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Uniformly convex functions II

by Wancang Ma and David Minda (Cincinnati, Ohio)

Abstract. Recently, A. W. Goodman introduced the class UCV of normalized uni-
formly convex functions. We present some sharp coefficient bounds for functions f(z) =
z + a2z

2 + a3z
3 + . . . ∈ UCV and their inverses f−1(w) = w + d2w

2 + d3w
3 + . . . . The

series expansion for f−1(w) converges when |w| < %f , where 0 < %f depends on f . The
sharp bounds on |an| and all extremal functions were known for n = 2 and 3; the extremal
functions consist of a certain function k ∈ UCV and its rotations. We obtain the sharp
bounds on |an| and all extremal functions for n = 4, 5, and 6. The same function k and its
rotations remain the only extremals. It is known that k and its rotations cannot provide
the sharp bound on |an| for n sufficiently large. We also find the sharp estimate on the
functional |µa22 − a3| for −∞ < µ < ∞. We give sharp bounds on |dn| for n = 2, 3 and
4. For n = 2, k−1 and its rotations are the only extremals. There are different extremal
functions for both n = 3 and n = 4. Finally, we show that k and its rotations provide the
sharp upper bound on |f ′′(z)| over the class UCV.

1. Introduction. This is a continuation of our investigation of uniformly
convex functions [MM]. Goodman [G] introduced the geometrically defined
class UCV of uniformly convex functions in the unit disk D = {z : |z| < 1}.
A function f is said to be uniformly convex in D if f is a normalized (f(0) =
f ′(0)−1 = 0) convex function and has the additional property that for every
circular arc γ contained in D, with center also in D, the image arc f(γ) is
convex.

The class CV of normalized (f(0) = f ′(0)−1 = 0) convex univalent func-
tions f is closely related to the class P of normalized holomorphic functions
with positive real part. Recall that a holomorphic function p defined on D
belongs to P provided that p(0) = 1 and Re{p(z)} > 0, z ∈ D. Precisely,
f ∈ CV if and only if p(z) = 1 + zf ′′(z)/f ′(z) ∈ P.

In the earlier paper [MM], we introduced a subfamily PAR of P that plays
an analogous role for the class UCV. Let PAR = {p(z) ∈ P : p(D) ⊆ Ω},
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where

Ω = {w = u+ iv : v2 < 2u− 1} = {w : Rew > |w − 1|} .
The characterization that f ∈ UCV if and only if p(z) = 1 + zf ′′(z)/f ′(z) ∈
PAR was proved independently by Ma and Minda [MM], and Rønning [Rø1].
This characterization enabled us to derive some subordination results for the
class UCV, from which we derived sharp distortion, growth, rotation and
covering theorems, and sharp bounds on the second and third coefficients
as well as the sharp order of growth for the coefficients [MM]. In all of
these cases, the function k given below is the sole extremal function up to
rotations. The sharp bound on the second coefficient and an estimate for
all coefficients were also discovered by Rønning [Rø1]. In [Rø2], Rønning
presented a convolution theorem related to UCV.

In [MM], we also defined holomorphic functions kn(z) in D by kn(0) =
k′n(0)− 1 = 0 and

1 + zk′′n(z)/k′n(z) = q(zn−1) ,
where q(z) is a normalized Riemann mapping function from D to Ω. Explic-
itly,

q(z) = 1 +
2
π2

(
log

1 +
√
z

1−
√
z

)2

= 1 +
∞∑
n=1

Bnz
n

= 1 +
8
π2

∞∑
n=1

(
1
n

n−1∑
k=0

1
2k + 1

)
zn .

Clearly kn(z) ∈ UCV. We write k2(z) as k(z) and set k(z) = z + A2z
2 +

A3z
3+. . . . The function k cannot be extremal for the problem of maximizing

the modulus of the nth coefficient of functions in UCV for n sufficiently large
[MM].

In this paper, we first prove that k and its rotations are still extremal for
the problem of maximizing the modulus of the nth coefficient of functions
in UCV when n = 4, 5 and 6. For the inverse function f−1(w) = w+d2w

2 +
d3w

3 + . . . , it is interesting to observe that extremal functions of |dn| are
kn and its rotations when n = 2, 3 and 4. Then we find the sharp estimate
of the coefficient functional |µa2

2 − a3|, −∞ < µ <∞. Finally, in Section 4,
we obtain the sharp upper bound on |f ′′(z)|.

