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The set of points at which a polynomial map is not proper

by Zbigniew Jelonek (Kraków)

Abstract. We describe the set of points over which a dominant polynomial map
f = (f1, . . . , fn) : Cn → Cn is not a local analytic covering. We show that this set
is either empty or it is a uniruled hypersurface of degree bounded by (

∏n
i=1 deg fi −

µ(f))/mini=1,...,n deg fi.

1. Introduction. Let f : Cn → Cn be a dominant polynomial map.
We say that f is not proper at a point y if there is no neighborhood U of
y such that f−1(cl(U)) is compact, equivalently: if either dim f−1(y) > 0
or f−1(y) = {x1, . . . , xr} is a finite set but

∑r
i=1 µxi

(f) < µ(f), where µ
denotes multiplicity. The set of points at which f is not proper indicates how
far f is from a finite map and therefore this set is important in the study of
polynomial mappings (for example in the Jacobian Conjecture). Our aim is
to describe this set precisely.

The main result is the following theorem:

Theorem 15. Let f = (f1, . . . , fn) : Cn → Cn be a dominant polynomial
map. Then the set S of points at which f is not proper is either empty or it
is a uniruled hypersurface of degree not greater than∏n

i=1 deg fi − µ(f)
mini=1,...,n deg fi

.

Moreover , deg f−1(S) ≤
∏n
i=1 deg fi − µ(f).

We also show how to find effectively an equation of the hypersurface S.
In particular, we are able to check effectively whether a given polynomial
mapping is proper.

The results of this paper were announced in [3].
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2. Terminology. Our notation and conventions are the same as in [5]
and [9]. If f is a dominant polynomial map and {x} is an isolated component
of the fiber f−1(f(x)) we denote by µx(f) the multiplicity of f at x and by
µ(f) the number of points in a generic fiber of f (see, e.g., [5]).

Let C[z1, . . . , zn] be a polynomial ring and a1, . . . , an be positive integers.
The weight of the monomial axk11 · . . . · xkn

n (a 6= 0) is, by definition, the
number

∑n
i=1 kiai. The weight of a polynomial P is the maximal weight of

its monomials (or −∞ if P = 0). It will be denoted by v(P ) and called the
weight of P determined by the conditions v(x) = ai.

LetX be an algebraic variety of dimension n ≥ 1. X is said to be uniruled
if there exists an algebraic variety W of dimension n − 1 and a dominant
rational map F : W × P1(C)− → X. Generally, if X is an algebraic set
of pure dimension n ≥ 1, X is said to be uniruled if every component of
X is uniruled. Equivalently, an algebraic set X is uniruled if it has pure
dimension ≥ 1 and for a generic point in X there is a rational curve in X
through this point.

3. Points at which a polynomial map is not proper. We begin
with some basic and well-known facts about proper maps.

Definition 1. Let X, Y be topological spaces. A continuous map f :
X → Y is said to be proper if for every compact set K ⊂ Y the set f−1(K)
is compact.

We have the following nice characterization of proper maps:

Proposition 2. Let f : X → Y be a continuous map of locally compact
spaces. Then f is proper if and only if it is closed and for every y ∈ Y the
set f−1(y) is compact.

If X, Y are affine varieties there exists a well-known purely algebraic
condition for a polynomial map f : X → Y to be proper.

Proposition 3. Let X, Y be affine varieties and let f : X → Y be a
polynomial map. Then f is proper if and only if the map f∗ : C[Y ] 3 h →
h ◦ f ∈ C[X] is finite, i.e., f∗C[Y ] ⊂ C[X] is an integral extension of rings.

Definition 4. Let f : X → Y be a continuous map. We say that f
is proper at y ∈ Y if there exists an open neighborhood U of y such that
resf−1(U) f : f−1(U)→ U is a proper map.
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R e m a r k 5. Assume that X, Y are locally compact spaces. Then f is
proper if and only if it is proper at every y ∈ Y .

In the case of a polynomial map it is easy to show the following:

Proposition 6. Let f : Cn → Cn be a dominant polynomial map. Then
f is proper at y ∈ Cn if and only if f−1(y) = {x1, . . . , xr} is a finite set and∑r
i=1 µxi

(f) = µ(f).

Now our main purpose is to give a description of the set of points at
which a dominant polynomial map f : Cn → Cn is not proper. We start
with the following fact:

Proposition 7. Let f : Cn → Cn be a dominant polynomial map and
let C(f1, . . . , fn) ⊂ C(x1, . . . , xn) be the induced field extension. Let

ni∑
k=0

aik(f)xni−k
i = 0 ,

where the aik are polynomials, be an irreducible equation of xi over C[f1, . . .
. . . , fn]. Let S =

⋃n
i=1{y ∈ Cn : ai0(y) = 0}. Then f is proper at a point y

if and only if y ∈ Cn \ S.

