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VECTOR SETS WITH NO REPEATED DIFFERENCES

BY

PÉTER KOMJ ÁTH (BUDAPEST)

We consider the question when a set in a vector space over the rationals,
with no differences occurring more than twice, is the union of countably
many sets, none containing a difference twice. The answer is “yes” if the
set is of size at most ℵ2, “not” if the set is allowed to be of size (22ℵ0 )+. It
is consistent that the continuum is large, but the statement still holds for
every set smaller than continuum.

Paul Erdős showed in [2] that if 2ω > ω1, then there exists a set S ⊂ R
such that for every a ∈ R there can be at most two solutions of the equation
x+y = a (x, y ∈ S), but if S is decomposed into countably many parts, then
in some part, for some a ∈ R, there are two solutions of x + y = a. This is
not true under the continuum hypothesis, for then there is a decomposition
of R into countably many linearly independent sets (over Q, the rationals).
Erdős and P. Zakrzewski asked if a similar result holds for differences as
well.

In this paper V is a vector space over Q, and S is a subset of V . If κ
is a cardinal (not necessarily infinite), S is κ-sum-free iff for any a ∈ V ,
there are less than κ solutions of the equation x + y = a (x, y ∈ S). S is
κ-difference-free iff for every d ∈ V , d 6= 0, there are less than κ solutions
of the equation x − y = d (x, y ∈ S). In the former case, we consider the
solutions (x, y) and (y, x) identical. In this notation, Erdős asked if every
3-difference-free set is the union of countably many 2-difference-free sets.

In the paper, the word sum is reserved to two-term sums. Also, we
sometimes use the coloring terminology, i.e. confuse a decomposition into
countably many parts with a coloration with countably many colors.

We first consider when the choice S = V works for questions of the given
type.

Theorem 1. (a) If |V | ≤ ω1, then V is the union of countably many
2-difference-free sets.
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(b) If |V | ≥ ω2, then V is not the union of countably many ω2-difference-
free sets.

P r o o f. (a) By a well-known theorem of Erdős and Kakutani (see [3]),
every vector space of cardinal ω1 is the union of countably many bases.

(b) Assume that the vectors {xα, yβ : α < ω2, β < ω1} are independent.
By a theorem of P. Erdős and A. Hajnal (see e.g. [1]), if the vectors {xα+yβ :
α < ω2, β < ω1} are colored by countably many colors, then there is a set
Z ⊂ ω2 of size ω2 and β1 < β2 < ω1 such that the vectors {xα + yβi :
α ∈ Z, i = 1, 2} get the same color. Then the difference yβ1 − yβ2 =
(xα + yβ1)− (xα + yβ2) is expressed in ω2 many ways in the same part.

The case of sums is different.

Theorem 2. (a) If |V | ≤ 2ω, then V is the union of countably many
ω-sum-free sets.

(b) If |V | > 2ω then V is not the union of countably many ω1-sum-free
sets.

P r o o f. (a) We can assume that V = R. Let B be a Hamel basis for R.
We color R − {0} with countably many colors as follows. We require that
from the color of

x =
n∑

i=1

λibi (b1 < . . . < bn)

the ordered sequence (of rationals) λ1, . . . , λn should be recovered, and also
a sequence of n− 1 rational numbers, separating b1, . . . , bn from each other.
This is possible as there are countably many rational numbers. If x, y get the
same color, and a basis element b appears in both, then, by our above coding
requirements, b has the same index, say i, in x and y. The corresponding
coordinate in the sum is then 2λi 6= 0. There are, therefore, only finitely
many possibilities to decompose a given vector as x + y.

(b) Let {b(α) : α < (2ω)+} be independent. By the Erdős–Rado theorem
(see [4]), if we color the vectors {b(α)−b(β) : α < β < (2ω)+} with countably
many colors, then there is an increasing sequence {αξ : ξ ≤ ω1} such that
{b(αξ)− b(αζ) : ξ < ζ ≤ ω1} get the same color. But then

b(α0)− b(αω1) = (b(α0)− b(αξ)) + (b(αξ)− b(αω1))

is the sum of ω1 monocolored pairs.

