Even coefficient estimates for bounded univalent functions

by D. V. Prokhorov (Saratov)

Abstract

Extremal coefficient properties of Pick functions are proved. Even coefficients of analytic univalent functions f with $|f(z)|<M,|z|<1$, are bounded by the corresponding coefficients of the Pick functions for large M. This proves a conjecture of Jakubowski. Moreover, it is shown that the Pick functions are not extremal for a similar problem for odd coefficients.

Let S denote the class of functions f,

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

analytic and univalent in the unit disk $E=\{z:|z|<1\}$. Let $S^{M}, M>1$, denote the family of functions $f \in S$ bounded by $M:|f(z)|<M$ for $|z|<1$. Moreover, set $S^{\infty}=S$.
L. de Branges [1] proved the Bieberbach conjecture: $\left|a_{n}\right| \leq n, n \geq 2$, in the class S, with equalities only for the Koebe functions K_{α},

$$
K_{\alpha}(z)=\frac{z}{\left(1-e^{i \alpha} z\right)^{2}}, \quad \alpha \in \mathbb{R}
$$

The functions $P_{\alpha}^{M} \in S^{M}$ which satisfy the equation

$$
\frac{M^{2} P_{\alpha}^{M}(z)}{\left(M-P_{\alpha}^{M}(z)\right)^{2}}=K_{\alpha}(z), \quad|z|<1, M>1, \quad P_{\alpha}^{\infty}=K_{\alpha}
$$

are called Pick functions. Let

$$
P_{0}^{M}(z)=z+\sum_{n=2}^{\infty} p_{n, M} z^{n}, \quad 1<M \leq \infty, \quad p_{n, \infty}=n .
$$

[^0]Z. Jakubowski [4] conjectured that even coefficients of functions $f \in S^{M}$ are bounded by $p_{n, M}$ for large M. Namely, for every even $n \geq 2$ there exists $M_{n}^{+}>1$ such that for all $M \geq M_{n}^{+}$and all $f \in S^{M}$,
\[

$$
\begin{equation*}
\left|a_{n}\right| \leq p_{n, M} \tag{2}
\end{equation*}
$$

\]

For references to earlier results due to Z. Jakubowski, A. Zielińska, K. Zyskowska, L. Pietrasik, M. Schiffer, O. Tammi, O. Jokinen, see [4]. Recently the author's student V. G. Gordenko [3] proved the Jakubowski conjecture for $n=6$. Moreover, he showed that Pick functions do not maximize $\left|a_{5}\right|$ in S^{M} with finite M.

In this article we prove the Jakubowski conjecture for all even $n \geq 2$. Moreover, we show that odd coefficients of functions $f \in S^{M}$ do not necessarily satisfy (2) for sufficiently large M.

1. According to [1] only Koebe functions are extremal for the estimate of $\left|a_{n}\right|$ in S. Since the classes S^{M} are rotation invariant, it is sufficient to find an upper estimate for $\operatorname{Re} a_{n}$ instead of one for $\left|a_{n}\right|$. Thus the Jakubowski conjecture reduces to the fact that only Pick functions P_{0}^{M} and their rotations give a local maximum of $\operatorname{Re} a_{n}$ in the class S^{M} for large M.

The author [6], [7] described a constructive algorithm determining the value set V_{n}^{M} of the coefficient system $\left\{a_{2}, \ldots, a_{n}\right\}$ in the class $S^{M}, 1<M$ $\leq \infty$. The set V_{n}^{M} is the set reachable at time $t=\log M$ for the dynamical control system

$$
\begin{equation*}
\frac{d a}{d t}=-2 \sum_{s=1}^{n-1} e^{-s(t+i u)} A(t)^{s} a(t), \quad a(0)=a^{0} \tag{3}
\end{equation*}
$$

where $a=a(t) \in \mathbb{C}^{n}$,

$$
a(t)=\left(\begin{array}{c}
a_{1}(t) \\
\vdots \\
a_{n}(t)
\end{array}\right), \quad A(t)=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
a_{1}(t) & 0 & \ldots & 0 & 0 \\
a_{2}(t) & a_{1}(t) & \ldots & 0 & 0 \\
\ldots \ldots \ldots & \ldots \ldots & \ldots & \cdots & \cdots \\
a_{n-1}(t) & a_{n-2}(t) & \ldots & a_{1}(t) & 0
\end{array}\right),
$$