2. Preliminaries. If f(z) = z + a2z
2 + a3z

3 + . . . ∈ UCV, then there
exists a function p(z) = 1 + b1z + b2z

2 + b3z
3 + . . . ∈ PAR such that

p(z) = 1 + zf ′′(z)/f ′(z) .

Although the bounds |bn| ≤ B1 = 8/π2 (n = 1, 2, . . .) [MM] are sharp
for p(z) ∈ PAR, they do not yield sharp bounds for |an| when n ≥ 3.
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Here our idea is to obtain bounds on |an| by first expressing an in terms of
coefficients of a function in the class P and then using coefficient bounds for
functions in P. In this section, we derive the expressions needed and prove
some coefficient inequalities for functions in P.

The relationship between f(z) ∈ UCV and p(z) ∈ PAR implies that

(1) n(n− 1)an =
n−1∑
k=1

kakbn−k .

Furthermore, we have

(2)

2a2 = b1 ,

6a3 = b2 + b21 ,

12a4 = b3 + 3
2b2b1 + 1

2b
3
1 ,

20a5 = b4 + 4
3b3b1 + 1

2b
2
2 + b2b

2
1 + 1

6b
4
1 ,

30a6 = b5 + 5
4b4b1 + 5

6b3b2 + 5
6b3b

2
1 + 5

8b
2
2b1 + 5

12b2b
3
1 + 1

24b
5
1 .

Since q(z) is univalent in D and p ≺ q, the function

p1(z) =
1 + q−1(p(z))
1− q−1(p(z))

= 1 + c1z + c2z
2 + c3z

3 + . . .

is holomorphic and has positive real part in D, that is, p1 ∈ P. Equivalently,

p(z) = q

(
p1(z)− 1
p1(z) + 1

)
.

From the power series expansion of q,

q(z) = 1 +
8
π2
z +

16
3π2

z2 +
184
45π2

z3 +
352

105π2
z4 +

4504
1575π2

z5 + . . . ,

we can express bn in terms of cn by direct calculation. Precisely,

(3)

b1 =
4
π2
c1 ,

b2 =
1
π2

(4c2 − 2
3c

2
1) ,

b3 =
1
π2

(4c3 − 4
3c1c2 + 8

45c
3
1) ,

b4 =
1
π2

(4c4 − 4
3c1c3 −

2
3c

2
2 + 8

15c
2
1c2 − 2

35c
4
1) ,

b5 =
1
π2

(4c5 − 4
3c1c4 −

4
3c2c3 + 8

15c
2
1c3 + 8

15c1c
2
2 − 8

35c
3
1c2 + 32

1575c
5
1) .

The equalities in (2) and (3) then yield that

(4.1) 2a2 =
4
π2
c1 ,
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(4.2) 6a3 =
4
π2
c2 +

2
3π2

(
24
π2
− 1
)
c21 ,

(4.3) 12a4 =
4
π2
c3 +

4
3π2

(
18
π2
− 1
)
c2c1 +

8
45π2

(
1− 45

2π2
+

180
π4

)
c31 ,

(4.4) 20a5 =
4
π2
c4 +

4
3π2

(
16
π2
− 1
)
c3c1 +

2
π2

(
4
π2
− 1

3

)
c22

+
8
π2

(
1
15
− 11

9π2
+

8
π4

)
c2c

2
1 +

2
π2

(
− 1

35
+

79
135π2

− 16
3π4

+
64
3π6

)
c41 ,

(4.5) 30a6 =
4
π2
c5 +

4
π2

(
5
π2
− 1

3

)
c4c1 +

4
3π2

(
10
π2
− 1
)
c3c2

+
4

3π2

(
2
5
− 20

3π2
+

40
π4

)
c3c

2
1 +

2
π2

(
4
15
− 35

9π2
+

20
π4

)
c22c1

+
4
π2

(
− 2

35
+

1
π2
− 70

9π4
+

80
3π6

)
c2c

3
1

+
2

3π2

(
16
525
− 109

189π2
+

47
9π4
− 80

3π6
+

64
π8

)
c51 .

