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Several generalized moment problems in two dimensions are particu-
lar cases of the general problem of giving conditions that ensure that two
isometries, with domains and ranges contained in the same Hilbert space,
have commutative unitary extensions to a space that contains the given
one. Some results concerning this problem are presented and applied to the
extension of functions of positive type.

I. The problem and some related results

Notation and definitions. We say that V is an isometry that acts in a
Hilbert space E if V ∈ L(D,R) is a unitary operator such that its domain
D and its range R are closed subspaces of E.

In this paper the following notation is kept: E is a Hilbert space and, for
j = 1, 2, Vj denotes an isometry that acts in E, with domain Dj and range
Rj , and defect subspaces Nj and Mj , the orthogonal complements in E of
Dj and Rj , respectively.

We shall say that (U1, U2, F ) is a commutative unitary extension of the
pair of isometries (V1, V2) that act in E if:

(i) U1, U2 ∈ L(F ) are unitary operators in a Hilbert space F such that
E is a closed subspace of F ;

(ii) U1U2 = U2U1;
(iii) Uj |Dj = Vj , j = 1, 2.

The extension is minimal if, moreover,

(iv) F =
∨
{Um

1 Un
2 E : m,n ∈ Z}.

(As usual, F =
∨
{. . .} means that F is the smallest closed subspace such

that F ⊃ {. . .}.)
Let U be the family of all the (U1, U2, F ) such that (i) to (iv) hold,

modulo the following equivalence relation: (U1, U2, F ) ≈ (U ′
1, U

′
2, F

′) in U if
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there exists a unitary operator τ ∈ L(F, F ′) such that its restriction to E is
the identity and τUj = U ′

jτ for j = 1, 2.

Abstract moment problems. It happens that in several generalized mo-
ment problems in Z2 a Hilbert space E and a pair of isometries (V1, V2) that
act in it appear naturally, in such a way that the problem has solutions iff U
is nonvoid and, moreover, there is a bijection between the set of all solutions
and U . This solution is the bidimensional extension of a fundamental and
well known approach to moment problems, as can be seen in [Sa] and [C]. In
fact, the last paper suggested the title of this one, where the extrapolation
problem is the one of giving conditions for U to be nonvoid.

The partial results that we have obtained ensure the existence of dis-
tinguished elements of U , apparently related with the existence of maximal
entropy solutions of moment problems. Let PG

H ≡ PH denote the orthogonal
projection of the Hilbert space G onto its closed subspace H, and set

Uj = {(U1, U2, F ) ∈ U : Uj ∈ L(F ) is a unitary dilation of VjPDj ∈ L(E)},
j = 1, 2 .

(Recall that U ∈ L(F ) is a unitary dilation of a contraction T ∈ L(E) if U
is a unitary operator in F ⊃ E such that PF

E Un|E = Tn for every n ≥ 0.)
In the next section we shall prove the following extension of a result given
in [Ar1]:

Theorem A. The following properties are equivalent :

(a) PR2(V1PD1)
n(V2PD2) = (V2PD2)(V1PD1)

nPD2 , n = 1, 2, . . . ;
(b) U1 6= ∅.

On the extension of functions of positive type. For 0 ≤ a, b ≤ ∞ set
%(a,b) = {(m,n) ∈ Z2 : |m| ≤ a, |n| ≤ b} and %

(a,b)
+ = {(m,n) ∈ %(a,b) :

m,n ≥ 0}. We consider functions of positive type

k : %(a,b) → L(G)

where G is a Hilbert space. That is, if A is the space of functions with finite
support from Z2 to G and A(a,b) is the set of functions in A with support
in %

(a,b)
+ , then∑

{〈k(s− t)h(s), h(t)〉G : s, t ∈ %
(a,b)
+ } ≥ 0, ∀h ∈ A(a,b) .