We now consider the more general case when S is an arbitrary subset
of V .

Theorem 3. If |S| ≤ ℵ2 is ℵ2-difference-free, then it is the union of
countably many 2-difference-free sets.
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P r o o f. We are going to decompose S into the increasing continuous
union of sets of size ℵ1, S =

⋃
{Sα : α < ω2}, and again, Sα+1 − Sα as⋃

{Tα,ξ : ξ < ω1}, the increasing continuous union of countable sets, and
then we color the elements in Tα,ξ+1 − Tα,ξ with different colors. We show
that if the sets Sα, Tα,ξ are sufficiently closed, then no quadruple of the
form {a, a + x, b, b + x} can get the same color. This suffices, as, by an old
observation of R. Rado, every vector space is the union of countably many
sets, none containing a three-element arithmetic progression. We require
that if a difference d 6= 0 occurs as the difference between two elements or
two sums in Sα, then all pairs with difference d should be in Sα. Assume that
{a, a + x, b, b + x} get monocolored, and that Sα+1 is the first set including
all. By the above closure property, at most two of the elements can be in Sα.
There are several cases to consider.

C a s e 1: a, a + x ∈ Sα, b, b + x ∈ Sα+1 − Sα. Impossible, by the closure
properties of Sα.

C a s e 2: a, b ∈ Sα, a + x, b + x ∈ Sα+1 − Sα. Same as Case 1.

C a s e 3: a, b + x ∈ Sα, a + x, b ∈ Sα+1 − Sα. We show that to any
a + x in Sα+1 − Sα there can only be one b as above. If b is good, then
(a + x) + b = a + (b + x) is the sum of two elements in Sα, so if b1, b2 are
good, then b1 − b2 is the difference of two sums in Sα, and so b1, b2 ∈ Sα,
by our assumptions on Sα. Likewise, to every element b ∈ Sα+1 − Sα only
one good a + x can exist, so if the sets Tα,ξ are closed under the b 7→ a + x,
a + x 7→ b functions, then b, a + x appear in the same Tα,ξ+1, and so they
get different colors.

C a s e 4: a ∈ Sα, a + x, b ∈ Tα,ξ, b + x ∈ Tα,ξ+1 − Tα,ξ. It suffices to
show that to a given pair {a + x, b} there can correspond at most one b + x
as above; then an argument similar to the one given in Case 3 concludes the
proof. If a1 + x1 = a2 + x2, a1, a2 ∈ Sα, then a2 − a1 = (b + x1)− (b + x2),
so b + x must be in Sα, a contradiction.

C a s e 5: b ∈ Sα, a, a + x ∈ Tα,ξ, b + x ∈ Tα,ξ+1 − Tα,ξ. Again, it is
enough to show that to a given pair {a, a + x} there can only be one good
b + x. Notice that a, a + x already determine x. If b1 + x, b2 + x were good,
then their difference b1 − b2 would occur as the difference of two elements
in Sα, so again b1 + x, b2 + x would both be in Sα.

C a s e 6: a, a + x, b, b + x ∈ Sα+1 − Sα. Assume that a, a + x, b ∈ Tα,ξ,
b+x ∈ Tα,ξ+1−Tα,ξ. In this case b+x = b+(a+x)−a, so if we make Tα,ξ

closed under u+v−w for u, v, w ∈ Tα,ξ, we see that this case cannot occur.

