COLLOQUIUM MATHEMATICUM
 VOL. LXIV

ON A GENERAL BIDIMENSIONAL EXTRAPOLATION PROBLEM

BY
RODRIGO AROCENA and FERNANDO MONTANA (MONTEVIDEO)

To the memory of professor antoni zygmund

Several generalized moment problems in two dimensions are particular cases of the general problem of giving conditions that ensure that two isometries, with domains and ranges contained in the same Hilbert space, have commutative unitary extensions to a space that contains the given one. Some results concerning this problem are presented and applied to the extension of functions of positive type.

I. The problem and some related results

Notation and definitions. We say that V is an isometry that acts in a Hilbert space E if $V \in \mathcal{L}(D, R)$ is a unitary operator such that its domain D and its range R are closed subspaces of E.

In this paper the following notation is kept: E is a Hilbert space and, for $j=1,2, V_{j}$ denotes an isometry that acts in E, with domain D_{j} and range R_{j}, and defect subspaces N_{j} and M_{j}, the orthogonal complements in E of D_{j} and R_{j}, respectively.

We shall say that $\left(U_{1}, U_{2}, F\right)$ is a commutative unitary extension of the pair of isometries $\left(V_{1}, V_{2}\right)$ that act in E if:
(i) $U_{1}, U_{2} \in \mathcal{L}(F)$ are unitary operators in a Hilbert space F such that E is a closed subspace of F;
(ii) $U_{1} U_{2}=U_{2} U_{1}$;
(iii) $\left.U_{j}\right|_{D_{j}}=V_{j}, j=1,2$.

The extension is minimal if, moreover,
(iv) $F=\bigvee\left\{U_{1}^{m} U_{2}^{n} E: m, n \in \mathbb{Z}\right\}$.
(As usual, $F=\bigvee\{\ldots\}$ means that F is the smallest closed subspace such that $F \supset\{\ldots\}$.)

Let \mathcal{U} be the family of all the $\left(U_{1}, U_{2}, F\right)$ such that (i) to (iv) hold, modulo the following equivalence relation: $\left(U_{1}, U_{2}, F\right) \approx\left(U_{1}^{\prime}, U_{2}^{\prime}, F^{\prime}\right)$ in \mathcal{U} if
there exists a unitary operator $\tau \in \mathcal{L}\left(F, F^{\prime}\right)$ such that its restriction to E is the identity and $\tau U_{j}=U_{j}^{\prime} \tau$ for $j=1,2$.

Abstract moment problems. It happens that in several generalized moment problems in \mathbb{Z}^{2} a Hilbert space E and a pair of isometries $\left(V_{1}, V_{2}\right)$ that act in it appear naturally, in such a way that the problem has solutions iff \mathcal{U} is nonvoid and, moreover, there is a bijection between the set of all solutions and \mathcal{U}. This solution is the bidimensional extension of a fundamental and well known approach to moment problems, as can be seen in [Sa] and [C]. In fact, the last paper suggested the title of this one, where the extrapolation problem is the one of giving conditions for \mathcal{U} to be nonvoid.

The partial results that we have obtained ensure the existence of distinguished elements of \mathcal{U}, apparently related with the existence of maximal entropy solutions of moment problems. Let $P_{H}^{G} \equiv P_{H}$ denote the orthogonal projection of the Hilbert space G onto its closed subspace H, and set
$\mathcal{U}_{j}=\left\{\left(U_{1}, U_{2}, F\right) \in \mathcal{U}: U_{j} \in \mathcal{L}(F)\right.$ is a unitary dilation of $\left.V_{j} P_{D_{j}} \in \mathcal{L}(E)\right\}$,
$j=1,2$.
(Recall that $U \in \mathcal{L}(F)$ is a unitary dilation of a contraction $T \in \mathcal{L}(E)$ if U is a unitary operator in $F \supset E$ such that $\left.P_{E}^{F} U^{n}\right|_{E}=T^{n}$ for every $n \geq 0$.) In the next section we shall prove the following extension of a result given in [Ar 1$]$:

Theorem A. The following properties are equivalent:
(a) $P_{R_{2}}\left(V_{1} P_{D_{1}}\right)^{n}\left(V_{2} P_{D_{2}}\right)=\left(V_{2} P_{D_{2}}\right)\left(V_{1} P_{D_{1}}\right)^{n} P_{D_{2}}, n=1,2, \ldots$;
(b) $\mathcal{U}_{1} \neq \emptyset$.

On the extension of functions of positive type. For $0 \leq a, b \leq \infty$ set $\varrho^{(a, b)}=\left\{(m, n) \in \mathbb{Z}^{2}:|m| \leq a,|n| \leq b\right\}$ and $\varrho_{+}^{(a, b)}=\left\{(m, n) \in \varrho^{(a, b)}:\right.$ $m, n \geq 0\}$. We consider functions of positive type

$$
k: \varrho^{(a, b)} \rightarrow \mathcal{L}(G)
$$

where G is a Hilbert space. That is, if A is the space of functions with finite support from \mathbb{Z}^{2} to G and $A^{(a, b)}$ is the set of functions in A with support in $\varrho_{+}^{(a, b)}$, then

$$
\sum\left\{\langle k(s-t) h(s), h(t)\rangle_{G}: s, t \in \varrho_{+}^{(a, b)}\right\} \geq 0, \quad \forall h \in A^{(a, b)}
$$

In order to avoid technical details, we also assume that $k(0,0)=I$.
We denote by \mathcal{K} the set of all positive type extensions $K: \mathbb{Z}^{2} \rightarrow \mathcal{L}(G)$ of k and consider the problem of giving conditions on k that ensure that \mathcal{K} is nonvoid, which is a version of a well known problem of Krein [K]. Our approach to this problem is based on associating with k a Hilbert space E and two isometries, V_{1} and V_{2}, that act in E.

