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1. Introduction. The present paper builds on work by Z. Olszak [16].
There, locally conformal cosymplectic (l.c.c.) manifolds are defined to be
almost contact metric (a.ct.m.) manifolds whose almost contact and fun-
damental forms η, Θ are subject to dη = 1

2ω ∧ η, dΘ = ω ∧ Θ for some
closed 1-form ω and with a (1, 1)-structure tensor ϕ integrable. The reason
for which such manifolds are termed l.c.c. is that the metric of the under-
lying a.ct.m. structure appears to be conformal to a (local) cosymplectic
metric in some neighborhood of each point of the manifold. Our results are
organized as follows. Totally geodesic orientable real hypersurfaces M2n+1

of a locally conformal Kaehler (l.c.K.) manifold M2n+2 are shown to carry
a naturally induced l.c.c. structure, provided the Lee field B0 of M2n+2 is
tangent to M2n+1. The same conclusion occurs if M2n+1 is totally umbilical
and its mean curvature vector is given by H = − 1

2 nor(B0) (cf. our The-
orem 7). In Section 3 we show that odd-dimensional real Hopf manifolds
RH2n+1 ≈ S2n × S1, n ≥ 2, thought of as local similarity (l.s.) manifolds
carrying the metric discovered by C. Reischer and I. Vaisman [19] turn out
to be l.c.c. manifolds in a natural way, yet admit no globally defined cosym-
plectic metrics, by a result of D. E. Blair and S. Goldberg [3]. Leaving
definitions momentarily aside, we may also state

Theorem 1. Each leaf of the canonical foliation Σ of a strongly non-
cosymplectic l.c.c. manifold M2n+1 carries an induced (f, g, u, v, λ)-struc-
ture whose 1-form v is closed. If the characteristic 1-form ω of M2n+1 is
parallel , then Σ has totally geodesic leaves. If moreover the local cosymplec-
tic metrics gi, i ∈ I, of M2n+1 are flat then the leaves of Σ are Riemannian
manifolds of constant sectional curvature. If additionally M2n+1 is nor-
mal , then each complete leaf of Σ is holomorphically isometric to CPn(c2),
c = 1

2‖ω‖.
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Theorem 2. Let M2n+1 be a compact normal l.c.c. manifold. If the
structure vector ξ is regular then:

(i) M2n+1 is a principal S1-bundle over M2n = M2n+1/ξ,
(ii) the almost contact 1-form η yields a flat connection 1-form on M2n+1,
(iii) the base manifold M2n has a natural structure of Kaehlerian mani-

fold.

Theorem 3. Let M2n+1 be a connected compact orientable (strongly
non-cosymplectic) l.c.c. manifold with a parallel characteristic 1-form ω
and flat Weyl connection. Then the Betti numbers of M2n+1 are given by :

b0(M2n+1) = b2n+1(M2n+1) = 1 , b1(M2n+1) = b2n(M2n+1) = 1 ,
bp(M2n+1) = 0 , 2 ≤ p ≤ 2n− 1 ,

i.e. M2n+1 is a real homology real Hopf manifold.

In addition to (odd-dimensional) real Hopf manifolds, several examples
of l.c.c. manifolds (such as real hypersurfaces of a complex Inoue surface
endowed with the l.c.K. metric discovered by F. Tricerri [23]) are discussed
in Section 7.

2. Conformal changes of almost contact metric structures. Let
(M2n+1, ϕ, ξ, η, g) be an almost contact metric (a.ct.m.) manifold of (real)
dimension 2n+ 1 (cf. D. E. Blair [2], pp. 19–20). It is said to be normal if
N1 = 0, where N1 = [ϕ,ϕ]+2dη⊗ ξ. An a.ct.m. manifold is cosymplectic if
it is normal and both the almost contact and fundamental forms are closed.
See D. E. Blair [1], Z. Olszak [15], S. Tanno [22] for general properties of
cosymplectic manifolds.

Let M2n+1 be an a.ct.m. manifold. Then M2n+1 is said to be locally
conformal cosymplectic (l.c.c.) if there exists an open covering {Ui}i∈I of
M2n+1 and a family {fi}i∈I , fi ∈ C∞(Ui), of real-valued smooth functions
such that (Ui, ϕi, ξi, ηi, gi) is a cosymplectic manifold, where ϕi = ϕ|Ui

,
ξi = exp(fi/2)ξ|Ui

, ηi = exp(−fi/2)η|Ui
, gi = exp(−fi)g|Ui

, i ∈ I. Clearly,
if M2n+1 is l.c.c. then ϕ is integrable.