$a^{0}=(1,0, \ldots, 0)^{T}, a_{1}(t) \equiv 1$, and $u=u(t)$ is a real control. Optimal controls satisfy the Pontryagin maximum principle. They maximize the Hamilton function

$$
H(t, a, \bar{\psi}, u)=-2 \sum_{s=1}^{n-1} \operatorname{Re}\left[e^{-s(t+i u)}\left(A^{s} a\right)^{T} \bar{\psi}\right]
$$

while the conjugate vector $\bar{\psi}=\left(\bar{\psi}_{1}, \ldots, \bar{\psi}_{n}\right)^{T}$ of complex-valued Lagrange
multipliers satisfies the conjugate Hamilton system

$$
\begin{equation*}
\frac{d \bar{\psi}}{d t}=2 \sum_{s=1}^{n-1} e^{-s(t+i u)}(s+1)\left(A^{T}\right)^{s} \bar{\psi}, \quad \psi(0)=\xi \tag{4}
\end{equation*}
$$

The vector $\left(\psi_{2}(\log M), \ldots, \psi_{n}(\log M)\right)$ is orthogonal to the boundary hypersurface ∂V_{n}^{M} of V_{n}^{M}. More precisely, it is orthogonal to a tangent plane or to a certain support plane if they exist. If $\operatorname{Re} a_{n}$ attains its maximum at any point $x \in \partial V_{n}^{M}$, then there exists ψ such that $\left(\psi_{2}(\log M), \ldots, \psi_{n}(\log M)\right)=$ $(0, \ldots, 0,1)$ at this point.

Points of ∂V_{n}^{M} are obtained from boundary extremal functions $f, f(z)=$ $M w(z, \log M)$, where $w(z, t)$ are solutions of the Cauchy problem for Loewner's differential equation

$$
\begin{equation*}
\frac{d w}{d t}=-w \frac{e^{i u}+w}{e^{i u}-w},\left.\quad w\right|_{t=0}=z \tag{5}
\end{equation*}
$$

with optimal controls $u=u(t)$. Differentiating (5) with respect to z, we obtain a differential equation for $w^{\prime}(z, t)$, from which we deduce differential equations for the coefficient system $b(t)=\left\{b_{0}(t), \ldots, b_{n-1}(t)\right\}$ of the function $f^{\prime}(z) /\left(e^{t} w^{\prime}(z, t)\right)$. The system for $b(t)$ coincides with (4) with A^{T} replaced by A. Hence if $\left(\psi_{2}(\log M), \ldots, \psi_{n}(\log M)\right)=(0, \ldots, 0,1)$, then

$$
\begin{equation*}
\left(\psi_{2}(t), \ldots, \psi_{n}(t)\right)=\left(b_{n-2}(t), \ldots, b_{0}(t)\right) \tag{6}
\end{equation*}
$$

The initial value at $t=0$ yields that $\xi=\left(\xi_{1},(n-1) a_{n-1}, \ldots, 2 a_{2}, 1\right)^{T}$.
2. Now we are able to prove the theorem for odd coefficients of $f \in S^{M}$.

Theorem 1. The Pick functions P_{0}^{M} are not extremal for the problem of estimating $\operatorname{Re} a_{2 m+1}$ in the class S^{M}, for all sufficiently large finite M and natural m.

Proof. P_{0}^{M} and K_{0} correspond to the control $u(t) \equiv \pi$ in (3)-(4). In this case the condition $\left(\psi_{2}(\log M), \ldots, \psi_{n}(\log M)\right)=(0, \ldots, 0,1)$ requires the initial value $\left(\xi_{2}, \ldots, \xi_{n}\right)=\left((n-1) p_{n-1, M}, \ldots, 2 p_{2, M}, 1\right), 1<M \leq \infty$, in (4).