The vector space $A^{(a, b)}$ and the positive semidefinite sesquilinear form given by

$$
\left(h, h^{\prime}\right) \rightarrow \sum\left\{\left\langle k(s-t) h(s), h^{\prime}(t)\right\rangle_{G}: s, t \in \varrho_{+}^{(a, b)}\right\}, \quad \forall h, h^{\prime} \in A^{(a, b)}
$$

generate a Hilbert space $E \equiv E^{(a, b)} \equiv E_{k}^{(a, b)}$ such that $A^{(a, b)}$ is naturally associated with a dense subspace of it. Also, since G can obviously be identified with $A^{(0,0)}$, we may assume that $G \subset E$. Let S_{1} and S_{2} be the natural shifts in A, i.e., $\left(S_{1} h\right)(m, n) \equiv h(m-1, n)$ and $\left(S_{2} h\right)(m, n) \equiv h(m, n-1)$; restricting S_{1} to $A^{(a-1, b)}$ and S_{2} to $A^{(a, b-1)}$, we get two isometries $V_{1}=V_{1}^{(a, b)}$ and $V_{2}=V_{2}^{(a, b)}$ that act in E. The construction of E, V_{1} and V_{2} from k is nothing but the one of Naimark's famous dilation theorem, and can be repeated for any $K \in \mathcal{K}$. In this way it is seen that there exists a bijection from the set \mathcal{U}, defined by means of V_{1} and V_{2} as above, and \mathcal{K} which associates with each $\left(U_{1}, U_{2}, F\right) \in \mathcal{U}$ the function $K: \mathbb{Z}^{2} \rightarrow \mathcal{L}(G)$ given by $K(m, n)=\left.P_{G}^{F} U_{1}^{m} U_{2}^{n}\right|_{G}$. Thus, as a consequence of Theorem A we get the following:

THEOREM B. Let $k: \varrho^{(a, b)} \rightarrow \mathcal{L}(G)$ be a function of positive type such that $k(0,0)=I$ and that given any $v \in G, n$ an integer in $[0, b)$ and $\varepsilon>0$ there exists $h^{\prime} \in A^{(a-1, b-1)}$ with the property that $h=S_{1}^{a} S_{2}^{n} v+h^{\prime}$ satisfies $\sum\left\{\langle k(s-t) h(s), h(t)\rangle_{G}: s, t \in \varrho_{+}^{(a, b)}\right\}<\varepsilon$. Then \mathcal{K} is nonvoid.

The proof of Theorem B, its relations with known results and some complements will be given in Section III.

Remark on lifting theorems. Some applications of results concerning the extrapolation problem we are considering to bidimensional versions of the Nagy-Foiaş commutant lifting theorem are given in [Ar1] and [Ar2]. The last is closely related to Ando's theorem on the existence of a commutative unitary dilation of a commutative pair of contractions [An]. In Section IV we point out some connections between our subject and Ando's theorem.

II. On the existence of commutative unitary extensions of isometries

Proof of Theorem A. (i) Let $\left(U_{1}, U_{2}, F\right) \in \mathcal{U}_{1}$. Since $\left.P_{E}^{F} U_{1}^{n}\right|_{E}=$ $\left(V_{1} P_{D_{1}}\right)^{n}, n=1,2, \ldots$, we see that

$$
\begin{aligned}
P_{R_{2}}\left(V_{1} P_{D_{1}}\right)^{n}\left(V_{2} P_{D_{2}}\right) & =P_{R_{2}}^{E} P_{E}^{F} U_{1}^{n} V_{2} P_{D_{2}}=P_{R_{2}}^{F} U_{1}^{n} U_{2} P_{D_{2}}=P_{R_{2}}^{F} U_{2} U_{1}^{n} P_{D_{2}} \\
& =P_{R_{2}}^{F} U_{2}\left(P_{D_{2}}^{F} \oplus P_{F \ominus D_{2}}^{F}\right) U_{1}^{n} P_{D_{2}}=P_{R_{2}}^{F} U_{2} P_{D_{2}}^{F} U_{1}^{n} P_{D_{2}} \\
& =V_{2} P_{D_{2}}^{E}\left(\left.P_{E}^{F} U_{1}^{n}\right|_{E}\right) P_{D_{2}}=\left(V_{2} P_{D_{2}}\right)\left(V_{1} P_{D_{1}}\right)^{n} P_{D_{2}},
\end{aligned}
$$

so (b) implies (a).
(ii) Conversely, assume that (a) holds. Let $W_{1} \in \mathcal{L}\left(F_{1}\right)$ be the essentially unique minimal unitary dilation of $V_{1} P_{D_{1}} \in \mathcal{L}(E)$. For $\left(U_{1}, U_{2}, F\right)$ to belong to \mathcal{U}_{1} it is necessary that $U_{2} W_{1}^{m} d=U_{2} U_{1}^{m} d=U_{1}^{m} U_{2} d=W_{1}^{m} V_{2} d, \forall d \in D_{2}$, $m \in \mathbb{Z}$. So, we set $\widetilde{D}_{2}=\bigvee\left\{W_{1}^{m} D_{2}: m \in \mathbb{Z}\right\}$ and in $\widetilde{D}_{2} \subset F_{1}$ we define an operator \widetilde{V}_{2} by setting $\widetilde{V}_{2} W_{1}^{m} d=W_{1}^{m} V_{2} d, \forall d \in D_{2}, m \in \mathbb{Z}$. If $d_{1}, \ldots, d_{k} \in$ D_{2} and $m_{1}, \ldots, m_{k} \in \mathbb{Z}$, (a) shows that