Let M2n+1 be an a.ct.m. manifold and f ∈ C∞(M2n+1) a smooth real-
valued function on M2n+1. A conformal change of the a.ct.m. structure (cf.
I. Vaisman [25]) is a transformation of the form

(1) ϕf = ϕ , ξf = exp
(
f

2

)
ξ , ηf = exp

(
− f

2

)
η , gf = exp(−f)g .

The Riemannian connections of g, gf are related by

(2) ∇f
XY = ∇XY − 1

2 [X(f)Y + Y (f)X − g(X,Y ) grad(f)] ,

where grad(f) = (df)] and ] denotes raising of indices with respect to g.
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Clearly (M2n+1, ϕ, ξf , ηf , gf ) is an a.ct.m. manifold and is cosymplectic iff
dη = 1

2df ∧η, dΘ = df ∧Θ, [ϕ,ϕ] = 0, where Θ(X,Y ) = g(X,ϕY ). We may
establish the following:

Lemma 4. Let (M2n+1, ϕ, ξ, η, g) be a cosymplectic manifold , n ≥ 1. If
the cosymplectic property is invariant by the transformation (1) then df ≡ 0
on M2n+1.

P r o o f. Note that (2) yields

(3) (∇f
Xϕ)Y = (∇Xϕ)Y + 1

2 [Y (f)ϕX − (ϕY )(f)X
+Θ(X,Y ) grad(f)− g(X,Y )ϕ(grad(f))] .

Since M2n+1 is cosymplectic it is normal, so that N1 = 0. This yields
N2 = 0, where N2 = (LϕXη)Y − (LϕY η)X (cf. [2], p. 50). Here L denotes
the Lie derivative. Then ∇ϕ = 0, by [2], p. 53. Now, by (3) we obtain

(4) Y (f)ϕX +Θ(X,Y ) grad(f) = (ϕY )(f)X + g(X,Y )ϕ(grad(f)) .

Let X = Y = ξ in (4). Then ϕ(grad(f)) = 0. Use this to modify (4) and
apply ϕ to the resulting equation. This yields Y (f)ϕ2X = (ϕY )(f)ϕX.
Take the inner product with ϕ2X to get Y (f)‖ϕ2X‖2 = 0. Finally, replace
X by ϕX; as ϕ is an f -structure (in the sense of [26], p. 379), rank(ϕ) = 2n,
n ≥ 1, so that Y (f) = 0 for any Y .

Theorem 5. Let (M2n+1, ϕ, ξ, η, g) be a l.c.c. manifold. Then for any
i, j ∈ I, i 6= j, with Ui ∩ Uj 6= ∅, one has dfi = dfj on Ui ∩ Uj ; therefore the
(local) 1-forms dfi glue up to a globally defined (closed) 1-form ω. Also the
Riemannian connections ∇fi of (Ui, gi), i ∈ I, glue up to a globally defined
torsion-free linear connection D on M2n+1 expressed by

(5) DXY = ∇XY − 1
2 [ω(X)Y + ω(Y )X − g(X,Y )B] ,

where B = ω] and ∇ is the Levi-Civita connection of (M2n+1, g).

P r o o f. Let Uij = Ui ∩ Uj , i 6= j, i, j ∈ I, Uij 6= ∅. Then both
(ϕ, ξi, ηi, gi), (ϕ, ξj , ηj , gj) are cosymplectic structures on Uij and are related
by a conformal transformation (1) with f = fj − fi; thus one may apply
Lemma 4.

The 1-form ω furnished by Theorem 5 is referred to as the characteristic
1-form of M2n+1; also B is the characteristic field and D the Weyl con-
nection. Since dηi = 0, dΘi = 0, i ∈ I, where Θi denotes the fundamental
2-form of (ϕ, ξi, ηi, gi), it follows that

(6) dη = 1
2ω ∧ η , dΘ = ω ∧Θ .

Also, for any l.c.c. manifold, [ϕ,ϕ] = 0. Conversely, any a.ct.m. manifold
M2n+1 satisfying (6) for some closed 1-form ω and with ϕ integrable is l.c.c.
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If ω ≡ 0 then M2n+1 is a cosymplectic manifold. If ω has no singular points,
M2n+1 is termed strongly non-cosymplectic.