In order to avoid technical details, we also assume that k(0, 0) = I.
We denote by K the set of all positive type extensions K : Z2 → L(G)

of k and consider the problem of giving conditions on k that ensure that K
is nonvoid, which is a version of a well known problem of Krein [K]. Our
approach to this problem is based on associating with k a Hilbert space E
and two isometries, V1 and V2, that act in E.
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The vector space A(a,b) and the positive semidefinite sesquilinear form
given by

(h, h′) →
∑

{〈k(s− t)h(s), h′(t)〉G : s, t ∈ %
(a,b)
+ } , ∀h, h′ ∈ A(a,b) ,

generate a Hilbert space E ≡ E(a,b) ≡ E
(a,b)
k such that A(a,b) is naturally

associated with a dense subspace of it. Also, since G can obviously be iden-
tified with A(0,0), we may assume that G ⊂ E. Let S1 and S2 be the natural
shifts in A, i.e., (S1h)(m,n) ≡ h(m−1, n) and (S2h)(m,n) ≡ h(m,n−1); re-
stricting S1 to A(a−1,b) and S2 to A(a,b−1), we get two isometries V1 = V

(a,b)
1

and V2 = V
(a,b)
2 that act in E. The construction of E, V1 and V2 from k

is nothing but the one of Naimark’s famous dilation theorem, and can be
repeated for any K ∈ K. In this way it is seen that there exists a bijection
from the set U , defined by means of V1 and V2 as above, and K which as-
sociates with each (U1, U2, F ) ∈ U the function K : Z2 → L(G) given by
K(m,n) = PF

G Um
1 Un

2 |G. Thus, as a consequence of Theorem A we get the
following:

Theorem B. Let k : %(a,b) → L(G) be a function of positive type such
that k(0, 0) = I and that given any v ∈ G, n an integer in [0, b) and ε > 0
there exists h′ ∈ A(a−1,b−1) with the property that h = Sa

1Sn
2 v + h′ satisfies∑

{〈k(s− t)h(s), h(t)〉G : s, t ∈ %
(a,b)
+ } < ε. Then K is nonvoid.

The proof of Theorem B, its relations with known results and some
complements will be given in Section III.

Remark on lifting theorems. Some applications of results concerning the
extrapolation problem we are considering to bidimensional versions of the
Nagy–Foiaş commutant lifting theorem are given in [Ar1] and [Ar2]. The
last is closely related to Ando’s theorem on the existence of a commutative
unitary dilation of a commutative pair of contractions [An]. In Section IV
we point out some connections between our subject and Ando’s theorem.

II. On the existence of commutative unitary extensions of
isometries

P r o o f o f T h e o r e m A. (i) Let (U1, U2, F ) ∈ U1. Since PF
E Un

1 |E =
(V1PD1)

n, n = 1, 2, . . . , we see that

PR2(V1PD1)
n(V2PD2) = PE

R2
PF

E Un
1 V2PD2 = PF

R2
Un

1 U2PD2 = PF
R2

U2U
n
1 PD2

= PF
R2

U2(PF
D2
⊕ PF

F	D2
)Un

1 PD2 = PF
R2

U2P
F
D2

Un
1 PD2

= V2P
E
D2

(PF
E Un

1 |E)PD2 = (V2PD2)(V1PD1)
nPD2 ,

so (b) implies (a).
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(ii) Conversely, assume that (a) holds. Let W1 ∈ L(F1) be the essentially
unique minimal unitary dilation of V1PD1 ∈ L(E). For (U1, U2, F ) to belong
to U1 it is necessary that U2W