$$
\begin{aligned}
\| & \sum\left\{W_{1}^{m_{j}} V_{2} d_{j}: 1 \leq j \leq k\right\} \|^{2} \\
= & \sum\left\{\left\langle P_{R_{2}} W_{1}^{m_{j}-m_{j^{\prime}}} V_{2} d_{j}, V_{2} d_{j^{\prime}}\right\rangle: 1 \leq j, j^{\prime} \leq k, m_{j} \geq m_{j^{\prime}}\right\} \\
& +\sum\left\{\left\langle V_{2} d_{j}, P_{R_{2}} W_{1}^{m_{j^{\prime}}-m_{j}} V_{2} d_{j^{\prime}}\right\rangle: 1 \leq j, j^{\prime} \leq k, m_{j}<m_{j^{\prime}}\right\} \\
= & \sum\left\{\left\langle P_{R_{2}}\left(V_{1} P_{D_{1}}\right)^{m_{j}-m_{j^{\prime}}}\left(V_{2} P_{D_{2}}\right) d_{j}, V_{2} d_{j^{\prime}}\right\rangle: 1 \leq j, j^{\prime} \leq k, m_{j} \geq m_{j^{\prime}}\right\} \\
& +\sum\left\{\left\langle V_{2} d_{j}, P_{R_{2}}\left(V_{1} P_{D_{1}}\right)^{m_{j^{\prime}}-m_{j}}\left(V_{2} P_{D_{2}}\right) d_{j^{\prime}}\right\rangle: 1 \leq j, j^{\prime} \leq k, m_{j}<m_{j^{\prime}}\right\} \\
= & \sum\left\{\left\langle\left(V_{1} P_{D_{1}}\right)^{m_{j}-m_{j^{\prime}}} d_{j}, d_{j^{\prime}}\right\rangle: 1 \leq j, j^{\prime} \leq k, m_{j} \geq m_{j^{\prime}}\right\} \\
& +\sum\left\{\left\langle d_{j}\left(V_{1} P_{D_{1}}\right)^{m_{j^{\prime}}-m_{j}} d_{j^{\prime}}\right\rangle: 1 \leq j, j^{\prime} \leq k, m_{j}<m_{j^{\prime}}\right\} \\
= & \left\|\sum\left\{W_{1}^{m_{j}} d_{j}: 1 \leq j \leq k\right\}\right\|^{2} .
\end{aligned}
$$

Thus \widetilde{V}_{2} is a well defined isometry in \widetilde{D}_{2}. Clearly, $W_{1} \widetilde{D}_{2}=\widetilde{D}_{2}$ and $\widetilde{V}_{2} W_{1} f=$ $W_{1} \widetilde{V}_{2} f, \forall f \in \widetilde{D}_{2}$.
(iii) Replacing E, V_{1} and V_{2} by F_{1}, W_{1} and \widetilde{V}_{2} we may assume that the isometries V_{1} and V_{2} acting in E are such that V_{1} is a unitary operator such that $V_{1} D_{2}=D_{2}$ and $V_{1} V_{2} f=V_{2} V_{1} f, \forall f \in D_{2}$. Let N be the orthogonal complement of D_{2} in E; thus, V_{1} commutes with P_{N} and $P_{D_{2}}$. Set $F^{\prime}=$ $D_{2} \oplus N \oplus \ldots \oplus N \oplus \ldots$ and let $V_{1}^{\prime}, V_{2}^{\prime} \in \mathcal{L}\left(F^{\prime}\right)$ be defined by $V_{1}^{\prime}\left(d, n_{1}, \ldots\right)=$ $\left(V_{1} d, V_{1} n_{1}, \ldots\right)$ and $V_{2}^{\prime}\left(d, n_{1}, n_{2}, \ldots\right)=\left(P_{D_{2}} V_{2} d, P_{N} V_{2} d, n_{1}, n_{2}, \ldots\right)$; clearly, V_{1}^{\prime} is a unitary operator, V_{2}^{\prime} is an isometry and $V_{1}^{\prime} V_{2}^{\prime}=V_{1}^{\prime} V_{2}^{\prime}$. Then it is known (see $[\mathrm{N}-\mathrm{F}]$) that there exist two commuting unitary operators that extend $V_{1}^{\prime}, V_{2}^{\prime}$ to a space containing F^{\prime}. The proof of Theorem A is complete.
(1) Corollary. If $D_{2} \cup R_{2} \subset D_{1}, V_{1}\left(D_{2} \cup R_{2}\right) \subset D_{1}, \ldots, V_{1}^{n}\left(D_{2} \cup R_{2}\right) \subset$ D_{1}, \ldots then the following properties are equivalent:
(a) $P_{R_{2}} V_{1}^{n} V_{2} P_{D_{2}}=V_{2} P_{D_{2}} V_{1}^{n} P_{D_{2}}, n=1,2, \ldots$;
(b) $\mathcal{U}_{1} \neq \emptyset$;
(c) $\mathcal{U} \neq \emptyset$.