Hence coefficient estimates for the class UCV become non-linear coefficient
problems for the class P. Note that if p1(z) = (1 + z)/(1 − z), then p = q
and f = k. Hence, if cn = 2 for all n, then bn = Bn and an = An. We list
the explicit expressions for An when n = 2, 3, 4, 5 and 6:

A2 =
4
π2

, A3 =
8

9π2
+

32
3π4

, A4 =
46

135π2
+

16
3π4

+
64
3π6

,

A5 =
88

525π2
+

1952
675π4

+
256
15π6

+
512
15π8

,

A6 =
2252

23625π2
+

14656
8505π4

+
4864
405π6

+
1024
27π8

+
2048
45π10

.

Now we recall some coefficient bounds for p1(z) = 1 + c1z + c2z
2 + c3z

3

+ . . .∈P. It is well known that |cn|≤2 (n = 1, 2, . . .). Livingston [L] proved
that |cncm−cn+m| ≤ 2 for n,m = 1, 2, . . . . We can also obtain the following
lemma.

Lemma 1. If p1(z) = 1 + c1z + c2z
2 + c3z

3 + . . . ∈ P, then

|c2n − 1
2c

2
n| ≤ 2− 1

2 |cn|
2 ,(5)

|µc2nc2n − c4n| ≤ 8(µ− 2) (µ ≥ 4)(6)

and

(7) |µcnc2n − c3n| ≤ 4(µ− 2) (µ ≥ 6) .
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P r o o f. For p1(z) = 1 + c1z + c2z
2 + c3z

3 + . . . ∈ P , we define

h(z) =
1
n

n∑
k=1

p1(e−i2kπ/nz) .

Then h(z) = 1 + cnz
n + c2nz

2n + c3nz
3n + . . . ∈ P , so that the function

h1(z) = 1 + cnz + c2nz
2 + c3nz

3 + . . . ∈ P . Hence it is enough to show the
desired inequalities for n = 1.

Consider

w(z) =
p1(z)− 1
p1(z) + 1

= 1
2c1z + 1

2 (c2 − 1
2c

2
1)z2 + . . . ,

which is holomorphic in D with w(0) = 0 and |w(z)| < 1. As |w′′(0)/2| ≤
1− |w′(0)|2 [A, p. 136], we have

|c2 − 1
2c

2
1| ≤ 2− 1

2 |c1|
2 .

If µ ≥ 2, then

|µc21c2 − c41| = |c1|2|µ(c2 − 1
2c

2
1) + ( 1

2µ− 1)c21|
≤ |c1|2{µ(2− 1

2 |c1|
2) + ( 1

2µ− 1)|c1|2} = |c1|2(2µ− |c1|2) .

As 0 ≤ |c1| ≤ 2 and the right-hand side of the above inequality is an
increasing function of |c1| for µ ≥ 4, we have inequality (6) when n = 1.

If µ ≥ 2, then

|µc1c2 − c31| = |c1||µ(c2 − 1
2c

2
1) + ( 1

2µ− 1)c21|
≤ |c1|{µ(2− 1

2 |c1|
2) + ( 1

2µ− 1)|c1|2} = |c1|(2µ− |c1|2) .

Again the right-hand side of this inequality is an increasing function of |c1|
for 0 ≤ |c1| ≤ 2 and µ ≥ 6. This completes the proof of Lemma 1.

3. Coefficient bounds. Now we are ready to prove coefficient bounds
for functions in UCV.

Theorem 1. Let f(z) = z + a2z
2 + a3z

3 + . . . ∈ UCV. Then |an| ≤ An
(n = 4, 5, 6). Equality holds if and only if f(z) is k(z) or one of its rotations.

P r o o f. When n = 4, we see that the coefficients in the expression of a4

in (4.3) are all positive. So we get |a4| ≤ A4 from |ck| ≤ 2 (k = 1, 2, 3).
When n = 5, from (4.4) we have

20a5 =
4
π2
c4 +

4
3π2

(
16
π2
− 1
)
c3c1 +

2
π2

(
4
π2
− 1

3

)
c22

+
16
3π2

(
2
35
− 43

45π2
+

4
π4

+
32
π6

)
c2c

2
1

+
2
π2

(
1
35
− 79

135π2
+

16
3π4
− 64

3π6

)
(4c21c2 − c41) .
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In this expression, all coefficients are positive. By using (6) of Lemma 1 for
n = 1, µ = 4 and |ck| ≤ 2 (k = 1, 2, 3, 4), we see that the upper bound of
|a5| is given if we replace all ck by 2. That is, we have |a5| ≤ A5.

