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In [vB88], Johan van Benthem introduces Relational Semantics (RelSem for
short), and states Soundness Theorem for Lambek Calculus (LC) w.r.t. RelSem.
After doing this, he writes: “it would be very interesting to have the converse too”,
i.e., to have Completeness Theorem. The same question is in [vB91, p. 235]. In the
following, we state Strong Completeness Theorems for different versions of LC.

∗

First of all, let us define the language of LC. Given a denumerable set P of
primitive symbols, we let the set of formulae FormLC be the smallest set containing
every primitive symbol and closed under “\”, “/”, and “•”, i.e., if A,B ∈ FormLC,
then A\B, A/B, A•B ∈ FormLC. The set of sequents is the set of all expressions
of the form A1, . . . , An ⇒ A0 where n is a positive integer and Ai ∈ FormLC for
each i ≤ n.

LC is given by the following axiom and rules of inference, where A, B, C
stand for formulae and x, y, z stand for finite sequences of formulae including the
empty sequence 	 unless the contrary is asserted.

Axiom:

(0) A⇒ A .
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Rules of inference:

(1\) x⇒ A y,B, z ⇒ C

y, x,A\B, z ⇒ C
x non-empty, (2\) A, x⇒ B

x⇒ A\B
x non-empty,

(1/)
x⇒ A y,B, z ⇒ C

y,B/A, x, z ⇒ C
x non-empty, (2/)

x,A⇒ B

x⇒ B/A
x non-empty,

(3)
x⇒ A y ⇒ B

x, y ⇒ A •B
x, y non-empty, (4)

x,A,B, y ⇒ C

x,A •B, y ⇒ C
,

(5)
x⇒ A A⇒ B

x⇒ B
x non-empty.

A theorem of LC is a sequent deducible in LC (`LC), i.e., by the usual recursive
definition, a sequent is a theorem iff it is an instance of (0), or it is given by some
rule of inference from some theorem(s). More generally, let Γ be a set of sequents
and ϕ be a sequent. We say that ϕ is LC-deducible from Γ , Γ `LC ϕ, iff either

(i) ϕ ∈ Γ or
(ii) ϕ is an instance of (0) or
(iii) there is a set of sequents ∆ each of whose elements is LC-deducible from

Γ and there is an inference rule such that ∆
ϕ is an instance of this rule.

R e m a r k. If the set of primitive symbols is the set of basic types, then the
formulae are types and, roughly speaking, “⇒” of LC corresponds to the deriv-
ability relation of Categorial Grammar . On the other hand, if P is considered as
a set of propositional variables, then LC is a Gentzen-type inference system, and
hence it is a fragment of Linear Logic.

We give a Kripke-style semantics for LC, where we restrict the class of ordinary
Kripke models with ternary accessibility relation to the class of models where the
set of possible worlds consists of ordered pairs.

Definition of Relational Semantics. By a relational (Kripke) model for
LC we mean an ordered triple 〈W,C, v〉 which is a Kripke model in the usual
sense (i.e., W is a set of possible worlds, C is a (ternary) accessibility relation,
and v is an evaluation of expressions) and for which the following hold. W is a
transitive binary relation on some set U , and C ⊆ W ×W ×W such that, for
every x, y, z ∈ W , Cxyz holds iff {z} = {x} ◦ {y}, i.e., iff there are a, b, c ∈ U
such that x = 〈a, b〉, y = 〈b, c〉 and z = 〈a, c〉. Moreover, let

Exp
def= {A1, . . . , An : Ai ∈ FormLC, 1 ≤ i ≤ n, for some n}

∪{ϕ : ϕ is a sequent}
and let v : Exp → P(W ), the power set of W , be such that, for every A,B ∈
FormLC, and for every sequence x of formulae, v(x,A) = v(x •A) and

v(A •B) def= {z ∈W : (∃x ∈ v(A))(∃y ∈ v(B))Cxyz} ,

v(A\B) def= {y ∈W : (∀x ∈ v(A))∀z(Cxyz → z ∈ v(B))} ,
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v(B/A) def= {x ∈W : (∀y ∈ v(A))∀z(Cxyz → z ∈ v(B))} ,

v(x⇒ A) def= (W r v(x)) ∪ v(A) .