Theorem 4. If |V | = (22ω

)+, then there is a 3-difference set S ⊂ V
which is not the union of countably many 2-difference sets.
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P r o o f. Let V be the vector space with the basis {g(α, β) : α < β <
(22ω

)+}. For α < β < γ put b(α, β, γ) = g(α, β) + g(β, γ) − g(α, γ), and
let S = {b(α, β, γ) : α < β < γ < (22ω

)+}. If S is decomposed as S =⋃
{Si : i < ω}, then, by the Erdős–Rado theorem (see [4]), there are i < ω,

α < β < γ < δ with b(α, β, γ), b(α, β, δ), b(α, γ, δ), b(β, γ, δ) ∈ Si. But then
the nonzero distance

g(β, γ)− g(α, γ) + g(α, δ)− g(β, δ) = b(α, β, γ)− b(α, β, δ)
= b(β, γ, δ)− b(α, γ, δ)

occurs twice.
We have to show that S is a 3-difference-free set. If α < β < γ < (22ω

)+,
α′ < β′ < γ′ < (22ω

)+, and there is at most one common element in {α, β, γ}
and {α′, β′, γ′}, then there is no cancellation in c = b(α, β, γ)− b(α′, β′, γ′),
so the sets can be recovered from c. If the two triplets look like {α, β, γ},
{α, γ, δ}, then

b(α, β, γ)− b(α, γ, δ) = g(α, β) + g(β, γ)− 2g(α, γ) + g(α, δ)− g(γ, δ) ,

the triplets can be reconstructed again. The remaining cases

b(α, β, δ)− b(α, γ, δ) = g(α, β) + g(β, δ)− g(α, γ)− g(γ, δ)
= b(α, β, γ)− b(β, γ, δ)

give the equality of just two vectors.

Theorem 5. If V is a vector space and S ⊂ V is ω2-difference-free, then
S is the union of countably many ω-difference-free sets.

P r o o f. We prove the result by induction on κ = |S|. For κ ≤ ω the re-
sult is obvious. For κ = ω1 we can use the above-mentioned Erdős–Kakutani
result that S can be covered by countably many linearly independent sets
(see [3]).

If κ > ω1, decompose S as the increasing, continuous union S =
⋃
{Sα :

α < κ} of sets of size smaller than κ such that if a nonzero difference d occurs
in Sα, then its all occurrences are in Sα. By the inductive hypothesis, each
Sα+1 − Sα is a union of countably many ω-difference-free sets. We claim
that the union of these decompositions is good as well. Assume that the
nonzero difference d occurs infinitely many times between points getting the
same color t. If d first occurs in Sα+1, then by the above closure property of
our decomposition, each occurrence of d is either in Sα+1−Sα, or is between
Sα and Sα+1 − Sα. By our hypothesis, only finitely many occurrences of
the former type get color t, so d occurs infinitely many times as x− y where
x ∈ Sα, y ∈ Sα+1 − Sα or x ∈ Sα+1 − Sα, y ∈ Sα. Infinitely many
times the same case occurs. If, now, a, a′ ∈ Sα, b, b′ ∈ Sα+1 − Sα, and
a− b = a′ − b′ = d, then the nonzero difference a− a′ = b− b′ occurs in Sα,
so b, b′ ∈ Sα should hold, a contradiction.
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We can slightly extend this result.

Theorem 6. If V is a vector space and S ⊂ V is ω2-difference-free, then
S is the union of countably many ω-difference-free, ω-sum-free sets.

P r o o f. By Theorem 5, we can assume that S is ω-difference-free. We
again reason by induction on κ = |S|. The case κ ≤ ω is again trivial.
Assume that κ ≥ ω1. Decompose S into the increasing, continuous union
of subsets of size < κ, S =

⋃
{Sα : α < κ} such that a + b − c ∈ Sα when

a, b, c ∈ Sα, and, of course, a + b − c ∈ S holds; moreover, if d is either of
the form a− a′ or (a + b)− (a′ + b′) for some a, a′, b, b′ ∈ Sα then all pairs
with difference d occur in Sα. Build an auxiliary graph Gα on Sα+1 − Sα

by joining a, b if the sum a + b occurs among the pairwise sums in Sα.

Claim. Gα consists of independent edges.