3. Odd-dimensional real Hopf manifolds. A similarity transforma-
tion of Rn is given by

(7) x′i = %aijx
j + bi ,

where % > 0 and [aij ] ∈ O(n). A manifold Mn is a local similarity (l.s.)
manifold if it possesses a smooth atlas whose transition functions have the
form (7) (see [19]). Let 0 < λ < 1 be fixed. Let ∆λ be the cyclic group
generated by the transformation x′i = λxi of Rn − {0}. Then RHn =
(Rn − {0})/∆λ is the real Hopf manifold . Define a diffeomorphism f :
RHn → Sn−1 × S1 by setting:

f([x]) =
(
x1

|x|
, . . . ,

xn

|x|
, exp

(√
−1

2π log |x|
log λ

))
for any [x] ∈ RHn. Here [x] = π(x), x = (x1, . . . , xn), x ∈ Rn − {0},
|x|2 =

∑n
i=1(x

i)2 and π : Rn − {0} → RHn denotes the natural pro-
jection. Then RHn, n > 1, is a compact connected l.s. manifold (with
transition functions x′i = λxi). Let us endow R2n+1 − {0} with the met-
ric

(8) ds2 = (|x|2 + t2)−1{δijdxi ⊗ dxj + dt2}
where (xi, t), 1 ≤ i ≤ 2n, are the natural coordinates (cf. (4.4) in [19],
p. 287). As (8) is invariant under any transformation

(9) x′i = λmxi , m ∈ Z ,
it gives a globally defined metric g0 on RH2n+1. We organize RH2n+1

into a l.c.c. manifold as follows. Let σ = log{|x|2 + t2}. One may endow
R2n+1 = R2n×R1 with a cosymplectic structure (cf. Z. Olszak [15], p. 241).
Namely, let g = δijdx

i ⊗ dxj + dt2 be the product metric on R2n+1. Let
ϕ(X + f∂/∂t) = JX, where X is tangent to R2n and f ∈ C∞(R2n+1).
Here J denotes the canonical complex structure of R2n ≈ Cn. Also set
η(X + f∂/∂t) = f . Then (ϕ, ξ, η, g), ξ = ∂/∂t, is a cosymplectic struc-
ture on R2n+1. Note that eσ/2ξ, e−σ/2η and (as noticed above) e−σg are
invariant under any transformation (9). Therefore RH2n+1 inherits a l.c.c.
structure (ϕ0, ξ0, η0, g0). Furthermore, by Proposition 3.5 in [19], p. 286,
any orientable compact l.s. manifold of dimension m ≥ 3 is a real homology
real Hopf manifold, i.e. it has the Betti numbers b0 = b1 = bm−1 = bm = 1
and bp = 0 for 2 ≤ p ≤ m − 2. By a theorem of D. E. Blair and S. Gold-
berg (Th. 2.4, in [3], p. 351), the Betti numbers of a compact cosymplectic
manifold are non-zero. Combining the above statements one obtains in par-
ticular
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Theorem 6. Any odd-dimensional real Hopf manifold RH2n+1, n ≥ 2,
has a natural structure of l.c.c. manifold but admits no globally defined
cosymplectic metrics. The Weyl connection of RH2n+1 is flat and its char-
acteristic form ω = dσ is parallel with respect to the Levi-Civita connection
of (RH2n+1, g0).

4. Real hypersurfaces of a locally conformal Kaehler manifold.
Let (M2n+2, g0, J) be a locally conformal Kaehler (l.c.K.) manifold, with
the complex structure J and the Hermitian metric g0 (cf. e.g. P. Liber-
mann [14]). Let M2n+1 be an orientable real hypersurface of M2n+2. Given
a unit normal field N on M2n+1, we put as usual ξ = −JN . Set ϕX =
tan(JX), FX = nor(JX), for any tangent vector field X on M2n+1. Here
tanx, norx denote the natural projections associated with the direct sum de-
composition Tx(M2n+2) = Tx(M2n+1)⊕Ex, x ∈M2n+1. Also E →M2n+1

is the normal bundle of ι : M2n+1 ⊂ M2n+2. Let η(X) = g0(FX,N). Let
g = ι∗g0 be the induced metric. By a result of [2], p. 30, (ϕ, ξ, η, g) is an
a.ct.m. structure on M2n+1. Let ω0 = (1/n)i(Ω)dΩ. Here i(Ω) denotes the
adjoint (with respect to g0) of e(Ω), where e(Ω)λ = Ω∧λ, for any differential
form λ on M2n+2, while Ω is the Kaehler 2-form of M2n+2. Then dω0 = 0,
dΩ = ω0 ∧Ω (see e.g. [24]). Let ω = ι∗ω0. Let Θ be the fundamental form
of the a.ct.m. structure (ϕ, ξ, η, g). Clearly Θ = ι∗Ω. Thus

(10) dΘ = ω ∧Θ , dω = 0 .