Proof. It is enough to see that (c) implies (a). In fact, if $\left(U_{1}, U_{2}, F\right) \subset \mathcal{U}$,
then

$$
\begin{aligned}
P_{R_{2}} V_{1}^{n} V_{2} P_{D_{2}} & =P_{R_{2}} U_{1}^{n} U_{2} P_{D_{2}}=P_{R_{2}} U_{2} U_{1}^{n} P_{D_{2}}=P_{R_{2}} U_{2} V_{1}^{n} P_{D_{2}} \\
& =\left(P_{R_{2}} V_{2} P_{D_{2}}+P_{R_{2}} U_{2} P_{N_{2}}\right) V_{1}^{n} P_{D_{2}}=P_{R_{2}} V_{2} P_{D_{2}} V_{1}^{n} P_{D_{2}}
\end{aligned}
$$

(2) Corollary. If $D_{2} \cup R_{2} \subset D_{1}$ and $V_{1} D_{2} \subset D_{2}$ then the following properties are equivalent:
(a) $V_{1} V_{2} d=V_{2} V_{1} d, \forall d \in D_{2}$;
(b) $\mathcal{U}_{1} \neq \emptyset$;
(c) $\mathcal{U} \neq \emptyset$.

Proof. (c) implies (a), which in turn implies $V_{1}^{n} V_{2} d=V_{2} V_{1}^{n} d$, for every $n \geq 1$ and $d \in D_{2}$, as is seen by induction. In fact, from the last equality it follows that $V_{1}^{n} V_{2} d \in R_{2} \subset D_{1}$ and (since $V_{1} D_{2} \subset D_{2} \subset D_{1}$ shows that $V_{1}^{n} d \in D_{2}$)

$$
V_{1}^{n+1} V_{2} d=V_{1}\left(V_{1}^{n} V_{2} d\right)=\left(V_{1} V_{2}\right) V_{1}^{n} d=V_{2} V_{1}^{n+1} d
$$

(3) Proposition. Let D be a closed subspace of E such that $D \subset D_{1} \cap$ $D_{2}, V_{1} D \subset D_{2}, V_{2} D \subset D_{1}$ and $\left.V_{1} V_{2}\right|_{D}=\left.V_{2} V_{1}\right|_{D}$. Then $\mathcal{U} \neq \emptyset$ whenever one of the following equalities holds:

$$
D=D_{2}, \quad D=D_{1}, \quad V_{1} D=D_{2}, \quad V_{2} D=D_{1}
$$

Proof. If $D=D_{2}$, the assertion is a straightforward consequence of (2). If $V_{1} D=D_{2}$, set $D_{1}^{\prime}=V_{1} D_{1}, V_{1}^{\prime}=V_{1}^{-1}$ and $D^{\prime}=V_{1} D$; then, by the previous case, with V_{1}^{\prime}, V_{2} and D^{\prime} instead of V_{1}, V_{2} and D, the result follows.

III. Applications to a problem of Krein

Proof of Theorem B. The property of k that is assumed in the statement of Theorem B is the same as saying that $E^{(a, b-1)}$ equals the domain $D_{1}^{(a, b-1)} \equiv E^{(a-1, b-1)}$ of $V_{1}^{(a, b-1)}$. Now, the last holds iff $V_{1}^{(a, b-1)}$ is unitary, as follows from the consideration of the unitary operator $J=$ $J^{(a, b)} \in \mathcal{L}\left(E^{(a, b)}\right)$ given by $J\left(S_{1}^{m} S_{2}^{n} v\right) \equiv S_{1}^{a-m} S_{2}^{b-n} v$, because $J D_{j}=R_{j}$, $j=1,2$. Consequently, Theorem B follows from
(1) Proposition. If there exists an integer $s \in[0, b)$ such that $V_{1}^{(a, s)}$ is unitary, then:
(i) \mathcal{K} is nonvoid;
(ii) there exists only one function $k^{\prime}: \varrho^{(\infty, s)} \rightarrow \mathcal{L}(G)$ of positive type that extends $\left.k\right|_{\varrho^{(a, s)}}$.

Proof. (i) We know that it is enough to prove that \mathcal{U} is nonvoid. The hypothesis implies that $V_{1} \equiv V_{1}^{(a, b)}$ is a unitary operator in $E \equiv E^{(a, b)}$ and that the same happens with its restriction $V_{1}^{(a, b-1)}$, so $E^{(a, b-1)}=$
$D_{1}^{(a, b-1)} \equiv E^{(a-1, b-1)}$; thus, $D:=E^{(a-1, b-1)}$ equals $D_{2} \equiv D_{2}^{(a, b)}$. Then Proposition (II.3) may be applied, because $V_{1} V_{2} d=V_{2} V_{1} d$ holds for every $d \in \bigvee\left\{V_{1}^{m} V_{2}^{n} v: 0 \leq m<a, 0 \leq n<b, v \in G\right\} \equiv E^{(a-1, b-1)}$.
(ii) Let $K \in \mathcal{K}$ and let k^{\prime} be its restriction to $\varrho^{(\infty, s)}$. We have to show that k^{\prime} is well determined by k, i.e., by V_{1} and V_{2}. Now, $E^{(\infty, s)} \equiv E^{(\infty, s)}\left(k^{\prime}\right)$ contains $E=E^{(a, s)}$ as a closed subspace. Since $V_{1}^{(a, s)}$ is unitary, $D_{1}^{(a, s)} \equiv$ $E^{(a-1, s)}=E^{(a, s)}$ and it follows that $D_{1}^{(a, s)}=E^{(a+k, s)}$ for $k=0,1, \ldots$ Then, for $v, w \in G$ and $m \geq 0$, we have $\left\langle k^{\prime}(m, n) v, w\right\rangle_{G} \equiv\left\langle k^{\prime}(-m,-n)^{*} v, w\right\rangle_{G}=$ $\left\langle V_{1}^{m} V_{2}^{n} v, w\right\rangle_{G}$ if $0 \leq n \leq s$ and $\left\langle k^{\prime}(m, n) v, w\right\rangle_{G} \equiv\left\langle k^{\prime}(-m,-n)^{*} v, w\right\rangle_{G}=$ $\left\langle V_{1}^{m} v, V_{2}^{-n} w\right\rangle_{G}$ if $0 \geq n \geq-s$.