We say that a sequent ϕ of LC is true in a model 〈W,C, v〉, in symbols 〈W,C, v〉
� ϕ, iff v(ϕ) = W , or, equivalently, the sequent A1, . . . , An ⇒ A0 is true in the
model above iff

v(A1) ◦ . . . ◦ v(An) ⊆ v(A0).

A formula is valid with respect to RelSem iff it is true in every model. We denote
this by �R ϕ. We say that ϕ is a (RelSem) consequence of Γ , in symbols Γ �R ϕ,
iff, for every model 〈A, v〉, if 〈A, v〉 � Γ , then 〈A, v〉 � ϕ, where 〈A, v〉 � Γ
abbreviates that, for every ψ ∈ Γ , 〈A, v〉 � ψ.

R e m a r k. In the above definition,Exp can be thought of as the set of formulae
of a modal logic with three binary modalities: “•”, “\”, “/”. Then C is the
accessibility relation corresponding to the possibility-type modality “•”, and the
residuations are, in a certain sense, dual modalities of “•”. (Indeed, the modality
“\” is related to the modality “•” in a similar fashion as the temporal modality
“Always in the past”, denoted by “[P ]”, is related to “Sometime in the future”,
denoted by “〈F 〉”, in, e.g., [ANS91] and [Go87]. In [ANS91], “〈P 〉” is called the
conjugate of “〈F 〉” and “[P ]” is the dual of “〈P 〉”. So “\” is a dual of a conjugate
of “•” (−(A\ − B) = A−1 • B). It is instructive to meditate over the two steps
leading to “\” from “•”. The obvious dual of “•” is given by

v(A−1\B) = {z : (∀x ∈ v(A))(∃y ∈ v(B))Cxyz} .

A conjugate of this is defined as

v(A\B) = {z : (∀x ∈ v(A))(∃y ∈ v(B))Cxzy} .

Another conjugate of the same modality is defined by

v(B/A) = {z : (∀x ∈ v(A))(∃y ∈ v(B))Czxy}.)

Further, “⇒” is considered as classical implication. We can extend the relation
〈W,C, v〉 � ψ for ψ ∈ Exp in the usual way, i.e., it holds iff v(ψ) = W .

Now, we can formulate our first completeness theorem (which was first pre-
sented in [Mi91]).

Theorem 0 (Strong Completeness Theorem for LC w.r.t. RelSem). For any
set Γ of sequents, and for any sequent ϕ,

Γ `LC ϕ iff Γ �R ϕ .

R e m a r k. In the case of Γ = ∅, we have Weak Completeness Theorem w.r.t.
RelSem.

Corollary 0 (Compactness Theorem). For any set Γ of sequents and se-
quent ϕ, if Γ �R ϕ, then there is a finite ∆ ⊆ Γ such that ∆ �R ϕ.
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Theorem 0 is a consequence of Theorems 1 and 2 below, but we need some
definitions before formulating them.

Now we define the relations “≤Γ ” and “≡Γ ” on FormLC, for any set Γ of
sequents. We let, for every A,B ∈ FormLC,

A ≤Γ B iff Γ `LC A⇒ B and
A ≡Γ B iff (A ≤Γ B and B ≤Γ A) .

Let T be the formula algebra of LC, i.e.,

T
def= 〈FormLC, \, /, •〉

where “\”, “/” and “•” denote the obvious operations on FormLC.
Let LΓ be the factor structure of T by “≡Γ ”, i.e.,

LΓ
def= 〈L, \, /, •,≤Γ 〉

where L consists of the equivalence classes, i.e., L = {A : A ∈ FormLC} where
A = {B : A ≡Γ B}, and A\B = A\B, A/B = A/B, A •B = A •B and A ≤Γ B
iff A ≤Γ B.