Put $n=2 m+1$ and write the Hamilton function at $t=0$,

$$
H\left(0, a^{0}, \bar{\xi}, u\right)=-2 \sum_{s=1}^{2 m} \xi_{s+1} \cos (s u)
$$

Hence

$$
\frac{\partial H\left(0, a^{0}, \bar{\xi}, u\right)}{\partial u}=2 \sum_{s=1}^{2 m} s \xi_{s+1} \sin (s u)
$$

and this derivative vanishes at $u=\pi$. Moreover,

$$
\left.\frac{\partial^{2} H\left(0, a^{0}, \bar{\xi}, u\right)}{\partial u^{2}}\right|_{u=\pi}=2 \sum_{s=1}^{2 m}(-1)^{s} s^{2} \xi_{s+1}
$$

Evidently this derivative vanishes if $M=\infty$. It must be non-positive for finite M if $u \equiv \pi$ satisfies Pontryagin's maximum principle.

Let us examine how this derivative depends on M. Write
$h(M)=\sum_{s=1}^{2 m}(-1)^{s} s^{2} \xi_{s+1}=\sum_{s=1}^{2 m}(-1)^{s} s^{2}(2 m+1-s) p_{2 m+1-s, M}, \quad p_{1, M}=1$.
Every coefficient $p_{j, M}$ can be found from (3). It is the j th coordinate of the vector $a(\log M)$ if $u(t) \equiv \pi$. Put $T=1-1 / M, h(M)=h(1 /(1-T))=g(T)$. Then by elementary calculations we find from (3) that

$$
\left.\frac{d g}{d T}\right|_{T=1}=\frac{1}{3} \sum_{s=1}^{2 m-1}(-1)^{s} s^{2}(2 m-s)(2 m+1-s)^{2}(2 m+2-s)
$$

One can verify that $(1 / 12)(j+1)(j+2)^{2}(j+3)$ is the j th coefficient of the function $(1-z)^{-4}+2 z(1-z)^{-5}$ while $(-1)^{s} s^{2}$ is the $(s-1)$ th coefficient of $(z-1)(z+1)^{-3}$. Thus $\left.\left(-\frac{1}{4}\right) \frac{d g}{d T}\right|_{T=1}$ is the $(2 m-2)$ th coefficient of $\left(1-z^{2}\right)^{-2}(1-z)^{-2}$, and it is positive. Hence $h(M)$ is decreasing for sufficiently large M. Since $h(\infty)=0$, we conclude that $h(M)>0$ for large M.

The last result contradicts the maximizing property of the control $u=\pi$. This proves Theorem 1.
3. Now we are going to investigate the extremal properties of even coefficients of Pick functions.

Theorem 2. For every natural m there exists $M_{2 m}^{+}>1$ such that each function $f \in S^{M}$ satisfies the inequalities (2) for $n=2 m$ and all $M \geq M_{2 m}^{+}$.

Proof. Let X denote an arbitrary neighbourhood of the function K_{0} in the class S, endowed with the topology of uniform convergence on compact subsets of the unit disk. Set $X^{M}=X \cap S^{M}$. The Pick function P_{0}^{M} belongs to X^{M} for sufficiently large M. By Section 1, it is sufficient to show that only P_{0}^{M} gives a local maximum for $\operatorname{Re} a_{n}$ in X^{M}.

Again we have $\left(\psi_{2}(\log M), \ldots, \psi_{n}(\log M)\right)=(0, \ldots, 0,1)$ at a point $x \in \partial V_{n}^{M}$ where $\operatorname{Re} a_{n}$ attains its maximum. If x comes from a function $f \in S^{M}$ with expansion (1), then we need the initial value $\left(\xi_{2}, \ldots, \xi_{n}\right)=$ $\left((n-1) a_{n-1}, \ldots, 2 a_{2}, 1\right)$ in (4).

Put $n=2 m, \xi^{0}=\left(\xi_{1},(2 m-1)^{2}, \ldots, 1\right)^{T}$. Then

$$
H\left(0, a^{0}, \bar{\xi}^{0}, u\right)=-2 \sum_{s=1}^{2 m-1}(2 m-s)^{2} \cos (s u)
$$

By elementary calculations we find that

$$
H\left(0, a^{0}, \bar{\xi}^{0}, u\right)-H\left(0, a^{0}, \bar{\xi}^{0}, \pi\right)=\frac{(-\sin u)[2 m \sin u-\sin (2 m u)]}{(1-\cos u)^{2}}
$$