We recall the Gauss–Weingarten formulae:

(11) ∇0
XY = ∇XY + g(AX,Y )N , ∇0

XN = −AX ,

where A denotes the shape operator of ι, while ∇ is the induced connection.
Then (11) leads to

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ(12)
+ 1

2{ω(ϕY )X − ω(Y )ϕX + g(X,Y )ϕB −Θ(X,Y )B
+ ω0(N)[η(Y )X − g(X,Y )ξ]} .

Here B = tan(B0), B0 = ω]0 (indices being raised with respect to g0).
Moreover,

(∇Xη)Y = −Θ(AX,Y )(13)
+ 1

2 [g(X,Y )ω(ξ)−Θ(X,Y )ω0(N)− η(X)ω(Y )] .

As ∇ is torsion free, (13) leads to

2(dη)(X,Y ) = (ω ∧ η)(X,Y )−Θ(AX,Y )(14)
−Θ(X,AY )−Θ(X,Y )ω0(N) .
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Also (12) gives

[ϕ,ϕ](X,Y ) = η(Y )[A,ϕ]X − η(X)[A,ϕ]Y(15)
− {g((Aϕ+ ϕA)X,Y )−Θ(X,Y )ω0(N)}ξ .

As an application of (14)–(15) one obtains

Theorem 7. Let M2n+1 be a real hypersurface of the l.c.K. manifold
M2n+2, and assume that either M2n+1 is totally umbilical and its mean
curvature vector satisfies H = − 1

2B
⊥, B⊥ = nor(B0), or M2n+1 is totally

geodesic and tangent to the Lee field B0 of M2n+2. Then (ϕ, ξ, η, g) is a
l.c.c. structure on M2n+1.

Let CH2n+1 ≈ S2n+1×S1 be the complex Hopf manifold (cf. [13], Vol. II,
p. 137) carrying the l.c.K. metric g0 induced by the (Gd-invariant) met-
ric ds2 = |x|−2δijdx

i ⊗ dxj , where (x1, . . . , x2n+2) are the natural (real-
analytic) coordinates on Cn+1. Here Gd = {dmI : m ∈ Z}, d ∈ C − {0},
|d| 6= 1, while I is the identical transformation of Cn+1 − {0}. Let π :
Cn+1 − {0} → CHn+1 be the natural map (a local diffeomorphism). Let
ι : M2n+1 → (Cn+1 − {0}, δij) be an orientable totally geodesic real hyper-
surface. Then ψ : M2n+1 → CHn+1, ψ = π ◦ ι, is totally umbilical. Indeed,
let h, h′ be the second fundamental forms of M2n+1 in (Cn+1, |x|−2δij)
and (Cn+1, δij), respectively. Let g be the metric induced on M2n+1 by
|x|−2δij . Then ψ is an isometric immersion of (M2n+1, g) in (CHn+1, g0).
Let B⊥ be the normal component of −2xi∂/∂xi (with respect to M2n+1).
Then

(16) 2h′ = 2h+ g ⊗B⊥ .

Now (16) and h′ = 0 give h = g⊗H, 2H = −B⊥, i.e. M2n+1 → (Cn+1−{0},
|x|−2δij) is totally umbilical. Let ∇ be the Riemannian connection of
|x|−2δij . For any tangent vector fields X, Y on Cn+1 one has ∇0

π∗X
π∗Y =

π∗∇XY (cf. [13], Vol. I, p. 161). Thus hψ = π∗h, where hψ is the second
fundamental form of ψ. Also (16) yields

(17) H ′ = exp(f){H + 1
2B

⊥} ,

where f is the restriction to M2n+1 of log |x|−2. Thus (17) gives hψ =
g ⊗Hψ, i.e. ψ is totally umbilical . We may apply Theorem 7 to M2n+1 →
CHn+1 to conclude that M2n+1 inherits a l.c.c. structure.