P r o o f. ⇒ It is enough to prove that f : Cn\f−1(S)→Cn\S is proper. If
S is empty then C[f1, . . . , fn] ⊂ C[x1, . . . , xn] is an integral extension and by
Proposition 3, f is proper. OtherwiseS, and hence f−1(S), is a hypersurface.
Set A =

∏n
i=1 a

i
0. Then A is a non-constant polynomial and S = {y ∈ Cn :

A(y) = 0}, f−1(S) = {x : A(f(x)) = 0}. Let V = Cn\f−1(S) and W = Cn\
S. Then V , W are affine varieties and C[V ] = C[x1, . . . , xn][(A(f(x)))−1],
C[W ] = C[y1, . . . , yn][A−1]. Hence f∗C[W ] = C[f1, . . . , fn][(A(f(x)))−1].
Since the ai0(f) are units in f∗C[W ] we conclude that the xi are integral over
f∗C[W ]. Of course A(f)−1 is also integral, and we get the integral extension
f∗C[W ] ⊂ C[V ]. By Proposition 3 the proof of this part is finished.
⇐ The following lemma is proved in [10].

Lemma 8. Let Ω be an open set in Cn, ai : Ω → C, i = 0, 1, . . . , s,
be continuous functions with a0 6= 0, and let Γ = {(x, t) ∈ Ω × C :∑s
i=0 ai(x)ts−i = 0}. Then the projection π : Γ 3 (x, t) → x ∈ Ω is

proper if and only if a0(x) 6= 0 for every x ∈ Ω.

Consider the map F = (f, xi) : Cn → Cn×C. It is a dominant map from
Cn to the hypersurface given by the equation

ni∑
j=0

aij(y)xni−j
i = 0 .

In particular, the image of Cn under F is dense in the hypersurface Γ given
by the above equation. Assume that f is proper at a point y ∈ Cn. Then
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there exists an open neighborhood U of y such that resf−1(U) f : f−1(U)→
U is a proper map. We have the following diagram (here π is the natural
projection and the primes denote restriction):

U × C
F ′↗ ↓ π

f−1(U)
f ′−→ U

Note that F ′(f−1(U)) is contained in Γ ∩ (U ×C) and dense in it. Since
π ◦ F ′ = f ′ is proper, so is F ′. In particular, F ′ is closed, and consequently
F (f−1(U))=Γ ∩ (U ×C) := Γ ′. This means that F ′ maps f−1(U) onto Γ ′.

Since F ′ is a surjection, for every compact set K ⊂ U we have
(resΓ π)−1(K) = F ′(f ′−1(K)), hence resΓ π is a proper map. By Lemma 8
we conclude that ai0 6= 0 in Ω, in particular, ai0(y) 6= 0. This proves the
second part of Proposition 7.

Corollary 9. Let f : Cn → Cn be a dominant polynomial map. Then
the set S of points at which f is not proper is either empty or is a hyper-
surface.

R e m a r k 10. a) In the same way as Proposition 7 we can prove the
following theorem:

If f : X → Y is a dominant polynomial map of smooth affine varieties
of the same dimension then the set of points at which f is not proper is
either empty or it is a hypersurface.

b) We can effectively find an equation of the hypersurface S. Indeed, by
Proposition 7 and its proof it is enough to find equations of n hypersurfaces
which have parameterizations Fi = (f, xi), i = 1, . . . , n.

This can be done in the standard way. For example it is enough to com-
pute a Gröbner basis of the ideals Ik = (y1 − f1, . . . , yn − fn, yn+1 − xk),
k = 1, . . . , n, with respect to the separating order. In this way we obtain
polynomials gk(y) ∈ Ik∩C[Y ], k = 1, . . . , n, which are the equations we were
looking for. If gk =

∑nk

j=0 a
k
j (y)ynk−j

n+1 then S = {y ∈ Cn :
∏n
i=1 a

i
0(y) = 0}.

In particular, we are able to check effectively whether a given polynomial
mapping is proper.

Proposition 11. Let f : Cn → Cn be a dominant polynomial map and
let C(f1, . . . , fn) ⊂ C(x1, . . . , xn) be the induced field extension. For a given
polynomial h ∈ C[x1, . . . , xn] let

nk∑
j=0

ahj (f)hm−j = 0 ,

where the ahj are polynomials, be an irreducible equation of h over C[f1, . . .
. . . , fn]. Then the set {y ∈ Cn : ah0 (y) = 0} is contained in the set S of
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points at which f is not proper. Moreover , if h1, . . . , hp are generators of
C[x1, . . . , xn] then S =

⋃p
i=1{y ∈ Cn : ahi

0 (y) = 0}.