When n = 6, we rearrange the expression for a6 given in (4.5) as follows:

30a6 =
4
π2
c5 +

4
π2

(
5
π2
− 1

3

)
c4c1 +

4
3π2

(
10
π2
− 1
)
c3c2

+
2

3π2

(
16
525
− 109

189π2
+

47
9π4
− 80

3π6
+

64
π8

)
(c3 − 2c2c1 + c31)c21

+
2

3π2

(
404
525
− 2411

189π2
+

673
9π4

+
80
3π6
− 64
π8

)
c3c

2
1

+
4

3π2

(
74
525
− 458

189π2
+

163
9π4
− 160

3π6
− 64
π8

)
(6c2c1 − c31)c2

+
2
π2

(
− 52

175
+

1097
189π2

− 472
9π4

+
640
3π6

+
256
π8

)
c22c1 .

Now, all coefficients in this expression are positive. This time we use (7) of
Lemma 1 for n = 1 and µ = 6, |c3 − 2c2c1 + c31| ≤ 2 [LZ] and |ck| ≤ 2
(k = 1, . . . , 5) to derive that the upper bound of 30|a6| is achieved when we
replace all ck by 2. Thus we have |a6| ≤ A6.

In each case, we have used the inequality |c1| ≤ 2 in our proof. Hence
equality holds only if p1(z) = (1 + z)/(1− z) or one of its rotations, which
implies that f = k or one of its rotations. On the other hand, it is clear
that inequalities become equalities for k and its rotations. This completes
the proof of Theorem 1.

Next we discuss the coefficient functional |µa2
2− a3|. But first, we intro-

duce the following functions in UCV. For 0 ≤ λ ≤ 1, define hλ and gλ by
hλ(0) = h′λ(0)− 1 = gλ(0) = g′λ(0)− 1 = 0,

1 +
zh′′λ(z)
h′λ(z)

= q

(
z(z + λ)
1 + λz

)
, 1 +

zg′′λ(z)
g′λ(z)

= q

(
−z(z + λ)

1 + λz

)
.

Then it is clear that both hλ and gλ belong to UCV. Also notice that h1 = k,
h0 = k3, g1(z) = −k(−z) and g0(z) = −k3(−z).

Theorem 2. Let f(z) = z + a2z
2 + a3z

3 + . . . ∈ UCV. Then

|µa2
2 − a3| ≤



8
3π2

(
6
π2
µ− 4

π2
− 1

3

)
if

2
3

+
5π2

36
≤ µ,

4
3π2

if
2
3
− π2

36
≤ µ ≤ 2

3
+

5π2

36
,

8
3π2

(
− 6
π2
µ+

4
π2

+
1
3

)
if µ ≤ 2

3
− π2

36
.
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Equality holds if and only if f is k or one of its rotations when µ < 2/3 −
π2/36 or 2/3 + 5π2/36 < µ. For 2/3− π2/36 < µ < 2/3 + 5π2/36, equality
holds if and only if f is equal to k3 or one of its rotations. If µ = 2/3 −
π2/36, then equality holds if and only if f is hλ or one of its rotations.
Finally , equality holds if and only if f is gλ or one of its rotations when
µ = 2/3 + 5π2/36.

R e m a r k. When 2/3−π2/36 < µ < 2/3 + 5π2/36, the above inequality
can be improved as follows:

|µa2
2 − a3|+

1
12

(
π2

3
+ 12µ− 8

)
|a2|2 ≤

4
3π2

if
2
3
− π2

36
< µ ≤ 2

3
+
π2

18

and

|µa2
2 − a3|+

1
12

(
5π2

3
− 12µ+ 8

)
|a2|2 ≤

4
3π2

if
2
3

+
π2

18
≤ µ < 2

3
+

5π2

36
.