5. The canonical foliation of a locally conformal cosymplec-
tic manifold. Let M2n be a real 2n-dimensional differentiable manifold.
An (f, g, u, v, λ)-structure on M2n consists of a (1, 1)-tensor field F , a Rie-
mannian metric G, two 1-forms u, v and a smooth real-valued function
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λ ∈ C∞(M2n) subject to:

(18)

f2 = −I + u⊗ U + v ⊗ V ,

u ◦ f = λv , v ◦ f = −λu , fU = −λV , fV = λU ,

u(V ) = v(U) = 0 , u(U) = v(V ) = 1− λ2 ,

g(fX, fY ) = g(X,Y )− u(X)u(Y )− v(X)v(Y ) ,

where U = u], V = v] (raising of indices is performed with respect to g)
(see [26], p. 386).

Let (M2n+1, ϕ, ξ, η, g0) be a strongly non-cosymplectic manifold with
characteristic 1-form ω. Then M2n+1 admits a canonical foliation Σ whose
leaves are the maximal connected integral manifolds of the Pfaffian equation
ω = 0.

Now we may prove Theorem 1. To this end, let M2n be a leaf of Σ. Let
B0 = ω] be the characteristic field of M2n+1. Then C = ‖ω‖−1B0 is a unit
normal vector field on M2n. Let X be tangential and set fX = tan(ϕX),
u(X) = g0(ϕX,C), v(X) = η(X), λ = η(C). Then M2n inherits an obvious
(f, g, u, v, λ)-structure, where g is the induced metric, while V = tan(ξ),
U = −ϕC. Since ω = 0 on T (M2n) by (6) one has dv = 0.

Let D0 be the Weyl connection of M2n+1 and K0 its curvature tensor
field. As a consequence of (5) one has

(19) K0(X,Y )Z = R0(X,Y )Z − 1
4‖ω‖

2(X ∧ Y )Z
− 1

2{L(X,Z)Y − L(Y, Z)X + g0(X,Z)L(Y, ·)] − g0(Y, Z)L(X, ·)]} .

Here R0 denotes the curvature of (M2n+1, g0) and

L(X,Y ) = (∇0
Xω)Y + 1

2ω(X)ω(Y ) ,
(X ∧ Y )Z = g0(Y, Z)X − g0(X,Z)Y .

Let K0 = 0; apply (19) and the Gauss equation of M2n → M2n+1 to ob-
tain

R(X,Y )Z = 1
4‖ω‖

2(X ∧ Y )Z + (AX ∧AY )Z(20)
+ 1

2{ω(h(Y, Z))X − ω(h(X,Z))Y }
+ 1

2‖ω‖{g(Y, Z)AX − g(X,Z)AY } .

As Σ has codimension 1 and ω is parallel, h = 0 and (20) gives R(X,Y ) =
c2X∧Y , c = 1

2‖ω‖, i.e.M2n is an elliptic space-form. To prove the last state-
ment in Theorem 1, assume M2n+1 is normal. Then ω = 2λcη; as η(C) = λ,
this yields λ2 = 1. Then (18) gives u = 0, v = 0, f2 = −I and M2n turns
out to be an almost Hermitian manifold. Moreover, [ϕ,ϕ] = 0, u = 0 lead
to [f, f ] = 0. Let Ω be the Kaehler 2-form of M2n. By (6), dΩ = 0,
i.e. M2n is Kaehlerian. Suppose M2n is complete. Then π1(M2n) = 0,
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by a classical result in [20] and one may apply Th. 7.9 in [13], Vol. II,
p. 170.

6. Regular locally conformal cosymplectic manifolds. A l.c.c.
manifold M2n+1 with the characteristic 1-form ω is normal iff

(21) ω = ω(ξ)η .

The structure vector ξ is regular if it defines a regular foliation (i.e. each
point of M2n+1 admits a flat coordinate neighborhood, say (U, xi, t),
1 ≤ i ≤ 2n, which intersects the orbits of ξ in at most one slice xi = const.,
cf. [18]). By (21), if M2n+1 is strongly non-cosymplectic, then ξ is regular
iff B = ω] is regular.