P r o o f. The proof is the same as above.

Proposition 12. Let f = (f1, . . . , fn) : Cn → Cn be a dominant poly-
nomial map. The degree of the hypersurface S of points at which f is not
proper is not greater than ∏n

i=1 deg fi − µ(f)
mini=1,...,n deg fi

.

Moreover ,

deg f−1(S) ≤
n∏
i=1

deg fi − µ(f) .

P r o o f. First we will show

Lemma 13. There exists a linear polynomial η =
∑n
i=1 cixi (ci ∈ C) such

that S = {x : aη0(x) = 0} and η is a primitive element of the field extension
C(f1, . . . , fn) ⊂ C(x1, . . . , xn).

P r o o f. For t ∈ C\{0} put η(t) =
∑n
i=1 t

i−1xi. The family of hypersur-
faces St = {x : aη(t)0 (x) = 0}, t ∈ C\{0}, is finite (St ⊂ S !), hence there ex-
ists an infinite set T ⊂ C\{0} such that St = St′ for t, t′ ∈ T . Moreover, the
family of subfields C(f1, . . . , fn)(η(t)) ⊂ C(x1, . . . , xn), t ∈ T , is also finite.
It follows easily that there exist n different numbers t1, . . . , tn (even infinitely
many) such that Sti = Stj and C(f1, . . . , fn)(η(ti)) = C(f1, . . . , fn)(η(tj))
for every i, j = 1, . . . , n. Since η(t1), . . . , η(tn) are generators of the ring
C[x1, . . . , xn] over C, all η(t1), . . . , η(tn) are primitive elements of the field
extension C(f1, . . . , fn) ⊂ C(x1, . . . , xn) and by Proposition 11 we conclude
that Sti = S for i = 1, . . . , n.

Now we need an old classical result due to O. Perron (see [6], Theorems
57 and 62, and in a stronger modern version in [7], Theorem 1.5).

Let F1, . . . , Fm ∈ C[Z1, . . . , Zn] be algebraically dependent polynomials of
positive degrees and let v be the weight in C[W1, . . . ,Wm] determined by the
conditions v(Wi) = degFi, for i = 1, . . . ,m. Then there exists a non-zero
polynomial P = P (W1, . . . ,Wm) such that P (F1(Z), . . . , Fm(Z)) = 0 in
C[Z] and v(P ) ≤

∏m
i=1 degFi.

To prove Proposition 12, let η be as in Lemma 13 and let H(x, t) =∑m
j=0 a

η
j (x)tm−j = 0, where the aηj are polynomials, be an irreducible equa-

tion of η over C[f1, . . . , fn] (i.e., H(f, η)=0). Since η is primitive, m=µ(f).
We have to estimate the degree of aη0 . We use Perron’s theorem, where
m = n + 1, Fi = fi for i = 1, . . . , n and Fn+1 = η. Since H divides P ,
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we have v(H) ≤ v(P ), hence v(H) ≤
∏n+1
i=1 degFi =

∏n
i=1 deg fi. Thus

v(aη0) ≤ v(H)− µ(f) ≤
∏n
i=1 deg fi − µ(f). Since

degP · min
i=1,...,n

deg fi ≤ v(P )

for every polynomial P , we get

deg aη0 ≤
∏n
i=1 deg fi − µ(f)

mini=1,...,n deg fi
.

Since degS ≤ deg aη0 , we get the first estimate. To get the second one
it is enough to note that f−1(S) has equation aη0(f1, . . . , fn) = 0 and
deg f−1(S) ≤ deg aη0(f1, . . . , fn) ≤ v(aη0) ≤

∏n
i=1 deg fi − µ(f).

Proposition 14. Let f : Cn→Cn be a polynomial map with graph Γ =
{(x, y) ∈ Cn×Cn : y = f(x)}. Denote by Γ ′ the closure of Γ in Pn(C)×Cn
and put R = Γ ′ \Γ . Let π denote the natural projection Pn(C)×Cn → Cn.
Then the set S of points at which f is not proper is exactly the set π(R). In
particular , if S is not empty then it is a uniruled hypersurface.

P r o o f. It is easy to see that f is not proper at y if and only if there exists
a sequence xn such that limxn = ∞ and lim f(xn) = y. This is equivalent
to y ∈ π(R).

By [2] every projective compactification of Cn is uniruled at infinity.
Since Γ is isomorphic to Cn, every (n − 1)-dimensional component of R =
Γ ′ \ Γ is uniruled, and consequently the hypersurface S = π(R) must be
uniruled.

