Analogously we can prove that u ≥ v
on I. Hence, every solution of (2.8) is a solution of problem (P) in the sector
[v, w].

This completes the proof of Theorem 2.

3. Monotone iterative technique. Throughout this section we sup-
pose that v ≤ w are lower and upper solutions of (P), respectively. We
introduce the following hypotheses:

(H2) There exists M ∈ L1(I) such that M(t) > 0 for a.e. t ∈ I and

(3.1) f(t, φ, s)− f(t, ϕ, s) ≥ −M(t)(φ− ϕ)

for a.e. t ∈ I and every v(t) ≤ ϕ ≤ φ ≤ w(t), s ∈ R.

(H3) There exists N ∈ L1(I) such that N(t) ≥ 0 for a.e. t ∈ I and

(3.2) f(t, u, s)− f(t, u, y) ≥ −N(t)(s− y)

for a.e. t ∈ I and every v(t) ≤ u ≤ w(t), s ≥ y, s, y ∈ R.
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Theorem 3. Suppose that (H1)–(H3) hold. Then there exist monotone
sequences vn ↗ x and wn ↘ z as n → ∞, uniformly on I, with v0 = v
and w0 = w. Here, x and z are the minimal and maximal solutions of (P)
respectively on [v, w], that is, if u ∈ [v, w] is a solution of (P), then u ∈ [x, z].
Moreover , the sequences {vn} and {wn} satisfy v = v0 ≤ . . . ≤ vn ≤ . . .
. . . ≤ wn ≤ . . . ≤ w0 = w.

P r o o f. For any q ∈ [v, w]∩X, consider the following quasilinear periodic
boundary value problem:

(3.3)
{
−u′′(t) = f(t, q(t), ddtp(t, u(t))) +M(t)[q(t)− u(t)],
u(0) = u(2π), u′(0) = u′(2π).

Using (3.1), we deduce that if u is a solution of (3.3), then

f

(
t, v(t),

d

dt
p(t, u(t))

)
+Mv(t) ≤ −u′′(t) +Mu(t)(3.4)

≤ f
(
t, w(t),

d

dt
p(t, u(t))

)
+Mw(t) .

Using (2.1), (H1) and (3.4), and reasoning as in the proof of Theorem 1,
we can say that (3.3) has a solution u ∈ X. It is not difficult (using Lemma 4)
to prove that this solution is unique. Using the same arguments as in the
proof of Theorem 2.1 of [10], it can be proved that v ≤ u ≤ w. Hence (3.3)
is equivalent to

(3.5)
{
−u′′(t) = f(t, q(t), u′(t)) +M(t)(q(t)− u(t)),
u(0) = u(2π), u′(0) = u′(2π).

Now, define the operator T : X → X, T (q) = u, where u is the solution
of (3.3).

We shall prove that if v ≤ q1 ≤ q2 ≤ w, q1, q2 ∈ X, then T (q1) ≤ T (q2).
Indeed, let ui = T (qi), i = 1, 2. Then

(3.6)
{
−u′′i (t) = f(t, qi(t), u′i(t)) +M(t)(qi(t)− ui(t)),
ui(0) = ui(2π), u′i(0) = u′i(2π).

If u1 ≤ u2 is not true, then there exist ε > 0 and t0 ∈ I such that
u1(t0) = u2(t0) + ε and u1 ≤ u2 + ε on I.

First, we shall prove that there exists (t1, t2) ⊂ I0 such that u1 > u2 and
u′1 ≤ u′2 on (t1, t2), u′1(t1) = u′2(t1) and u1(t1)− u2(t1) ≥ u1(t2)− u2(t2).

Indeed, let y(t)=u1(t)−u2(t). If there exists [t1, t2] such that y(t)=ε on
[t1, t2], then the conclusion holds. Suppose that for any subinterval (a, b) ⊂
I0, there exists t ∈ (a, b) such that y(t) < ε. If t0 = 2π, then t0 = 0. Thus
y(0) = y(2π) = ε and 0 ≤ y′(2π) = y′(0) ≤ 0. If t0 ∈ I0, then y′(t0) = 0.
Hence we always have y′(t0) = 0.
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Since y(0) = y(2π), we can take t0 < 2π. Because y(t0) = ε≥ y(t) and
y(t) 6≡ε in any right neighborhood of t0, there exists t2 ∈ (t0, 2π) such that
y′(t2) < 0 and y(t2) > 0. Hence, there exists t1 ∈ [t0, t2) such that y′(t1) = 0
and y′(t) < 0 for t ∈ (t1, t2]. Consequently, (t1, t2) satisfies our requirements.

We consider (3.6) in (t1, t2). Since y′≤0 on (t1, t2), (H2) and (H3) imply
that

−u′′1(t) + u′′2(t) = f(t, q1(t), u′1(t))− f(t, q2(t), u′2(t)) +M(t)[q1(t)− q2(t)],
−M(t)[u1(t)− u2(t)] ≤ −N(t)[u′1(t)− u′2(t)]−M(t)[u1(t)− u2(t)]

for a.e. (t1, t2).
The function y = u1 − u2 satisfies{

y′′(t) ≥M(t)y(t) +N(t)y′(t) > N(t)y′(t),
y(t1) ≥ y(t2), 0 = y′(t1) ≥ y′(t2),

for a.e. (t1, t2).
Solving the differential inequality, we obtain

y′(t2) exp
(
−

t2∫
t1

N(s) ds
)
> y′(t1) = 0 .

This is a contradiction with y′(t2) ≤ 0. Therefore, u1 ≤ u2 on I.
Now, define sequences v0 = v, vn =T (vn−1), w0 =w and wn =T (wn−1).

Because the solution u of (3.3) satisfies v ≤ u ≤ w on I, using the mono-
tonicity of T we see that v = v0 ≤ v1 ≤ . . . ≤ vn ≤ . . . ≤ wn ≤ . . . ≤ w1 ≤
w0 = w. Hence, the limits limn→∞ vn(t) = x(t) and limn→∞ wn(t) = z(t)
exist. Note that vn satisfies{
−v′′n(t) = f(t, vn−1(t), v′n(t)) +M(t)[vn−1(t)− vn(t)] ≡ f̃(t, vn(t), v′n(t)),
vn(0) = vn(2π), v′n(0) = v′n(2π), v(t) ≤ vn(t) ≤ w(t),

and

|f̃(t, vn(t), v′n(t))| ≤ g(|v′n(t)|) + C ≡ g̃(|v′n(t)|)
and

∞∫
λ

s

g̃(s) +K
ds =∞ .

By Lemma 1, there exists a constant N depending only on g, v and w
such that |v′n| ≤ N on I for any n = 1, 2, . . . , that is, {vn} is a bounded set
of X.

Similarly, {wn} is a bounded set of X. Using the same arguments as in
Lemma 3, it follows that vn

X−→ x and wn
X−→ z, that is,

lim
n→∞

(vn(t), v′n(t), wn(t), w′n(t)) = (x(t), x′(t), z(t), z′(t)) uniformly on I .
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Writing the integral equations of vn and wn respectively and using stan-
dard arguments, we deduce that x and z satisfy (P) and v ≤ x ≤ z ≤ w on
I. Now, we know that if u ∈ X, v ≤ u ≤ w and u solves (P), then Tu = u,
so that vn ≤ u ≤ wn for any n = 1, 2, . . . and thus x ≤ u ≤ z on I.

This completes the proof of Theorem 3.
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