In particular, by setting µ = 1, we get

|a2
2 − a3|+

(
1
3

+
π2

36

)
|a2|2 ≤

4
3π2

.

This clearly improves |a2
2 − a3| + 1

3 |a2|2 ≤ 1
3 , which was established for

normalized convex functions (see [T]).

P r o o f o f T h e o r e m 2. From (4.1) and (4.2) we obtain

µa2
2 − a3 =

1
3π2

((
12
π2
µ− 8

π2
+

1
3

)
c21 − 2c2

)
.

If µ ≥ 2/3 + 5π2/36, then 12µ/π2 − 8/π2 − 5/3 ≥ 0 and

|µa2
2 − a3| =

1
3π2

∣∣∣∣(12
π2
µ− 8

π2
− 5

3

)
c21 + 2(c21 − c2)

∣∣∣∣
≤ 1

3π2

(
4
(

12
π2
µ− 8

π2
− 5

3

)
+ 4
)

=
8

3π2

(
6
π2
µ− 4

π2
− 1

3

)
.

Here we have used |c21 − c2| ≤ 2 and |c1| ≤ 2.
If µ ≤ 2/3−π2/36, then −12µ/π2 +8/π2−1/3 ≥ 0 and |c1| ≤ 2, |c2| ≤ 2

imply that

|µa2
2 − a3| =

1
3π2

∣∣∣∣(−12
π2
µ+

8
π2
− 1

3

)
c21 + 2c2

∣∣∣∣
≤ 8

3π2

(
− 6
π2
µ+

4
π2

+
1
3

)
.
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Now we assume 2/3−π2/36 ≤ µ ≤ 2/3+π2/18, then −12µ/π2 +8/π2 +
2/3 ≥ 0. By using (5) of Lemma 1 for n = 1, we have

|µa2
2 − a3|+

1
12

(
π2

3
+ 12µ− 8

)
|a2|2

=
1

3π2

{∣∣∣∣2(c2 − 1
2
c21

)
+
(
−12
π2
µ+

8
π2

+
2
3

)
c21

∣∣∣∣
+
(

12
π2
µ− 8

π2
+

1
3

)
|c1|2

}
≤ 1

3π2

{
4− |c1|2 +

(
−12
π2
µ+

8
π2

+
2
3

)
|c1|2 +

(
12
π2
µ− 8

π2
+

1
3

)
|c1|2

}
=

4
3π2

.

This is the stronger result in the remark above.
Finally, we consider the case when 2/3 + π2/18 ≤ µ ≤ 2/3 + 5π2/36.

Note that in this case 12µ/π2 − 8/π2 − 2/3 ≥ 0. Once again we use (5) for
n = 1 to get

|µa2
2 − a3|+

1
12

(
5π2

3
− 12µ+ 8

)
|a2|2

=
1

3π2

{∣∣∣∣2(c2 − 1
2
c21

)
−
(

12
π2
µ− 8

π2
− 2

3

)
c21

∣∣∣∣
+
(
−12
π2
µ+

8
π2

+
5
3

)
|c1|2

}
≤ 1

3π2

{
4− |c1|2 +

(
12
π2
µ− 8

π2
− 2

3

)
|c1|2 +

(
−12
π2
µ+

8
π2

+
5
3

)
|c1|2

}
=

4
3π2

.

It is the stronger result stated in the above remark.
From our proof, we see that when µ < 2/3−π2/36 or µ > 2/3 + 5π2/36,

equality holds if and only if |c1| = 2, equivalently, f is k or one of its
rotations. For 2/3 − π2/36 < µ < 2/3 + 5π2/36, equality holds if and only
if |c2| = 2 and |c1| = 0, that is, f is equal to k3 or one of its rotations.

If µ = 2/3 − π2/36, then equality holds if and only if |c2| = 2, or up to
rotation [P, p. 41],

p1(z) =
1 + λ

2
1 + z

1− z
+

1− λ
2

1− z
1 + z

, 0 ≤ λ ≤ 1 .

So f is hλ or one of its rotations.
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Finally, when µ = 2/3+5π2/36, equality holds if and only if |c21−c2| = 2.
Thus up to rotation, p1 is given by

p1(z)−1 =
1 + λ

2
1 + z

1− z
+

1− λ
2

1− z
1 + z

, 0 ≤ λ ≤ 1 .