P r o o f o f C l a i m. Assume that a is joined to b, b′, i.e. a + b, a + b′

both occur among the pairwise sums in Sα. Then b− b′ is the difference of
two such sums, so b, b′ ∈ Sα by our assumptions on Sα.

Gα is, therefore, a bipartite graph.
By our inductive hypothesis, there is a good coloring of Sα+1 − Sα such

that each color class is ω-sum-free, and we can assume that these classes
constitute a good coloring of Gα as well. Take the union of these colorings;
we claim that it works.

Assume that the points an, bn get the same color, and an + bn = c (n =
0, 1, . . .). We consider two cases.

C a s e 1: For infinitely many n, there is a βn such that an ∈ Sβn , bn ∈
Sβn+1 − Sβn . If not all βn’s are the same, then we get e.g. a ∈ Sβ , b ∈
Sβ+1 − Sβ , a′ ∈ Sβ′ , b′ ∈ Sβ′+1 − Sβ′ , and β < β′. But then a, b, a′ ∈ Sβ′

and b′ = a + b− a′ 6∈ Sβ′ , a contradiction.
If, however, βn = βm, i.e. a, a′ ∈ Sβ , b, b′ ∈ Sβ+1−Sβ , then a−a′ = b′−b,

so b, b′ ∈ Sβ again should hold.

C a s e 2: For infinitely many n, there is a βn such that an, bn ∈ Sβn+1−
Sβn . Not all the βn’s are the same, as the coloring on Sβ+1−Sβ is supposed
to be good. We get, therefore, elements of the following type: a+b = a′+b′,
a, b ∈ Sβ , a′, b′ ∈ Sβ+1 − Sβ , i.e. the sum a′ + b′ occurs as a sum in Sβ , so
a′, b′ are joined in Gα, so they get different colors.

We now show that it is consistent that 2ω is arbitrarily high, and The-
orem 3 can be extended to all cardinals < 2ω. For the different notions
concerning Martin’s axiom, and several applications, we recommend [5].

Theorem 7. If MAκ holds and |S| ≤ κ is ω2-difference-free, then S is
the union of countably many 2-difference-free sets.
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P r o o f. By the previous theorem, we can assume that S is ω-difference-
free and ω-sum-free. Let p = (s, f) ∈ P be a condition, where s ⊆ S
is finite, and f : s → ω is a good coloring, i.e. f−1(i) is 2-difference-free
for every i < ω. Put (s′, f ′) ≤ (s, f) iff s′ ⊇ s, f ′ ⊇ f . It is obvious
that for any x ∈ S, the set {(s, f) : x ∈ s} is dense, and if G ⊆ P is
a generic set meeting all these dense sets, then

⋃
{f : (s, f) ∈ G} is a

good coloring of S. The only thing we have to prove is that (P,≤) is ccc,
i.e. that among any collection of uncountably many elements in P , some
two are compatible. Assume that pα ∈ P (α < ω1) are given. Using
the pigeon-hole principle and the ∆-system lemma, we can assume that
pα = (s ∪ sα, fα) where the sets {s, sα : α < ω1} are disjoint, and the
functions fα have identical restrictions to s. As S is ω-difference-free and
ω-sum-free, if α < ω1, then every difference/sum occurring in s ∪ sα which
does not occur in s, occurs only in finitely many other s ∪ sβ . By Hajnal’s
set mapping theorem (see [5]), we can find an uncountable index set in
which for α 6= β, no nonzero difference or sum occurs both in sα and sβ ,
except of course the differences and sums in s. We claim that now pα, pβ

are compatible. Assume, towards a contradiction, that the function fα ∪ fβ

is not a good coloring of s ∪ sα ∪ sβ . Then some d 6= 0 occurs twice as a
difference, d = a− b = a′ − b′, and either a, a′ ∈ sα, b, b′ ∈ sβ or a, b′ ∈ sα,
a′, b ∈ sβ . In the former case b − a = b′ − a′ occurs both in sα and sβ ,
which is impossible by our assumptions. In the latter case a + b′ = a′ + b, a
contradiction again.
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