Remark on related results. If, in the statement of Proposition (1), $s=0$, then (ii) is equivalent to $V_{1}^{(a, s)}$ being unitary. Thus, Theorem B extends the following result [Ar1]: if there exists only one extension of positive type $k^{\prime}: \mathbb{Z} \rightarrow \mathcal{L}(G)$ of the one-dimensional restriction $\left.k\right|_{\varrho^{(a, 0)}}$ of k then $\mathcal{K} \neq \emptyset$. The last result is the discrete version of a theorem of Livsic on the continuous Krein problem (see $[\mathrm{B}]$) and it extends a theorem of Devinatz [D], according to which if both one-dimensional restrictions of $k\left(\left.k\right|_{\varrho^{(a, 0)}}\right.$ and $\left.\left.k\right|_{\varrho^{(0, b)}}\right)$ have only one extension of positive type then $\mathcal{K} \neq \emptyset$.

A more general condition. Assume the hypothesis of Proposition (1). Its proof shows that $\mathcal{U}_{1} \neq \emptyset$. Then Theorem A implies that

$$
\begin{align*}
&\left\langle\left(V_{1} P_{D_{1}}\right)^{r} V_{1}^{m} V_{2}^{n+1} v\right.\left., V_{2}^{n^{\prime}+1} w\right\rangle_{E}=\left\langle\left(V_{1} P_{D_{1}}\right)^{r} V_{1}^{m} V_{2}^{n} v, V_{2}^{n^{\prime}} w\right\rangle_{E} \tag{2}\\
& \forall r \geq 0,0 \leq m \leq a, 0 \leq n, n^{\prime}<b, v, w \in G
\end{align*}
$$

Now, the restriction $\left.K\right|_{\varrho(\infty, b)}$ of any $K \in \mathcal{K}$ given by $\left.K(m, n) \equiv P_{G}^{F} U_{1}^{m} U_{2}^{n}\right|_{G}$ with $\left(U_{1}, U_{2}, F\right) \in \mathcal{U}_{1}$ is completely determined by k. In fact, if $0 \leq n \leq b$, then $K(m, n)=\left.P_{G}^{E} P_{E}^{F} U_{1}^{m} U_{2}^{n}\right|_{G}=\left.P_{G}^{E}\left(P_{E}^{F_{1}} W_{1}^{m}\right) V_{2}^{n}\right|_{G}$, with $W_{1} \in \mathcal{L}\left(F_{1}\right)$ the minimal unitary dilation of $V_{1} P_{D_{1}} \in \mathcal{L}(E)$. That is, $\left.K\right|_{\varrho^{(\infty, b)}}$ is the same as the function $K_{1}: \varrho^{(\infty, b)} \rightarrow \mathcal{L}(G)$ defined by

$$
\begin{align*}
& K_{1}(m, n)=K_{1}(-m,-n)^{*}=\left.P_{G}^{E}\left(V_{1} P_{D_{1}}\right)^{m} V_{2}^{n}\right|_{G} \\
& \quad \text { if }(m, n) \in \varrho_{+}^{(\infty, b)} \\
& K_{1}(m, n)=K_{1}(-m,-n)^{*}=\left.P_{G}^{E}\left(V_{1} P_{D_{1}}\right)^{*-m} V_{2}^{n}\right|_{G} \tag{3}\\
& \text { if }(-m,-n) \in \varrho_{+}^{(\infty, b)} .
\end{align*}
$$

The extension K_{1} of a function of positive type $k: \varrho^{(a, b)} \rightarrow \mathcal{L}(G)$ is well defined even if $\mathcal{K}=\emptyset$. If K_{1} itself is of positive type, then, considering K_{1} instead of k, we define the isometries $V_{1}^{(\infty, b)}$ and $V_{2}^{(\infty, b)}$ that act in $E^{(\infty, b)}$, and $V_{1}^{(\infty, b)}$ is unitary; thus, by Corollary (II.2), there exist two commutative unitary operators $U_{1}, U_{2} \in \mathcal{L}(F)$ such that $F \supset E^{(\infty, b)},\left.U_{1}\right|_{E^{(\infty, b)}}=V_{1}^{(\infty, b)}$
and $\left.U_{2}\right|_{D_{2}^{(\infty, b)}}=V_{2}^{(\infty, b)}$. Thus $\left.K(m, n) \equiv P_{G}^{F} U_{1}^{m} U_{2}^{n}\right|_{E}$ is such that $K \in \mathcal{K}$ and $\left.K\right|_{\varrho^{(\infty, b)}}=K_{1}$.