This implies that f is gλ or one of its rotations. This completes the proof
of Theorem 2.

The known sharp bounds on |a2| and |a3| can easily be obtained from
Theorem 2.

To discuss coefficient bounds for the inverses of functions in UCV, we
first observe that for the inverse function Kn(w) of kn(z),

Kn(w) = w − 8
(n− 1)nπ2

wn + . . . .

Hence for f ∈ UCV with F (w) = f−1(w) = w + d2w
2 + d3w

3 + . . . ,

max{|dn| : f ∈ UCV} ≥ 8
(n− 1)nπ2

.

For n = 2, 3, 4, we can prove that equality holds. Note that the series expan-
sion for f−1(w) converges when |w| < %f , where 0 < −k(−1) ≤ %f [MM]
depends on f .

Theorem 3. Let f ∈ UCV and F (w) = f−1(w) = w+d2w
2+d3w

3+. . . .
Then

|dn| ≤
8

(n− 1)nπ2
(n = 2, 3, 4) .

Equality holds if and only if f is equal to kn or one of its rotations.

P r o o f. As F (f(z)) = z, we have

d2 = −a2 , d3 = 2a2
2 − a3 , d4 = −a4 + 5a3a2 − 5a3

2 .

By using (4.1)–(4.3), we can express dn in terms of cn as follows:

d2 = − 2
π2
c1 , d3 =

1
3π2

((
16
π2

+
1
3

)
c21 − 2c2

)
and

d4 = − 1
3π2

(
c3 −

(
1
3

+
14
π2

)
c2c1 +

(
2
45

+
7

3π2
+

48
π4

)
c31

)
.

Now it is clear that |d2| ≤ 4/π2. Equality holds if and only if |c1| = 2,
that is, f is k or one of its rotations.

Also,

|d3| =
1

3π2

∣∣∣∣(16
π2

+
1
3

)
(c2 − c21) +

(
5
3
− 16
π2

)
c2

∣∣∣∣ ≤ 4
3π2

.
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Here we have used |c2 − c21| ≤ 2 and |c2| ≤ 2. Equality holds if and only if
|c2| = 2 and |c1| = 0, or equivalently, f is k3 or one of its rotations.

By using |c3 − 2c2c1 + c31| ≤ 2 [LZ], |c3 − c2c1| ≤ 2 and |c3| ≤ 2, we get

|d4| =
1

3π2

∣∣∣∣( 2
45

+
7

3π2
+

48
π4

)
(c3 − 2c2c1 + c31)

+
(

11
45

+
28
3π2
− 96
π4

)
(c3 − c2c1) +

(
32
45
− 35

3π2
+

48
π4

)
c3

∣∣∣∣ ≤ 2
3π2

.

In this case, the inequality becomes equality if and only if |c3| = 2 and
|c2| = |c1| = 0, which is the same as saying f is k4 or one of its rotations.
The proof of Theorem 3 is now complete.

4. Upper bound on |f ′′(z)|. Finally in this section, we derive the
sharp upper bound on |f ′′(z)| for functions in UCV.

Theorem 4. Let f ∈ UCV and |z| = r < 1. Then

|f ′′(z)| ≤ k′′(r) .
Equality holds for any z ∈ D if and only if f is k or one of its rotations.

P r o o f. Let p(z)=1+zf ′′(z)/f ′(z). Then p ≺ q implies that p−1 ≺ q−1.
As all coefficients of q − 1 are positive, the subordination principle yields
that for |z| = r,

|p(z)− 1| ≤ q(r)− 1 .
This is the same as

|f ′′(z)/f ′(z)| ≤ k′′(r)/k′(r) .
From |f ′(z)| ≤ k′(r) [MM], we see that

|f ′′(z)| ≤ k′(r)|f ′′(z)/f ′(z)| ≤ k′′(r) .
We also know that equality holds in |f ′(z)| ≤ k′(r) for some z 6= 0 if and
only if f is a rotation of k [MM]. Moreover, equality in Theorem 4 at z = 0
is equivalent to |a2| = A2. Hence equality holds if and only if f is k or one
of its rotations. This completes our proof.
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