Definition of Relational Structure (RS).

A ∈ RS iff A = 〈A, \, /, •,≤〉
where A is a non-empty set, “\”, “/” and “•” are arbitrary binary operations on
A, and “≤” is a binary relation on A.

Clearly, LΓ ∈ RS for every set Γ of sequents.
Let Σ be the following set of formulae (in the first-order language with equality

of RS) where x, y, z, u are variables:

(A1) x ≤ x ,
(A2) (x • y) • z ≤ x • (y • z) , (A3) x • (y • z) ≤ (x • y) • z ,
(A4) x • (x\y) ≤ y , (A5) (y/x) • x ≤ y ,
(A6) x • y ≤ z → y ≤ x\z , (A7) x • y ≤ z → x ≤ z/y ,
(A8) x ≤ y ∧ y ≤ z → x ≤ z ,
(A9) x ≤ y ∧ z ≤ u→ x • z ≤ y • u ,

(A10) x ≤ y ∧ y ≤ x→ x = y.

These axioms say that an A ∈ RS satisfying them is an ordered semigroup, where
“≤” is the partial ordering, “•” is the semigroup operation, which is monotonic
w.r.t. “≤”, and x\y is the greatest element such that x • (x\y) ≤ y and similarly
for y/x.

Now we are ready to formulate the following.

Theorem 1. For any set Γ of sequents,

LΓ � Σ

where LΓ is the factor structure and Σ is the set of formulae above.
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Definition of Representable Relational Structure (RRS).

A ∈ fullRRS iff A = 〈A, \, /, ◦,⊆〉

where A = P(W ), for some fixed transitive binary relation W , and the operations
of A are left and right residuations relativized to W and relational composition,
respectively, i.e., for any binary relations a, b ⊆W ,

a\b def= {〈x, y〉 ∈W : ∀z(〈z, x〉 ∈ a→ 〈z, y〉 ∈ b)} ,

b/a
def= {〈x, y〉 ∈W : ∀z(〈y, z〉 ∈ a→ 〈x, z〉 ∈ b)} ,

a ◦ b def= {〈x, y〉 ∈W : ∃z(〈x, z〉 ∈ a ∧ 〈z, y〉 ∈ b)}.
Let RRS = SfullRRS, i.e., RRS consists of the substructures of every fullRRS.

We say that a sequent A1, . . . , An ⇒ A0 is true in a RRS A under the valuation
v, in symbols 〈A, v〉 � A1, . . . , An ⇒ A0, iff

v(A1) ◦ . . . ◦ v(An) ⊆ v(A0)

where v(Ai) (i ≤ n) is given by the natural extension of v from P to FormLC,
i.e., for any formulae A,B,

v(A\B) = v(A)\v(B), v(B/A) = v(B)/v(A), v(A •B) = v(A) ◦ v(B).

In other words, v is a homomorphism from the formula algebra given above into
an A ∈ RRS (here we disregard “⊆”, of course).

The main reason why Theorem 0 holds is the following representation theorem,
where IRRS denotes the collection of isomorphic copies of all elements of RRS.

Theorem 2. For every A ∈ RS,

A � Σ iff A ∈ IRRS.

S k e t c h o f p r o o f o f T h e o r e m 0. Soundness is easy to check.
For the other direction we assume Γ 0LC A1, . . . , An ⇒ B. Let A = A1 •

. . . • An. Then Γ 0LC A ⇒ B, i.e., A �Γ B in LΓ . By Theorems 1 and 2,
LΓ is in RRS. Let v be a map such that v(p) = p for every p ∈ P . Then we
have 〈LΓ , v〉 2 A1, . . . , An ⇒ B, so 〈W,C, v〉 2 A1, . . . , An ⇒ B for a (Kripke)
model 〈W,C, v〉. Since Γ is true in 〈LΓ , v〉, it is so in 〈W,C, v〉. So we have
Γ 2R A1, . . . , An ⇒ B.

