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ON THE EXPONENTIAL INTEGRABILITY
OF FRACTIONAL INTEGRALS ON SPACES

OF HOMOGENEOUS TYPE

BY

A. EDUARDO GATTO AND STEPHEN VÁG I (CHICAGO, ILLINOIS)

In this paper we show that the fractional integral of order α on spaces
of homogeneous type embeds L1/α into a certain Orlicz space. This extends
results of Trudinger [T], Hedberg [H], and Adams–Bagby [AB].

1. Definitions and statement of results. We will state the main
definitions needed in this paper and will refer to [GV] for other definitions
and properties. In this paper (X, δ, µ) will denote a space of homogeneous
type that is normal and will be referred to as a normal space. The property
of normality is defined as follows: Let Br(x) be the ball of center x and radius
r; then there are positive constants A1 and A2 such that for all x in X

A1r ≤ µ(Br(x)) if 0 < r < Rx

and
µ(Br(x)) ≤ A2r if r ≥ rx,

where rx = 0 if µ({x}) = 0, rx = sup{r > 0 : Br(x) = {x}} if µ({x}) 6= 0
and Rx = ∞ if µ(X) = ∞, Rx = inf{r > 0 : Br(x) = X} if µ(X) <∞. For
1 ≤ p ≤ ∞, Lp = Lp(X, δ, µ) has its usual meaning. The space (X, δ, µ) is
said to be of order γ , 0 < γ ≤ 1, if there exists a positive constant M such
that for every x, y, and z in X,

|δ(x, z)− δ(y, z)| ≤Mδ(x, y)γ(max {δ(x, z), δ(y, z)})1−γ .

In order to define the kernel of the fractional integral without having
to distinguish the case when the measure µ has atoms we shall adopt the
following abuse of notation: for 0 < α < 1 we define

1
δ(x, y)1−α

=
{

1/δ(x, y)1−α if x 6= y ,
0 if x = y .
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The fractional integral of order α, 0 < α < 1, in L1/α is defined by

Iαf(x) =
∫ f(y)
δ(x, y)1−α

dµ(y)

if f has bounded support, and otherwise by

Ĩαf(x) =
∫ {

1
δ(x, y)1−α

− ψz(y)
δ(z, y)1−α

}
f(y) dµ(y)

where ψz is the characteristic function of the complement of the ball B1(z),
and z is any fixed point in X.

R e m a r k. The convergence a.e. of both integrals and the fact that they
are elements of BMO was shown in [GV]. Note that the class of Ĩαf in BMO
is independent of the choice of z. If f has bounded support then Iαf and
Ĩαf define the same class in BMO.

Theorem 1. Let (X, δ, µ) be a normal space, 0 < α < 1, and let f
be in L1/α with support in a ball B. Then there are constants C1 and c
independent of B and f such that∫

B
exp

{(
|Iαf(x)|
C1‖f‖1/α

)1/(1−α)}
dµ(x) ≤ cµ(B) .

Theorem 2. Let (X, δ, µ) be a normal space of order γ, 0 < γ ≤ 1. Let
0 < α < 1 and let f belong to L1/α. Then there is a constant C2 independent
of f such that for every ball B we have∫

B

[
exp

{(
|Ĩαf(x)−mB(Ĩαf)|

C2‖f‖1/α

)1/(1−α)}
− 1

]
dµ(x) ≤ µ(B) .

where mB(Ĩαf) = µ(B)−1
∫
B Ĩαf dµ.

R e m a r k. The expression Iαf − mB(Iαf) coincides a.e. with Ĩαf −
mB(Ĩαf) if f has bounded support. Therefore it suffices to state the theorem
for Ĩα.

As mentioned above it was shown in [GV] that for f in L1/α, Ĩαf is
in BMO and ‖Ĩαf‖BMO ≤ c‖f‖1/α. This result and the John–Nirenberg
theorem [JN], [CW] imply that there are constants K1 and K2 such that∫

B
exp

{
|Ĩαf −mB(Ĩαf)|

K1‖f‖1/α

}
dµ ≤ K2µ(B)

for every ball B. But a stronger result is true as stated in Theorem 2. To
prove Theorem 2 it is convenient to introduce the related Orlicz space norms.
Let φ be a convex increasing continuous function on [0,∞) with φ(0) = 0,
and φ(t)/t→∞ as t→∞. Let B be a ball in (X, δ, µ). We say that a
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measurable function g on B is in Lφ(B) if there exists a λ > 0 such that∫
B φ(|g(x)|/λ) dµ(x)<∞. For c>0 we define the norm

NB,c(g) = inf
{
λ > 0 :

∫
B
φ(|g|/λ) dµ ≤ cµ(B)

}
.

