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The manifolds we consider here are smooth, orientable, of dimension
four. The actions of the circle are smooth. We prove

Theorem 1. An S1 action on a four-manifold of nonzero signature has
at least three fixed points.

An easy consequence of the method is

Proposition 2. If M4 carries an S1 action with two fixed points, then
σ(M) = 0 and the representations at the tangent spaces at the fixed points
are equivalent.

Both these results are known, but it is the method we employ here that
is of interest: it is to use two residue formulae for the signature and reduce
the problem to a diophantine question. The diophantine result from which
Theorem 1 follows is

Theorem 3. The only rational points on the elliptic curve (x + y)(z2 +
xy) = 6xyz are (0, 0, 1), (0, 1, 0), (1, 0, 0) and (−1, 1, 0).

1. Residue formula. Take a smooth S1 action on an oriented four-
manifold M . Then the characteristic numbers of M are expressed by the
fixed point data. First, the normal bundles to the components of the fixed
point set are given a complex structure and thus orientation by the repre-
sentations of S1 in the fibers. Thus the components of the fixed point set
are oriented by the difference orientations and we have the following formula
for the signature:

(∗) σ(M) = σ(fix) .

Second, the Atiyah–Bott–Lefschetz fixed point theorem specializes in
dimension four to

(∗∗) σ(M) =
1
3

{ ∑
i

(
ai

bi
+

bi

ai

)
+

∑
j

∫
Fj

eu(νj)
}

.
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Here the integers ai, bi are the integral weights of the representations at the
isolated fixed points and eu(νj) are the Euler classes of the bundles normal
to the two-dimensional components of the fixed point set Fj . The sum is
taken over all the components of the fixed point set.

Notice at this point that, by performing equivariant surgery, we can,
without changing the signature, always get rid of two-dimensional compo-
nents of the fixed point set, possibly introducing some new isolated fixed
points. This follows essentially from the fact that a circle bundle over a
surface is cobordant to a disjoint sum of Hopf fibrations. We are interested
only in actions with isolated fixed points.

R e m a r k. In dimension four both of these formulas are elementary.
The first follows quickly from the cobordism invariance of signature, while
an elementary argument yielding the second can be found in [L].

There is certain tension between these two formulae, and we will take
advantage of it.

2. Preliminary considerations. Let us consider the case when we
have a single fixed point. Then (∗) says σ(M) = 1 (after changing orienta-
tion if necessary). But then (∗∗) reads a/b+b/a = 3. However, this equation
has no integral solutions—

√
5 is irrational! Hence there is no action with a

single fixed point.
If there are two fixed points, the signature is either zero or two. In the

first case we have
1
3

(
a

b
+

b

a
+

x

y
+

y

x

)
= 0

and this implies that either a/b=−x/y or a/b=−y/x. Since the action is ef-
fective, this means that the representations at the fixed points are equivalent
(the minus sign comes from the different orientations at the fixed points).

In the second case a/b+b/a+x/y+y/x = 6, or equivalently (z+t)(1+zt)
= 6zt. Now both Theorem 1 and Proposition 2 follow from what has already
been said and Theorem 3.

3. The proof of Theorem 3. First, putting z = 0 we get the three
points at infinity (1, 0, 0), (0, 1, 0), (0, 0, 1). All of them are rational.

Now put z = 1. The equation takes the form

(0) 6xyab = (x2 + y2)ab + (a2 + b2)xy

where a, b, x, y are integers, and (x, y) = (a, b) = 1. Then it follows that
xy = ab or xy = −ab, but since the system

6ab = a2 + b2 + x2 + y2 , ab = xy

has no solution mod 3, we can assume xy = −ab.
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Reducing the resulting system mod 4, we see that one of the numbers,
say x, is even. We can write x = pq, y = rs, a = −pr, b = qs, with p, q, r, s
natural and pairwise coprime. Then (0) takes the form

(1) 6pqrs = (q2 − r2)(s2 − p2) ,

and thus ps divides q2−r2, qr divides s2−p2, q2−r2 divides 6ps and s2−p2

divides 6qr; hence q2 − r2 = kps, s2 − p2 = lqr where k, l are integers with
kl = 6, the cases k = 0 and l = 0 being uninteresting.

Using this we have

(p2 − s2)2 + (3ps)2 =
(

3
k

(q2 + r2)
)2

.

We can assume here that 2 divides p, since 2 divides x and p, q play sym-
metric roles. Thus 3

k (q2 + r2) is an integer.
Since the cases ps = 0 and p2 − s2 = 0 are uninteresting, we have to

prove

Lemma. The equation (x2 − y2)2 + (3xy)2 = z2 has no solutions with x
even, xy 6= 0 6= x2 − y2.

P r o o f. Take a solution (x, y, z) with x, y coprime and xy smallest pos-
sible. Since 3xy is even and x2 − y2 odd we have

(2) 3xy = 2mnd , x2 − y2 = (m2 − n2)d .

Here the common divisor d is 1 or 3. Consider the case d = 3 first. Then
(2) becomes

(3) xy = 2mn , x2 − y2 = 3(m2 − n2) .