Let M2n+1 be compact; then ξ is complete (cf. [13], Vol. I, p. 14).
Let P (ξ) be the period function of ξ, P (ξ)x 6= 0, x ∈ M2n+1 (see [5],
pp. 722–723). The global 1-parameter transformation group of P (ξ)−1ξ,
P (P (ξ)−1ξ) = 1, induces a free action of S1 on M2n+1. By standard ar-
guments (cf. [5], p. 725, [4], p. 178, and [2], p. 15), M2n+1(M2n, π, S1) is a
principal S1-bundle over the space of orbits M2n = M2n+1/ξ. By a result
in [21], p. 236, as η(ξ) = 1 and Lξη = 0 it follows that P (ξ) = const. Thus
LP (ξ)−1ξη = 0 and therefore η is invariant under the action of S1. Now
we may prove Theorem 2. Clearly ξ is vertical, i.e. tangent to the fibres
of π. Let A ∈ L(S1) be the unique left invariant vector field on S1 with
A∗ = ξ. (Here A∗ denotes the fundamental vector field on M2n+1 associ-
ated with A, cf. [13], Vol. I, p. 51). Let η = η ⊗ A. Then η is a connection
1-form on M2n+1. Let H = Ker(η). By normality N3 = 0, where N3 = Lξϕ
(see [2], p. 50). Thus ϕ commutes with right translations. Consequently,
JpZp = (dxπ)ϕxZHx , x ∈ π−1(p), p ∈ M2n, Z ∈ Tp(M2n), is a well defined
complex structure on M2n. (Here ZH denotes the horizontal lift of Z (with
respect to η).) Let g(Z,W ) = g(ZH ,WH). By (21), ω = 0 on H and thus
(M2n, g, J) is Kaehlerian.

R e m a r k. M2n carries the Riemannian metric g, so it is paracompact.
By [13], Vol. I, p. 92, as η is flat, if π1(M2n) = 0 then M2n+1 ≈ M2n × S1

(i.e. M2n+1 is the trivial S1-bundle).

7. Submanifolds of complex Inoue surfaces. Let C+ = {z ∈ C :
Im(z) > 0} be the upper half of the complex plane. Let (z, w) be the natural
complex coordinates on C+×C. We endow C+×C with the Hermitian metric

(22) ds2 = y−2dz ⊗ dz + y dw ⊗ dw ,

where z = x + iy, i =
√
−1. Then (22) makes C+ × C into a glob-

ally conformal Kaehlerian manifold with the Lee form ω = y−1dy. Let
A ∈ SL(3,Z) with a real eigenvalue α > 0 and two complex eigenvalues
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β 6= β. Let (a1, a2, a3), (b1, b2, b3) be respectively a real eigenvector and
an eigenvector corresponding to α, β. Let GA be the discrete group gen-
erated by the transformations fα, α = 0, 1, 2, 3, where f0(z, w) = (αz, βw),
fi(z, w) = (z + ai, w + bi), i = 1, 2, 3. Then GA acts freely and properly
discontinuously on C+ × C so that CI2 = (C+ × C)/GA becomes a (com-
pact) complex surface. This is the Inoue surface (cf. [12]). It was observed
in [23], p. 84, that (22) is GA-invariant. Thus CI2 turns out to be a l.c.K.
manifold with a non-parallel Lee form (see Prop. 2.4 of [23], p. 85). Let
π : C+×C → CI2 be the natural projection. Let ι : M ⊂ C+×C be a sub-
manifold and g the metric induced by (22). Then ψ : M → CI2, ψ = π ◦ ι,
is an isometric immersion of (M, g) into CI2.

It is our purpose to build examples of (immersed) submanifolds of CI2

(and motivate the results in Section 4). Let w = a + ib; we set X = ∂/∂x,
Y = ∂/∂y, A = ∂/∂a, B = ∂/∂b. The real components of (22) are:

g0 :


y−2 0 0 0
0 y 0 0
0 0 y−2 0
0 0 0 y

 .

Thus the non-zero Christoffel symbols of the Levi-Civita connection ∇0 of
CI2 are

(23)
Γ 1

13 = Γ 3
33 = −Γ 3

11 = −y−1 ,

Γ 2
23 = Γ 4

34 = 1
2y

−1 , Γ 3
22 = Γ 3

44 = − 1
2y

2 .

The Lee field of CI2 is (locally) given by L = yY . Let Lh = {z ∈ C+ :
Im(z) = 1} and ι : Lh × C → C+ × C the natural inclusion. The tangent
space at a point of Lh × C is spanned by X, A and B. Then N = yY is a
unit normal vector field on Lh × C. By (23) one obtains

(24) ∇0
XN = −X , ∇0

AN = 1
2A , ∇0

BN = 1
2B .