Then Lφ(B) is a Banach space with respect to the norm NB,c and these
norms are equivalent for different choices of c as shown in Lemma 2.

2. Lemmata and proofs of the theorems

Lemma 1. Let (X, δ, µ) be a normal space and 0 < r ≤ R < ∞. Then
there is a constant B1 independent of x, r and R such that∫

r≤δ(x,y)≤R

dµ(y)
δ(x, y)

≤ B1 log
2R
r
.

P r o o f. Without loss of generality we can assume that rx ≤ r. Let K be
the smallest positive integer such that 2K+1r > R. Then using normality
we have∫

r≤δ(x,y)≤R

dµ(y)
δ(x, y)

≤
K∑

k=0

∫
2kr≤δ(x,y)<2k+1r

dµ(y)
δ(x, y)

≤
K∑

k=0

1
2kr

∫
δ(x,y)<2k+1r

dµ(y) ≤ 2A2(K + 1) ≤ 4A2K .

Now observe that 2K−1r ≤ R, and that therefore K ≤ (1/ log 2) log(2R/r).
This proves the lemma with B1 = 4A2/ log 2 .

Lemma 2. If 0 < c1 < c2, then

NB,c2 ≤ NB,c1 ≤
c2
c1
NB,c2 .

P r o o f. The first inequality is immediate from the definition of NB,c.
To prove the second inequality let λ > NB,c2 . Then∫

B
φ(|f |/λ) dµ ≤ c2µ(B) .

Multiplying this by c1/c2 and using the fact that for 0 < ν < 1, φ(νt) ≤
νφ(t), we get ∫

B
φ

(
|f |

(c2/c1)λ

)
dµ ≤ c1µ(B) .

This implies the second inequality.
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P r o o f o f T h e o r e m 1. Let B = Br(x0). If x0 is an atom and r ≤ rx0

then Iαf(x0) = 0 and the estimate is trivial. Let, then, r > rx0 , let x ∈ B
and let 0 < % < 2κr where κ is the constant in the “triangle inequality”
δ(x, y) ≤ κ(δ(x, z) + δ(z, y)). Then

|Iαf(x)| ≤
∫
B

|f(y)|
δ(x, y)1−α

dµ(y) ≤
∫

δ(x,y)≤2κr

|f(y)|
δ(x, y)1−α

dµ(y)

≤
∫

δ(x,y)<%

+
∫

%≤δ(x,y)≤2κr

= I1 + I2 .

We first estimate I1. If x is an atom and % ≤ rx then I1 = 0. Let % > rx
and let K be the set of nonnegative integers k such that 2−k% > rx. Denote
by Mf the Hardy–Littlewood maximal function of f . Then

I1 =
∑
k∈K

∫
2−k−1%≤δ(x,y)<2−k%

|f(y)|
δ(x, y)1−α

dµ(y)

≤
∑
k∈K

µ(B2−k%(x))
(2−k−1%)1−α

Mf(x)

≤Mf(x)
∞∑

k=0

A22−k%

(2−k−1)1−α%1−α
= Aα%

αMf(x) ,

with Aα = A2 · 2/(2α − 1).
We now estimate I2. Using Hölder’s inequality with p = 1/α and

Lemma 1 we have

I2 ≤ ‖f‖1/α

( ∫
%≤δ(x,y)≤2κr

dµ(y)
δ(x, y)

)1−α

≤ ‖f‖1/α

(
B1 log

4κr
%

)1−α

.

If Aα(2κr)αMf(x) ≤ ‖f‖1/α we set % = 2κr, since supp(f) is contained in
B, I2 = 0 and hence

|Iαf(x)| ≤ I1 ≤ ‖f‖1/α .

If, on the other hand, Aα(2κr)αMf(x) > ‖f‖1/α then there is a unique % in
(0, 2κr) for which Aα%

αMf(x) = ‖f‖1/α, i.e. % = [‖f‖1/α/(AαMf(x))]1/α.
With this value of % we have

|Iαf(x)| ≤ I1 + I2 ≤ ‖f‖1/α

[
1 +

(
B1 log

4κrA1/α
α Mf(x)1/α

‖f‖1/α
1/α

)1−α]
and hence in both cases[

Iαf(x)
C1‖f‖1/α

]1/(1−α)

≤ 1 + log+ 4κrA1/α
α Mf(x)1/α

‖f‖1/α
1/α

where C1 = 2α max(1, B1−α
1 ).
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Finally, using ‖Mf‖1/α ≤ c1‖f‖1/α and normality we have∫
B

exp
(∣∣∣∣ Iαf(x)
C1‖f‖1/α

∣∣∣∣1/(1−α))
dµ(x)

≤ e

(
µ(B) +

A
1/α
α 4κr

‖f‖1/α
1/α

∫
X

Mf(x)1/α dµ(x)
)

≤ e

(
1 +

A
1/α
α 4κc1/α

1

A1

)
µ(B) = cµ(B) .