It is easy to verify that the right-hand side of this equality is negative on [$0,2 \pi$], except for $u=\pi$, where it vanishes. Thus

$$
\begin{equation*}
H\left(0, a^{0}, \bar{\xi}^{0}, u\right) \leq H\left(0, a^{0}, \bar{\xi}^{0}, \pi\right) \tag{7}
\end{equation*}
$$

with equality only for $u=\pi$. Moreover,

$$
\frac{\partial H\left(0, a^{0}, \bar{\xi}^{0}, u\right)}{\partial(\cos u)}=2 \sum_{s=1}^{2 m-1}(-1)^{s} s^{2}(2 m-s)^{2}
$$

This is the $(2 m-2)$ th coefficient of $-2\left(1-z^{2}\right)^{-2}$, and it is negative.
The sign of this derivative and the inequality (7) are preserved for close points ξ. Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)^{T}$ be an arbitrary point in a neighbourhood of ξ^{0}, with ξ_{2}, \ldots, ξ_{n} real. Then according to the continuity principle $H\left(0, a^{0}, \bar{\xi}, u\right)$ attains its maximum on $[0,2 \pi]$ at the single point $u=\pi$. We can choose $\left(\xi_{2}, \ldots, \xi_{n}\right)=\left((n-1) p_{n-1, M}, \ldots, 2 p_{2, M}, 1\right)$ for sufficiently large M. The control $u=\pi$ satisfies Pontryagin's maximum principle for $t>0$ in a certain neighbourhood of the initial value $t=0$, and the corresponding solution $w(z, t)$ of Loewner's differential equation (5) has real coefficients. Hence $u=\pi$ is optimal on the whole half-axis $[0, \infty$) (see e.g. [6], [7]). This gives the Pick function P_{0}^{M}. So P_{0}^{M} satisfies the necessary conditions for maximum of $\operatorname{Re} a_{n}$.

It remains to show that the necessary conditions for an extremum hold at a unique point in X^{M}.

Let us consider the point $a=(1,2, \ldots, n)^{T}$ in $\partial V_{n}=\partial V_{n}^{\infty}$ and its neighbourhood $Q_{a}, Q_{a} \subset \partial V_{n}$. Points of Q_{a} appear as the phase space projections of solutions of the Cauchy problem for the Hamilton system (3), (4). The neighbourhood Q_{a} corresponds to a neighbourhood Q_{ξ} of the initial value $\Lambda=\left(\xi_{2}, \ldots, \xi_{n}\right)=\left((n-1)^{2}, \ldots, 1\right)$ in (4). This correspondence is not one-to-one. All points $\xi^{*} \in Q_{\xi}$ with real coordinates $\xi_{2}^{*}, \ldots, \xi_{n}^{*}$ are mapped to the point a. The correspondence between the conjugate vector and the initial value is one-to-one in Q_{ξ}. This means that the hypersurface ∂V_{n} does not have any tangent hyperplane at a. It has support hyperplanes there. The initial value Λ selects the support hyperplane Π with normal vector $(0, \ldots, 0,1)$. But Π and ∂V_{n} may be tangent along some directions in the imaginary parts of coordinates of the phase vector, i.e. along the directions of the imaginary parts of ξ_{2}, \ldots, ξ_{n}. We will show that this is at most first order tangency.

Let $(a(t), \psi(t))$ solve the Cauchy problem (3)-(4) with $u=\pi$ and with initial value Λ, and let $\Lambda^{*}=\left(\xi_{2}^{*}, \ldots, \xi_{n}^{*}\right)=\Lambda+\varepsilon\left(\delta_{2}, \ldots, \delta_{n}\right)$, where $\varepsilon>0$, and $\delta_{2}, \ldots, \delta_{n}$ are constant complex numbers. Suppose that Π and ∂V_{n} have second order tangency along the direction determined by $\left(\delta_{2}, \ldots, \delta_{n}\right)$. The phase vector $a^{*}(t)$ and the conjugate vector $\psi^{*}(t)$ solve the Cauchy problem (3)-(4) with $\psi^{*}(0)=\left(\xi_{1}, \xi_{2}^{*}, \ldots, \xi_{n}^{*}\right)^{T}$ and with optimal control $u^{*}=u^{*}\left(t, a^{*}, \bar{\psi}^{*}\right)$.