If there exists $\left(U_{1}, U_{2}, F\right) \in \mathcal{U}_{1}$ then

$$
\begin{array}{r}
\left\langle K_{1}\left(r+m-m^{\prime}, n-n^{\prime}\right) v, w\right\rangle_{G}=\left\langle\left(V_{1} P_{D_{1}}\right)^{r} V_{1}^{m} V_{2}^{n} v, V_{1}^{m^{\prime}} V_{2}^{n^{\prime}} w\right\rangle_{E} \tag{4}\\
\forall r \geq 0,0 \leq m, m^{\prime} \leq a, 0 \leq n, n^{\prime} \leq b, v, w \in G
\end{array}
$$

In fact, under such conditions we have

$$
\begin{aligned}
\left\langle P_{G}^{F} U_{1}^{r+m-m^{\prime}} U_{2}^{n-n^{\prime}} v, w\right\rangle_{G} & =\left\langle U_{1}^{r} U_{1}^{m} U_{2}^{n} v, U_{1}^{m^{\prime}} U_{2}^{n^{\prime}} w\right\rangle_{F} \\
& =\left\langle\left(\left.P_{E}^{F} U_{1}^{r}\right|_{E}\right) V_{1}^{m} V_{2}^{n} v, V_{1}^{m^{\prime}} V_{2}^{n^{\prime}} w\right\rangle_{G} \\
& =\left\langle\left(V_{1} P_{D_{1}}\right)^{r} V_{1}^{m} V_{2}^{n} v, V_{1}^{m^{\prime}} V_{2}^{n^{\prime}} w\right\rangle_{E}
\end{aligned}
$$

Conversely, if (4) holds, the definition (3) of K_{1} shows that also (2) holds. Summing up:
(5) Lemma. K_{1} is of positive type \Leftrightarrow (4) holds $\Leftrightarrow \mathcal{U}_{1} \neq \emptyset \Rightarrow \exists K \in \mathcal{K}$ that extends K_{1}.

So we get the following extension of Theorem B.
(6) Theorem C. Let $k: \varrho^{(a, b)} \rightarrow \mathcal{L}(G)$ be a function of positive type such that $k(0)=I$.
(a) If one of the restrictions $\left.k\right|_{\varrho^{(a, 0)}}$ and $\left.k\right|_{\varrho^{(0, b)}}$ has only one extension of positive type to \mathbb{Z}, then the hypothesis of Theorem B holds.
(b) Let E, V_{1} and V_{2} be the Hilbert space and the isometries associated with k. If the hypothesis of Theorem B holds, the extension $K_{1}: \varrho^{(\infty, b)} \rightarrow$ $\mathcal{L}(G)$ of k defined by (3) is of positive type.
(c) K_{1} is of positive type iff (4) holds.
(d) If K_{1} is of positive type, then $\mathcal{K} \neq \emptyset$ and there exists $K \in \mathcal{K}$ such that K extends K_{1}.

IV. On the relations with a theorem of Ando

A similar approach to another extension problem. Let us now consider another problem concerning the existence of extensions of positive type of a given function. Set $\mathbb{Z}_{+}^{2}=\left\{(m, n) \in \mathbb{Z}^{2}: m, n \geq 0\right\}$ and let $h: \mathbb{Z}_{+}^{2} \rightarrow \mathcal{L}(G)$ be a given function such that $h(0,0)=I$. We want to give conditions that ensure that the set \mathcal{H} of positive type extensions $H: \mathbb{Z}^{2} \rightarrow \mathcal{L}(G)$ of h is nonvoid.

If $\exists H \in \mathcal{H}$, Naimark's dilation theorem says that there exists a unitary representation $W: \mathbb{Z}^{2} \rightarrow \mathcal{L}(F)$ such that $F \supset G,\left.H(m, n) \equiv P_{G}^{F} W(m, n)\right|_{G}$ and $F=\bigvee\left\{W(m, n) G:(m, n) \in \mathbb{Z}^{2}\right\}$. Defining $h_{1}, h_{2}: \mathbb{Z} \rightarrow \mathcal{L}(g)$ by
setting, for every $m \geq 0$,

$$
\begin{aligned}
& h_{1}(m)=h_{1}(-m)^{*}=h(m, 0), \\
& h_{2}(m)=h_{2}(-m)^{*}=h(0, m),
\end{aligned}
$$

it follows that

$$
\begin{align*}
& \left|\sum\left\{\left\langle h(m, n) v_{1}(m), v_{2}(n)\right\rangle_{G}: m, n \geq 0\right\}\right|^{2} \tag{1}\\
& \quad \leq \sum\left\{\left\langle h_{1}(m-n) v_{1}(m), v_{1}(n)\right\rangle_{G}: m, n \geq 0\right\} \\
& \quad \times \sum\left\{\left\langle h_{2}(n-m) v_{2}(m), v_{2}(n)\right\rangle_{G}: m, n \geq 0\right\} \\
& \quad \text { for all } v_{1}, v_{2}:\{m \in \mathbb{Z}: m \geq 0\} \rightarrow G \text { with finite support, }
\end{align*}
$$

is a necessary condition on h, which we assume from now on. Then, for $j=1,2, h_{j}$ is of positive type; let $U_{j} \in \mathcal{L}\left(F_{j}\right)$ be its minimal unitary dilation. Set also $G_{1}=\bigvee\left\{U_{1}^{m} G: m \geq 0\right\}, V_{1}=\left.U_{1}\right|_{G_{1}}, \widetilde{G}_{2}=\bigvee\left\{U_{2}^{m} G: m \leq 0\right\}$, $\widetilde{V}_{2}=\left.U_{2}^{*}\right|_{\widetilde{G}_{2}}$. If there exists $W: \mathbb{Z}^{2} \rightarrow \mathcal{L}(F)$ as above it may be assumed that $F \supset F_{1}, F_{2}$ and that, if E is the span in F of G_{1} and \widetilde{G}_{2}, then
(2) $\quad\langle h(m, n) u, w\rangle_{G}=\left\langle V_{1}^{m} u, \widetilde{V}_{2}^{n} w\right\rangle_{E}, \quad \forall m, n \geq 0, u, w \in G$.