We find mutually coprime a,A, b,B such that x = 2aA, y = bB, m = ab,
n = AB. Now (3) reads

(4) A2(4a2 + 3B2) = b2(3a2 + B2) .

Furthermore, since 5 dividing 3a2 + B2 implies that 5 divides (a,B), we
know that (4a2 +3B2, 3a2 +B2) = (−5a2, 3a2 +B2) = 1. Thus (4) becomes

(5) A2 = 3a2 + B2 , b2 = 4a2 + 3B2 .

Since b, B are odd, reduction mod 8 gives a contradiction and the first case
is proved.

Thus we are left with the case d = 1 and now (2) reads

(6) 3xy = 2mn , x2 − y2 = m2 − n2 .

Again find mutually coprime a,A, b,B such that x = 2aA, y = bB but now
for n, m there are two possibilities:

m = 3ab , n = AB ,(X)
m = ab , n = 3AB .(Y)
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Consider the X case; then (6) is

(6X) A2(4a2 + B2) = b2(9a2 + B2) .

Now the common divisor (4a2 + B2, 9a2 + B2) = (4a2 + B2, 5a2) is 1 or 5.
Thus we have two subcases X1 and X5.

For X1, (6X) gives

(6X1) 9a2 + B2 = 5A2 , 4a2 + B2 = 5b2 .

Since b, B were odd, considerations mod 8 show that there is no solution.
For X5, (6) becomes

(6X5) 9a2 + B2 = 5A2 , 4a2 + B2 = b2 .

The second equation yields that a = wv, B = v2 − w2, the first equation
that a is even; thus one of v, w is even and we have

(7) (w2 − v2) + (3wv)2 = A2 .

Moreover, 2 does not divide w (say), and w, v is a nontrivial (wv 6= 0 6=
w2−v2) solution. Since xy was the smallest possible, xy ≤ wv, i.e. 2abAB ≤
a, a contradiction.

Similarly for the Y case (m = ab, n = 3AB), (6) is

(8) A2(4a2 + 9B2) = b2(a2 + B2)

and (4a2 + 9B2, a2 + B2) = (5B2, a2 + B2) = 5 or 1.
In the first subcase again reduction mod 8 gives a contradiction. In the

second subcase

(8a) 4a2 + 9B2 = (2a)2 + (3B)2 = b2 , a2 + B2 = A2 .

Note that 2a, 3B are coprime, thus 2a = 2wv, 3B = w2− v2 and the second
equation reads

(9) (3wv)2 + (w2 − v2) = (3A)2 .

Since 2 divides wv and one of w, v is odd, by the minimality of xy we have
xy ≤ wv, i.e. 2abAB ≤ a. This contradiction concludes the proof of the
Lemma, and thus Theorem 3 is proved.

4. Additional comments. The reason why the method is interesting
is this. First, one can study actions with more complicated fixed point struc-
ture. This is related to the study of the rational points of the hypersurface
of degree n in CPn−1 given by the equation

∑n
i=1(xi + 1/xi) = k, where n

is the number of the fixed points, in particular we can try to use topology
to construct rational points.

Second, the same reasoning that we employ here applies in a more
general situation of a so-called singular Riemannian flow in the sense of
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Molino’s book [Mo], or one-dimensional “polarizations-with-singularities”of
t-structures in the sense of Cheeger–Gromov [C–G].

Let us briefly describe the latter. Following Cheeger–Gromov, consider a
pure t-structure on a manifold. We will say that it admits a one-dimensional
polarization-with-singularities if the holonomy of the t-structure has a one-
dimensional invariant subspace. This means that near each point we have
a Killing vector field, and moreover that the Killing fields coming from
different points can only differ by a constant scaling factor.

We can use these fields to localize the integrals of characteristic forms to
the (well defined!) zero set of the polarization. The result is formally the
same as the localization formula for a Killing vector field. One of (at least
two) reasons for this is that—at least for the pure substructure obtained
by taking closures of the orbits of the family of flows generated by Killing
fields—there is no holonomy around loops contained in the zero set.

The conclusion is that the formula (∗) looks exactly the same, and (∗∗)
is slightly different due to the fact that the weight of the Killing field need
not be rational. So (∗∗) reads

σ(M) =
1
3

{ ∑
i

(
xi +

1
xi

)
+

∑
j

∫
Fj

eu(νj)
}

.

There is, however, an additional piece of information here, namely that
the polarization is an invariant subspace of the holonomy. This implies that
the xi are algebraic integers. Moreover, in dimension four only rank 2 pure
t-structures are interesting (one-dimensional ones coincide essentially with
circle actions, and three-dimensional ones force the manifold to be an affine
T 3 bundle over S1). Thus in that case the xi are quadratic irrationals.

The short argument at the beginning of Section 2 proves

Proposition 4. Suppose that a one-dimensional polarization-with-sin-
gularities on a four-manifold M has just one fixed point. Then the holonomy
is diagonalizable over Z[(1 +

√
5)/2].

One can produce examples of such polarizations by doing a surgery on
CP 2 (see [H–J] for related constructions).
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