Let aN be the shape operator of ψ : Lh × C → CI2, ψ = π ◦ ι. Then
Trace(aN ) = 0, i.e. ψ is minimal . Clearly Lh × C is a maximal connected
integral manifold of the Pfaff equation y−1dy = 0, i.e. a leaf of the canonical
foliation of the (strongly non-Kaehler) l.c.K. manifold CI2, and therefore
normal to L.

Let Lv = {z ∈ C+ : Re(z) = 0} and ι : Lv × C → C+ × C the inclusion.
Tangent spaces at points of Lv × C are spanned by A, Y , B, and N = yX
is a unit normal. By (23),

(25)
∇0
AA = − 1

2y
2Y , ∇0

AY = 1
2y

−1A , ∇0
AB = 0 ,

∇0
Y Y = −y−1Y , ∇0

YB = 1
2y

−1B , ∇0
BB = − 1

2y
2Y .

Consequently, ψ : Lv ×C → CI2, ψ = π ◦ ι, is a totally geodesic immersion.
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Clearly Lv × C is tangent to L and inherits a l.c.c. structure (via our
Theorem 7). Both Lh × C and Lv × C are generic, as real hypersurfaces
of CI2.

8. Betti numbers of locally conformal cosymplectic manifolds.
Let M2n+1 be a l.c.c. manifold with ∇ω = 0, K = 0 (i.e. having a flat Weyl
connection). Set ‖ω‖ = 2c, c > 0. By (19) the curvature of M2n+1 has the
expression

Rmijk = c2{gjkδmi − gikδ
m
j }(26)

+ 1
4{(ωiδ

m
j − ωjδ

m
i )ωk + (gikωj − gjkωi)Bm} .

Suitable contraction of indices in (26) gives the Ricci curvature

(27) Rjk = (2n− 1){c2gjk − 1
4ωjωk} .

If α = (1/p!)αi1...ipdx
i1 ∧ . . . ∧ dxip is a differential p-form on M2n+1, we

consider the quadratic form

Fp(α) = Rijα
ii2...ipαji2...ip −

1
2 (p− 1)Rijkmαiji3...ipαkmi3...ip

(cf. [10], p. 88). Then (26)–(27) lead to

(28) Rijα
ii2...ipαji2...ip = (2n− 1){c2p!‖α‖2 − 1

4 (p− 1)!‖ιBα‖2} ,

(29) Rijkmα
iji3...ipαkmi3...ip = 2c2p!‖α‖2 − (p− 1)!‖ιBα‖2 ,

where ιB denotes interior product with B.
Now we may prove our Theorem 3. Let α be a harmonic p-form on

M2n+1. By (3.2.9) in [10], p. 88, it follows that

(30)
∫
M

{pFp(α) +∇iαi1...ip∇iαi1...ip} ∗ 1 = 0 .

On the other hand, by (28)–(29),

(31) Fp(α) = c2{p!(2n− p)‖α‖2 + (p− 1)!(2p− 2n− 1)‖ιUα‖2} ,
where U = ‖ω‖−1B. Hence, if n + 1 ≤ p ≤ 2n − 1, then bp(M2n+1) = 0
(cf. our (30)–(31)). By Poincaré duality one also has bp(M2n+1) = 0
when 2 ≤ p ≤ n. Since ω is parallel, it is harmonic. Thus b1(M2n+1) =
b2n(M2n+1) ≥ 1 (as c 6= 0). To compute the first Betti number of M2n+1,
let σ be a harmonic 1-form. Then ∗σ is a harmonic 2n-form, where ∗ denotes
the Hodge operator. Then (31) leads to

F2n(∗σ) = c2(2n− 1)!(2n− 1)‖ιU (∗σ)‖2

and thus ιU (∗σ) = 0, by (30). By applying once more the Hodge operator
one has u ∧ σ = 0 or σ = fu for some nowhere vanishing f ∈ C∞(M2n+1).
Here u = ‖ω‖−1ω. As σ is harmonic, it is closed, so that df ∧ u = 0
or df = λv for some λ ∈ C∞(M2n+1). But σ is also coclosed, so that
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(df, σ) = (f, δσ) = 0 (by (2.9.3) in [10], p. 74), i.e. df and σ are orthogonal.
Thus 0 = (df, σ) = λf vol(M2n+1) yields λ = 0. As M2n+1 is connected one
obtains f = const., i.e. b1(M2n+1) = 1.
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