Second order tangency implies that $\operatorname{Re} a_{n}^{*}(\infty)=n+O\left(\varepsilon^{3}\right)$. Since $\left|a_{n}^{*}(\infty)\right|$ $\leq n$, we have $\operatorname{Im} a_{n}^{*}(\infty)=O\left(\varepsilon^{2}\right)$, and so $a_{n}^{*}(\infty)=n+O\left(\varepsilon^{2}\right)$. By E. Bombieri's result stated in [5], there are constants α_{n} and β_{n} such that $\operatorname{Re}\left(2-a_{2}\right)$ $<\alpha_{n} \operatorname{Re}\left(n-a_{n}\right)$ for n even, and $\left|2-a_{2}\right| \leq \beta_{n}$. It follows that $\operatorname{Re} a_{2}^{*}(\infty)=$ $2+O\left(\varepsilon^{3}\right), \operatorname{Im} a_{2}^{*}(\infty)=O\left(\varepsilon^{2}\right)$, and so $a_{2}^{*}(\infty)=2+O\left(\varepsilon^{2}\right)$. By D. Bshouty's result [2], there exist constants c_{k} and d_{k} such that for $k \geq 2, \operatorname{Re}\left(k-a_{k}\right)$ $\leq c_{k} \operatorname{Re}\left(2-a_{2}\right)$ and $k-\left|a_{k}\right| \leq d_{k} \operatorname{Re}\left(2-a_{2}\right)$. It follows that for $2 \leq$ $k \leq n, \operatorname{Re} a_{k}^{*}(\infty)=k+O\left(\varepsilon^{3}\right), \operatorname{Im} a_{k}^{*}(\infty)=O\left(\varepsilon^{2}\right)$, and so $a_{k}^{*}(\infty)=$ $k+O\left(\varepsilon^{2}\right)$. Hence $\left(\psi_{2}^{*}(\infty), \ldots, \psi_{n}^{*}(\infty)\right)=(0, \ldots, 0,1)+O(\varepsilon)$. The relation (6) at $t=0$ implies that $\Lambda^{*}=\Lambda+O\left(\varepsilon^{2}\right)$. This contradicts our assumptions.

Thus the hyperplane Π may have at most first order tangency to ∂V_{n} along some directions. Π is the unique support hyperplane with normal vector $(0, \ldots, 0,1)$ in the neighbourhood Q_{a}. The hypersurfaces ∂V_{n}^{M} depend analytically on M, except for manifolds of smaller dimension. Hence, passing from ∂V_{n} to ∂V_{n}^{M}, we have the unique support hyperplane with normal vector $(0, \ldots, 0,1)$ in a neighbourhood $Q_{a}^{M} \subset \partial V_{n}^{M}$ of the point $a^{M}=\left(1, p_{2, M}, \ldots, p_{n, M}\right)^{T}$, for M sufficiently large. This ends the proof.

Theorem 2 answers affirmatively the Jakubowski conjecture.

References

[1] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
[2] D. Bshouty, A coefficient problem of Bombieri concerning univalent functions, Proc. Amer. Math. Soc. 91 (1984), 383-388.
[3] V. G. Gordenko, Sixth coefficient estimate for bounded univalent functions, in: Theory of Functions and Approximation, Proc. 6th Saratov Winter School, Saratov (in Russian), to appear.
[4] Z. Jakubowski, On some extremal problems in classes of bounded univalent functions, Zeszyty Nauk. Politechn. Rzeszowskiej Mat. Fiz. 16 (2) (1984), 9-16 (in Polish).
[5] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[6] D. V. Prokhorov, Value sets of systems of functionals in classes of univalent functions, Mat. Sb. 181 (12) (1990), 1659-1677 (in Russian).
[7] -, Reachable Set Methods in Extremal Problems for Univalent Functions, Izdat. Saratov. Univ., 1992.

FACULTY OF MATHEMATICS AND MECHANICS
SARATOV STATE UNIVERSITY
ASTRAKHANSKAYA, 83
410071 SARATOV, RUSSIA

[^0]: 1991 Mathematics Subject Classification: Primary 30C50.
 Key words and phrases: coefficient estimates, univalent function, Pick function, Koebe function.