Now, E can be defined directly from h. In fact, (2) shows that there exists a well determined continuous positive sesquilinear form B in the vector space $G_{1} \times \widetilde{G}_{2}$ such that, for all $m, n, m^{\prime}, n^{\prime} \geq 0, u, w, u^{\prime}, w^{\prime} \in G$,

$$
\begin{aligned}
B\left[\left(V_{1}^{m} u, \widetilde{V}_{2}^{n} w\right),\left(V_{1}^{m^{\prime}} u^{\prime}, \widetilde{V}_{2}^{n^{\prime}} w^{\prime}\right)\right]= & \left\langle V_{1}^{m} u, V_{1}^{m^{\prime}} u^{\prime}\right\rangle_{G_{1}}+\left\langle h\left(m, n^{\prime}\right) u, w^{\prime}\right\rangle_{G} \\
& +\left\langle u^{\prime}, h\left(m^{\prime}, n\right) w^{\prime}\right\rangle_{G}+\left\langle\widetilde{V}_{2}^{n} w, \widetilde{V}_{2}^{n^{\prime}} w^{\prime}\right\rangle_{\widetilde{G}_{2}}
\end{aligned}
$$

Thus, the vector space $G_{1} \times \widetilde{G}_{2}$ and the form B generate a Hilbert space E such that we may assume that $G_{1}, \widetilde{G}_{2} \subset E, G_{1} \vee \widetilde{G}_{2}=E$, and also $G \subset E$. So we have associated with h a Hilbert space E and two isometries, V_{1} and \widetilde{V}_{2}, that act in E, such that (2) holds. Then it is easy to check the following
(3) Proposition. Let $h: \mathbb{Z}_{+}^{2} \rightarrow \mathcal{L}(G)$ be such that $h(0)=1$ and that (1) holds. If E, V_{1} and \widetilde{V}_{2} are the Hilbert space and the isometries acting in it associated with h, there exists a bijection between the set \mathcal{H} of positive type extensions $H: \mathbb{Z}^{2} \rightarrow \mathcal{L}(G)$ of h and the set \mathcal{U} of minimal commutative unitary extensions of V_{1} and \widetilde{V}_{2}. That bijection associates with each $\left(U_{1}, \widetilde{U}_{2}, F\right) \in \mathcal{U}$ the function $H: \mathbb{Z}^{2} \rightarrow \mathcal{L}(G)$ given by $\left.H(m, n) \equiv P_{G}^{F} U_{1}^{m} \widetilde{U}_{2}^{-n}\right|_{G}$. In particular, \mathcal{H} is nonvoid iff \mathcal{U} is nonvoid.

An example. Let $\left(T_{1}, T_{2}\right)$ be a commuting pair of contractions in the Hilbert space G. A fundamental theorem due to Ando (see [An] or [N-F]) states that there exists a commuting pair $\left(U_{1}, U_{2}\right)$ of unitary operators in a Hilbert space $F \supset G$ such that $T_{1}^{m} T_{2}^{n}=\left.P_{G}^{F} U_{1}^{m} U_{2}^{n}\right|_{G}, \forall m, n \geq 0$. Following
[C-S], we say that such a $\left(U_{1}, U_{2}\right)$ is an Ando dilation of $\left(T_{1}, T_{2}\right)$; let \mathcal{A} be the set of all minimal Ando dilations, modulo unitary equivalences, of $\left(T_{1}, T_{2}\right)$. Define $h: \mathbb{Z}_{+}^{2} \rightarrow \mathcal{L}(G)$ by $h(m, n) \equiv T_{1}^{m} T_{2}^{n}$; then (1) holds and, as before, a Hilbert space E and two isometries acting in E, V_{1} and \widetilde{V}_{2}, are associated with the commuting pair of contractions $\left(T_{1}, T_{2}\right)$. In this case, the definition of the scalar product in E shows that

$$
\begin{aligned}
\left\langle\left(g_{1}, g_{2}\right),\left(g_{1}^{\prime}, g_{2}^{\prime}\right)\right\rangle_{E}= & \left\langle g_{1}, g_{1}^{\prime}\right\rangle_{G_{1}}+\left\langle P_{G}^{G_{1}} g_{1}, g_{2}^{\prime}\right\rangle_{\widetilde{G}_{2}}+\left\langle P_{G}^{G_{1}} g_{1}^{\prime}, g_{2}\right\rangle_{\widetilde{G}_{2}} \\
& +\left\langle g_{2}, g_{2}^{\prime}\right\rangle_{\widetilde{G}_{2}}, \quad \forall\left(g_{1}, g_{2}\right),\left(g_{1}^{\prime}, g_{2}^{\prime}\right) \in G_{1} \times \widetilde{G}_{2}
\end{aligned}
$$

so $\left.P_{\widetilde{G}_{2}}^{E}\right|_{G_{1}}=P_{G}^{G_{1}}$ and $\left.P_{G_{1}}^{E}\right|_{\widetilde{G}_{2}}=P_{G}^{\widetilde{G}_{2}}$.
Proposition (3) yields
(4) Corollary. Let $\left(T_{1}, T_{2}\right)$ be a commuting pair of contractions in a Hilbert space G, and V_{1} and \widetilde{V}_{2} the isometries acting in E associated with $\left(T_{1}, T_{2}\right)$. There is a bijection between \mathcal{A}, the set of all minimal Ando dilations modulo unitary equivalences of $\left(T_{1}, T_{2}\right)$, and \mathcal{U}, the set of minimal commutative unitary extensions of V_{1} and \widetilde{V}_{2} such that $\left(U_{1}, U_{2}\right) \subset \mathcal{L}(F)$ belongs to \mathcal{A} iff $\left(U_{1}, U_{2}^{*}, F\right)$ belongs to \mathcal{U}.

