COLLOQUIUM MATHEMATICUM

VOL. LXIV

FASC. 1

A CLASS OF FOURIER SERIES

by JAVAD NAMAZI (MADISON, NEW JERSEY)

Let $T = [0, 2\pi]$. Let f be a periodic function with period 2π in $L^1(T)$. Define $f_s(t) = f(t-s)$. We say that f satisfies the L^p -Dini condition if

$$\int_{0}^{1} \frac{\omega(s)}{s} \, ds < \infty \,,$$

where

$$\omega(s) = \|f - f_s\|_{L^p(T)} = \left(\frac{1}{2\pi} \int_0^{2\pi} |f_s(t) - f(t)|^p \, dt\right)^{1/p}.$$

f is said to be a Lipschitz function $(f \in \operatorname{Lip}_{\alpha}(T))$ if

$$\omega^*(s) = \sup_{t \in T} |f_s(t) - f(t)| \le Cs^{\alpha},$$

for some $\alpha > 0$, and a constant *C*. The *k*th Fourier coefficient of *f* is $\widehat{f}(k) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-ikt} dt$, and the Fourier series of *f* is defined as $\sum_{k=-\infty}^{\infty} \widehat{f}(k) e^{ikt}$. Let 1 , and let*q*be its conjugate exponent, that is, <math>q = p/(p-1). If $f \in L^p(T)$, then by the Hausdorff–Young theorem

$$\left(\sum_{k=-\infty}^{\infty} |\widehat{f}(k)|^q\right)^{1/q} \le \|f\|_{L^p(T)}.$$

Bernstein (see [1]) has shown that if $f \in \operatorname{Lip}_{\alpha}(T)$, for some $\alpha > 1/2$, then $\sum_{k=-\infty}^{\infty} |\widehat{f}(k)| < \infty$. However, for $\alpha = 1/2$, there exist functions whose Fourier series are not absolutely convergent. A classical example is the Hardy–Littlewood series

$$\sum_{n=1}^{\infty} \frac{e^{in\log n}}{n} e^{int}$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 42A16.

J. NAMAZI

(see [1], vol. 1, p. 197). A weaker condition holds for functions that satisfy an L^p -Dini condition.

THEOREM. Suppose f satisfies the L^p -Dini condition, 1 . Then

$$\sum_{k\neq 0} \frac{|\widehat{f}(k)|}{|k|^{1/p}} < \infty.$$

Proof. Let m be a non-negative integer. If $s_m = 2\pi/(3 \cdot 2^m)$ and $2^m \le |k| < 2^{m+1}$, then

(1)
$$|e^{-iks_m} - 1| \ge \sqrt{3}.$$

Also the Fourier series of $f_{s_m} - f$ is $\sum_{k=-\infty}^{\infty} \widehat{f}(k)(e^{-iks_m} - 1)e^{ikt}$. Now

$$\sum_{2^{m} \le |k| < 2^{m+1}} \frac{|f(k)|}{|k|^{1/p}} \le 2^{-(m+1)/p} \sum_{2^{m} \le |k| < 2^{m+1}} |\hat{f}(k)|$$
$$\le 2^{-(m+1)/p} \cdot 2^{(m+1)/p} \Big(\sum_{2^{m} \le |k| < 2^{m+1}} |\hat{f}(k)|^q\Big)^{1/q}$$
$$= \Big(\sum_{2^{m} \le |k| < 2^{m+1}} |\hat{f}(k)|^q\Big)^{1/q},$$

by Hölder's inequality together with the fact that there are never more than 2^{m+1} integers k with $2^m \leq |k| < 2^{m+1}$. Hence,

$$\sum_{\substack{2^m \le |k| < 2^{m+1}}} \frac{|\widehat{f}(k)|}{|k|^{1/p}} \le \left(\sum_{\substack{2^m \le |k| < 2^{m+1}}} |\widehat{f}(k)(e^{-iks_m} - 1)|^q\right)^{1/q}$$
$$\le \left(\sum_{k=-\infty}^{\infty} |\widehat{f}(k)(e^{-iks_m} - 1)|^q\right)^{1/q}$$
$$\le \|f_{s_m} - f\|_{L^p(T)} = \omega(s_m) \,,$$

by the Hausdorff–Young theorem and (1). Therefore,

$$\sum_{k \neq 0} \frac{|\widehat{f}(k)|}{|k|^{1/p}} \le \sum_{m \ge 0} \omega(s_m) = \sum_{m \ge 0} \frac{\omega(s_m)}{s_m} s_m \approx \int_0^1 \frac{\omega(s)}{s} \, ds < \infty$$

since the last sum is a limit of Riemann sums for $\int_0^1 (\omega(s)/s) \, ds.$

We also note that since $\omega(s) \leq \omega^*(s)$, it follows that if f is Lipschitz then it is L^2 -Dini, therefore it satisfies the conclusion of the theorem.

REFERENCES

[1] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge University Press, 1959.

FAIRLEIGH DICKINSON UNIVERSITY MADISON, NEW JERSEY 07940 U.S.A.

> Reçu par la Rédaction le 7.1.1992; en version modifiée le 5.5.1992