R e m a r k. If, in the definition of Relational Semantics, we require that W =
U × U for some set U , then (Weak) Completeness Theorem fails. Indeed, the
sequent y ⇒ y • (y\y) is valid in those RRS”s in which W has the form U × U ,
because v(y\y) ⊇ Id∩(U×U), i.e., the value of y\y contains the identity relation.
On the other hand, let W = {〈0, 0〉, 〈0, 1〉} and consider P(W ) ∈ RRS. Let a =
{〈0, 1〉}. Then a\a = {〈0, 0〉, 〈0, 1〉} and a ◦ (a\a) = ∅, so a 6≤ a ◦ (a\a). Thus the
sequent y ⇒ y • (y\y) is not valid in RRS and, therefore, it is not derivable in LC.
See also [Do90].
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Theorems 9 and 10 investigate this U × U -type semantics and state strong
completeness of certain versions of LC w.r.t. it.

Let LCD be LC plus the following two rules:

(6)
x⇒ A x⇒ B

x⇒ A uB
, (7)

x⇒ A uB
x⇒ A x⇒ B

.

Let Θ be Σ plus the following two formulae:

(A11) z ≤ x ∧ z ≤ y → z ≤ x u y , (A12) z ≤ x u y → z ≤ x ∧ z ≤ y .

Theorem 3. For each sequent ϕ and set Γ of sequents of the language of
LCD,

Γ `LCD ϕ iff Γ �R′ ϕ

where in the definition of the consequence relation “�R′” we further require that
v(A uB) = v(A) ∩ v(B).

Corollary 1. If we add the axiom

A,B ⇒ B •A
to LC (or to LCD), then we have Strong Completeness Theorem w.r.t. Symmetric
RelSem, i.e., we consider only those models 〈W,C, v〉 for which v(A•B) = v(B•A)
for all formulae A, B. Moreover , we also have Compactness Theorem.

R e m a r k. As in the case of Theorem 0, we also have Weak Completeness
Theorem, i.e., a sequent A1, . . . , An ⇒ B is derivable in the above version of
LC iff v(A1) ◦ . . . ◦ v(An) ⊆ v(B) for every symmetric representable relational
structure and valuation v.

On the other hand, strong completeness fails if we add “t” to the set of
operations of LC (Theorem 5).

Definition. Let {∪,∩, ◦} ⊆ M ⊆ {∪,∩, ◦,−, −1, ∅, Id, \, /}. Then R(M) is
the class of all algebras (isomorphic to ones) whose elements are binary relations
and whose operations are the members of M .

Theorem 4. R(M) is a quasi-variety which is not finitely axiomatizable.

Let Qe(R(M)) denote the class of all quasi-equations that hold in R(M).

Corollary 2. Qe(R(M)) is not axiomatizable by finitely many quasi-
equations.

Theorem 5. The Relational Semantics with a set of connectives M has no
strongly complete and sound inference system.

I d e a o f p r o o f. Given a strongly complete inference system, one can trans-
late it to a finite set of quasi-equations axiomatizing Qe(R(M)).

Now we claim that LC is not (weakly) complete w.r.t. language models (LM)
and that there is no extension of LC which is sound w.r.t. U ×U -type Relational
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Semantics and is strongly complete w.r.t. LM. First, we recall the definition of
language models from [vB91, p. 189].

Definition of LanguageModel. A family of languages is a set {Li : i ∈ I},
where Li is a set of finite sequences (words) over a finite alphabet.

A language model is a family of languages enriched with the following opera-
tions:

La • Lb
def= {xy : x ∈ La, y ∈ Lb} ,

La\Lb
def= {x : (∀y ∈ La)yx ∈ Lb} ,

Lb/La
def= {x : (∀y ∈ La)xy ∈ Lb} .

A sequent A1, . . . , An ⇒ A0 is true in a language model if

v(A1) • . . . • v(An) ⊆ v(A0)

where v is the valuation function defined in the obvious way. The consequence
relation “�LM” is also the usual one.

Theorem 6. LC is not (weakly) complete w.r.t. language models.