In order to be complete, let us sketch in this context the proof of Ando's theorem by means of the commutant lifting theorem (see [C-S]). The last says that $\exists \varrho_{2} \in \mathcal{L}\left(G_{1}\right)$ such that $\varrho_{2} V_{1}=V_{1} \varrho_{2}$ and $P_{G}^{G_{1}} \varrho_{2}=T_{2} P_{G}^{G_{1}}$. Let $\mu_{2} \in \mathcal{L}(J)$ be the minimal unitary dilation of ϱ_{2}; then μ_{2} is a unitary dilation of T_{2}, so we may assume that $J \supset \widetilde{G}_{2}$ and $\left.\mu_{2}^{*}\right|_{\widetilde{G}_{2}}=\widetilde{V}_{2}$. We may also assume that $J \supset E$: in fact, $J \supset G_{1}$ and, for $m, n \geq 0$ and $u, w \in G$,

$$
\begin{aligned}
\left\langle V_{1}^{m} u, \widetilde{V}_{2}^{n} w\right\rangle_{J} & =\left\langle V_{1}^{m} u, \mu_{2}^{-n} w\right\rangle_{J}=\left\langle\mu_{2}^{n} V_{1}^{m} u, w\right\rangle_{J}=\left\langle\varrho_{2}^{n} V_{1}^{m} u, w\right\rangle_{G_{1}} \\
& =\left\langle T_{2}^{n} P_{G}^{G_{1}} V_{1}^{m} u, w\right\rangle_{E}=\left\langle T_{2}^{n} T_{1}^{m} u, w\right\rangle_{E}=\left\langle V_{1}^{m} u, \widetilde{V}_{2}^{n} w\right\rangle_{E},
\end{aligned}
$$

by (2). Then, by Theorem A and Corollary (4), there exists an Ando dilation $\left(U_{1}, U_{2}\right) \subset \mathcal{L}(F)$ such that $F \supset J$ and $\left.U_{2}\right|_{J}=\mu_{2}$ because $P_{V_{1} G_{1}} \mu_{2}^{n} V_{1} P_{G_{1}}=$ $V_{1} P_{G_{1}} \mu_{2}^{n} P_{G_{1}}$ for $n=1,2, \ldots$

An application of Ando's theorem to Krein's problem. With the notation of Section III, the following is an obvious consequence of Theorem A.
(5) Proposition. Let $k: \varrho^{(a, b)} \rightarrow \mathcal{L}(G)$ be a function of positive type and E, V_{1} and V_{2} the Hilbert space and the isometries associated with k. If $\left(V_{1} P_{D_{1}}\right)\left(V_{2} P_{D_{2}}\right)=\left(V_{2} P_{D_{2}}\right)\left(V_{1} P_{D_{1}}\right)$, then \mathcal{K} is nonvoid.

Moreover, applying Ando's theorem to the commutative pair $\left(V_{1} P_{D_{1}}, V_{2} P_{D_{2}}\right)$ we get elements $\left(U_{1}, U_{2}, F\right)$ of \mathcal{U} such that the corresponding extensions of k have maximum entropy in the sense of [Se]; this remark
will be developed elsewhere. Proposition (5) applies, for example, when $k(s)=0$ whenever $s \neq 0$.

REFERENCES

[An] T. Ando, On a pair of commutative contractions, Acta Sci. Math. (Szeged) 24 (1963), 88-90.
[Ar1] R. Arocena, On the extension problem for a class of translation invariant forms, J. Operator Theory, to appear.
[Ar2] -, On the commutant lifting theorem, submitted.
[B] Ju. M. Berezanskiĭ, Expansions in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monographs 17, Amer. Math. Soc., Providence 1968.
[C] T. Constantinescu, On a general extrapolation problem, Rev. Roumaine Math. Pures Appl. 32 (1987), 509-521.
[C-S] Z. Ceauşescu and I. Suciu, Isometric dilations of commuting contractions. II, in: Operator Theory: Adv. Appl. 11, Birkhäuser, 1983, 53-80.
[D] A. Devinatz, On the extension of positive definite functions, Acta Math. 102 (1959), 109-134.
[K] M. G. Krein, Sur le problème du prolongement des fonctions hermitiennes positives et continues, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 17-22.
[N-F] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, 1970.
[Sa] D. Sarason, Moment problems and operators in Hilbert spaces, in: Proc. Sympos. Appl. Math. 37, Amer. Math. Soc., 1987, 54-70.
[Se] A. Seghier, Extension de fonctions de type positif et entropie associée. Cas multidimensionnel, Ann. Inst. H. Poincaré, to appear.

CENTRO DE MATEMÁTICA
FACULTAD DE HUMANIDADES Y CIENCIAS
EDUARDO ACEVEDO 1139
MONTEVIDEO, URUGUAY