We summarize Propositions 12 and 14 in:

Theorem 15. Let f = (f1, . . . , fn) : Cn → Cn be a dominant polynomial
map. Then the set S of points at which f is not proper is either empty or it
is a uniruled hypersurface of degree not greater than∏n

i=1 deg fi − µ(f)
mini=1,...,n deg fi

.

Moreover , deg f−1(S) ≤
∏n
i=1 deg fi − µ(f).

Theorem 15 has many interesting corollaries:

Corollary 16. Let f and S be as above. Then degS < (deg f)n−1,
where deg f = maxi=1,...,n deg fi. In particular , if n = 2 then degS < deg f .

Corollary 17. Let f : Cn → Cn be a dominant polynomial map. Then

µ(f) ≤
n∏
i=1

deg fi − degS · min
i=1,...,n

deg fi ,

where S denotes the hypersurface of points at which the map f is not proper.
In particular , if µ(f) >

∏n
i=1 deg fi −mini=1,...,n deg fi, then f is proper.
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Corollary 18. Let f be as above. Assume that cl(Cn \f(Cn)) contains
a hypersurface H of degree d. Then H is uniruled and

d ≤
∏n
i=1 deg fi − µ(f)

mini=1,...,n deg fi
.

Corollary 19. Let f : Cn → Cn be a polynomial birational map which
is not an automorphism. Then cl(Cn \ f(Cn)) is a uniruled hypersurface of
degree

d ≤
∏n
i=1 deg fi − 1

mini=1,...,n deg fi
.

Example 20. Consider f : Cn 3 (x1, . . . , xn)→ (x1, . . . , xn−1,
∏n
i=1 xi)

∈ Cn. In this case S = cl(Cn \ f(Cn)) is the union of hyperplanes
⋃n−1
i=1 {x :

xi = 0}. Thus both degree estimates in Theorem 15 are sharp.

In the sequel we need the following generalization of a result of [4] (com-
pare with [1]):

Proposition 21. Let X be an affine set and Γ be a closed affine sub-
set of X. Let f : Γ → Cn be a proper polynomial map and assume n ≥
dimX. Then there exists a proper polynomial map F : X → Cn such that
resΓ F = f .

P r o o f. Let I(Γ ) denote the ideal of Γ in C[X]. Let g = (g1, . . . , gn) be
a polynomial extension of f to X. Let x1, . . . , xm be polynomial functions
generating C[X] over C, i.e., C[X] = C[x1, . . . , xm]. It follows from our
assumptions that there exist polynomial functions aij ∈ C[X1, . . . , Xn] such
that Hi =

∑ni

j=0 a
i
j(g)xni−j

i = 0 mod I(Γ ), and ai0(g) = const 6= 0 for
i = 1, . . . ,m. Consider the map H = (g1, . . . , gn, H1, . . . ,Hm) : X → Cn+m.
By construction H is proper, H(Γ ) ⊂ Cn×{0} and dimH(X) = dimX ≤ n.
The set Y := H(X) is a closed subset of Cn+m. It is easy to see that there
exists a proper linear projection π : Y → Cn × {0}.

Indeed, we have the canonical inclusion Cn+m ⊂ Pn+m(C) and the set W
of points at infinity of Y has dimension ≤ n−1. Hence we can find a linear
subspace L of the hyperplane at infinity of dimension m−1 which is disjoint
from W . Let πL : Pn+m(C)→ cl(Cn×{0}) be the projection determined by
L. The restriction of πL to Y is a proper map of Y into Cn × {0} and it is
the projection π we were looking for.

Now it is enough to take F = p ◦H to obtain a proper extension of f to
the whole of X.

R e m a r k 22. It is easy to see that Proposition 21 remains true if we
replace “proper polynomial map” by “polynomial map with generically finite
fibers”.
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Example 23. Let S ⊂ C2 be a “parametric” rational curve, i.e., S is the
image of C under a non-constant polynomial mapping. Then there exists a
polynomial mapping F : C2 → C2 with finite fibers for which S is exactly
the set of points at which F is not proper.

Indeed, let V = {(x, y, z) ∈ C3 : z2 − xy − 1 = 0}. Then V is an affine
variety and there exists a (non-proper) embedding i : C2 3 (u, v)→ (u(2 +
uv), v, 1 +uv) ∈ V . Note that V \ i(C2) is the line l = {z = −1, y = 0} ∼= C.
If σ : l→ S is a parameterization then by Proposition 21, σ can be extended
to a proper map Σ : V → C2. Now it is enough to take F = Σ ◦ i.
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