Theorem 7. There is no calculus containing LC which is sound w.r.t. U×U -
type Relational Semantics and strongly complete w.r.t. language models.

Corollary 3. LC0, the version of the Lambek Calculus where we admit se-
quents with empty antecedent , is not strongly complete w.r.t. LM.

∗

Now we turn to investigating the connection between U× U -type Relational
Semantics and (various versions of) the Lambek Calculus. The main results are
Theorems 9 and 10, but, as before, the piths of the proofs are two representation
theorems (Theorems 8 and 11).

Let Σ+ be Σ plus the following four formulae:

x ≤ y → z ≤ z • (x\y) , x ≤ y → z ≤ (x\y) • z ,
x ≤ y → z ≤ z • (y/x) , x ≤ y → z ≤ (y/x) • z .

Let RRS+ be the class of those A ∈ RRS for which there is a B ∈ fullRRS such
that B = P(U × U) for some set U , and A is a substructure of B.

Theorem 8 (Andréka–Mikulás). For every A ∈ RS,
A � Σ+ iff A ∈ IRRS+.

Let LC+ be LC plus the following four rules:
A⇒ B

C ⇒ C • (A\B)
,

A⇒ B

C ⇒ (A\B) • C
,

A⇒ B

C ⇒ C • (B/A)
,

A⇒ B

C ⇒ (B/A) • C
.
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Let “�R+” be the semantic consequence relation which is determined by those re-
lational Kripke models whereW = U×U . Then we have the following consequence
of Theorem 8.

Theorem 9 (Andréka–Mikulás; Strong Completeness Theorem for LC+ w.r.t.
RelSem). For any set Γ of sequents, and for any sequent ϕ,

Γ `LC+ ϕ iff Γ �R+ ϕ .

Now, we turn to showing that if we allow the empty sequence to be the an-
tecedent of sequents in the Lambek Calculus, then it will become strongly com-
plete w.r.t. U × U -type Relational Semantics.

Let the language of LC0 be defined as that of LC except that we do not
exclude the sequents A1, . . . , An ⇒ A0 where n = 0, i.e., we allow sequents with
the empty sequence as antecedent. These sequents will be denoted by ⇒ A0 or
	 ⇒ A0.

Let LC0 be given by the axiom (0) and rules (1\)–(5) without any restriction,
i.e., any sequence of sequents (denoted as x, y or z in the definition of LC) can
be empty. Let “�R+” be as above. Then the following theorem holds.

Theorem 10 (Andréka–Mikulás; Strong Completeness Theorem for LC0 w.r.t.
RelSem). Let Γ ∪ {ϕ} be a set of sequents in the language of LC0. Then

Γ `LC0 ϕ iff Γ �R+ ϕ .

As before, the above completeness theorem is a consequence of an algebraic
representation theorem (Theorem 11 below).

Definition of RRS0.

A ∈ fullRRS0 iff A = 〈A, \, /, ◦,⊆, IdU , ∅〉
where A = P(U × U) for some set U , and 〈A, \, /, ◦,⊆〉 ∈ RRS. Further, IdU =
{〈u, u〉 : u ∈ U}, and the empty set, ∅, is considered as a binary relation.

Let RRS0 = SfullRRS0.

Definition of RS0.

A ∈ RS0 iff A = 〈A, \, /, •,≤, e, 0〉
where 〈A, \, /, •,≤〉 ∈ RS and e, 0 ∈ A.

Let Σ0 be Σ plus the following formulae:

e • x = x • e = x , 0 • x = x • 0 = 0 , 0 ≤ x .
Let ∆ be the set of the following formulae:

x • y = 0↔ (x = 0 ∨ y = 0) ,
x • y ≤ e↔ (x = 0 ∨ y = 0 ∨ x = y = e) .

Note that ∆ is not valid in RRS0 (while Σ0 is). That is why, in the following
theorem, only one direction is stated.
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Theorem 11 (Andréka–Mikulás). For every A ∈ RS0,

if A � Σ0 ∪∆, then A ∈ IRRS0 .
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