This concludes the proof of the theorem with C1 = 2α max(1, B1−α
1 ) and

c = e(1 +A
1/α
α 4κc1/α

1 /A1).

P r o o f o f T h e o r e m 2. We consider a ball B = Br(x0) and the Orlicz
norm NB,1 defined with φ(t) = et1/(1−α) − 1. For f ∈ L1/α(X) we write

Ĩαf(x)−mB(Ĩαf)

=
∫

X

[
1

δ(x, y)1−α
− ψz(y)
δ(z, y)1−α

]
f(y) dµ(y)

− 1
µ(B)

∫
B

∫
X

[
1

δ(t, y)1−α
− ψz(y)
δ(z, y)1−α

]
f(y) dµ(y) dµ(t)

=
1

µ(B)

∫
B

∫
X

[
1

δ(x, y)1−α
− 1
δ(t, y)1−α

]
f(y) dµ(y) dµ(t) .

Decompose X = B̃ ∪ B̃c where B̃ = B4κ2r(x0). The last expression can be
written as∫̃

B

1
δ(x, y)1−α

f(y) dµ(y)− 1
µ(B)

∫
B

∫̃
B

1
δ(t, y)1−α

f(y) dµ(y) dµ(t)

+
1

µ(B)

∫
B

∫̃
Bc

[
1

δ(x, y)1−α
− 1
δ(t, y)1−α

]
f(y) dµ(y) dµ(t)

= J1 − J2 + J3 .

Since ‖Ĩαf − mB(Ĩαf)‖B,1 ≤ ‖J1‖B,1 + ‖J2‖B,1 + ‖J3‖B,1 it is enough to
show that ‖Ji‖B,1 ≤Mi‖f‖1/α, 1 ≤ i ≤ 3, with Mi independent of f . Since
J1(x) = Iα(fχB̃) we can use Theorem 1 and normality to obtain∫

B
φ

(
|J1|

c1‖f‖1/α

)1/(1−α)

dµ ≤
∫
B
φ

( |Iα(fχB̃)|
c1‖fχB̃‖1/α

)1/(1−α)

dµ

≤ cµ(B̃) ≤ cµ(B) .
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From the definition of ‖ ‖B,c and Lemma 2 it follows that

‖J1‖B,1 ≤M1‖f‖1/α .

To estimate J2 we use Jensen’s inequality and the estimate above to obtain∫
B
φ

(
J2

c1‖f‖1/α

)
dµ ≤ 1

µ(B)

∫
B

∫
B
φ

( |Iα(fχB̃)|
c1‖f‖1/α

)
dµ(x) dµ(t) ≤ cµ(B) .

As before, from the definition of ‖ ‖B,c and Lemma 2 it follows that ‖J2‖B,1 ≤
M2‖F‖1/α.

Finally, for J3 we will first show that

Hf (x, t) =
∫̃
Bc

[
1

δ(x, y)1−α
− 1
δ(t, y)1−α

]
f(y) dµ(y)

is bounded and ‖Hf‖∞ ≤ c‖f‖1/α.
Since x and t are in B, and y in B̃c, and the space has order γ, Lemma II.3

of [GV] states that∣∣∣∣ 1
δ(x, y)1−α

− 1
δ(t, y)1−α

∣∣∣∣ ≤ B2δ(x, t)γδ(x, y)α−γ−1 .

Using this lemma and Hölder’s inequality with p = 1/α we obtain

|Hf (x, t)| ≤ B2δ(x, t)γ
( ∫̃
Bc

δ(x, y)−1−γ/(1−α) dµ(y)
)1−α( ∫

|f |1/α dµ
)α

.

Using inequality II.2 of [GV]:∫̃
Bc

δ(x, y)−1−γ/(1−α) dµ(y) ≤ cr−γ/(1−α) ,

and δ(x, t) ≤ r we get the desired estimate for ‖Hf‖∞.
Therefore ‖J3‖∞ ≤ c‖f‖1/α. On the other hand, it is easy to show that

‖J3‖B,1 ≤ c‖J3‖∞, and hence ‖J3‖B,1 ≤ M3‖f‖1/α. This concludes the
proof of Theorem 2.
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