m
1 d = U2U

m
1 d = Um

1 U2d = Wm
1 V2d, ∀d ∈ D2,

m ∈ Z. So, we set D̃2 =
∨
{Wm

1 D2 : m ∈ Z} and in D̃2 ⊂ F1 we define an
operator Ṽ2 by setting Ṽ2W

m
1 d = Wm

1 V2d, ∀d ∈ D2, m ∈ Z. If d1, . . . , dk ∈
D2 and m1, . . . ,mk ∈ Z, (a) shows that∥∥∥∑

{Wmj

1 V2dj : 1 ≤ j ≤ k}
∥∥∥2

=
∑

{〈PR2W
mj−mj′

1 V2dj , V2dj′〉 : 1 ≤ j, j′ ≤ k, mj ≥ mj′}

+
∑

{〈V2dj , PR2W
mj′−mj

1 V2dj′〉 : 1 ≤ j, j′ ≤ k, mj < mj′}

=
∑

{〈PR2(V1PD1)
mj−mj′ (V2PD2)dj , V2dj′〉 : 1 ≤ j, j′ ≤ k, mj ≥ mj′}

+
∑

{〈V2dj , PR2(V1PD1)
mj′−mj (V2PD2)dj′〉 : 1 ≤ j, j′ ≤ k, mj < mj′}

=
∑

{〈(V1PD1)
mj−mj′dj , dj′〉 : 1 ≤ j, j′ ≤ k, mj ≥ mj′}

+
∑

{〈dj(V1PD1)
mj′−mj dj′〉 : 1 ≤ j, j′ ≤ k, mj < mj′}

=
∥∥∥∑

{Wmj

1 dj : 1 ≤ j ≤ k}
∥∥∥2

.

Thus Ṽ2 is a well defined isometry in D̃2. Clearly, W1D̃2 = D̃2 and Ṽ2W1f =
W1Ṽ2f , ∀f ∈ D̃2.

(iii) Replacing E, V1 and V2 by F1, W1 and Ṽ2 we may assume that the
isometries V1 and V2 acting in E are such that V1 is a unitary operator such
that V1D2 = D2 and V1V2f = V2V1f , ∀f ∈ D2. Let N be the orthogonal
complement of D2 in E; thus, V1 commutes with PN and PD2 . Set F ′ =
D2⊕N ⊕ . . .⊕N ⊕ . . . and let V ′

1 , V ′
2 ∈ L(F ′) be defined by V ′

1(d, n1, . . .) =
(V1d, V1n1, . . .) and V ′

2(d, n1, n2, . . .) = (PD2V2d, PNV2d, n1, n2, . . .); clearly,
V ′

1 is a unitary operator, V ′
2 is an isometry and V ′

1V ′
2 = V ′

1V ′
2 . Then it is

known (see [N–F]) that there exist two commuting unitary operators that
extend V ′

1 , V ′
2 to a space containing F ′. The proof of Theorem A is complete.

(1) Corollary. If D2∪R2 ⊂ D1, V1(D2∪R2) ⊂ D1, . . . , V
n
1 (D2∪R2) ⊂

D1, . . . then the following properties are equivalent :

(a) PR2V
n
1 V2PD2 = V2PD2V

n
1 PD2 , n = 1, 2, . . . ;

(b) U1 6= ∅;
(c) U 6= ∅.

P r o o f. It is enough to see that (c) implies (a). In fact, if (U1, U2, F )⊂U ,
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then
PR2V

n
1 V2PD2 = PR2U

n
1 U2PD2 = PR2U2U

n
1 PD2 = PR2U2V

n
1 PD2

= (PR2V2PD2 + PR2U2PN2)V
n
1 PD2 = PR2V2PD2V

n
1 PD2 .

(2) Corollary. If D2 ∪ R2 ⊂ D1 and V1D2 ⊂ D2 then the following
properties are equivalent :

(a) V1V2d = V2V1d, ∀d ∈ D2;
(b) U1 6= ∅;
(c) U 6= ∅.
P r o o f. (c) implies (a), which in turn implies V n

1 V2d = V2V
n
1 d, for every

n ≥ 1 and d ∈ D2, as is seen by induction. In fact, from the last equality
it follows that V n

1 V2d ∈ R2 ⊂ D1 and (since V1D2 ⊂ D2 ⊂ D1 shows that
V n

1 d ∈ D2)

V n+1
1 V2d = V1(V n

1 V2d) = (V1V2)V n
1 d = V2V

n+1
1 d .

(3) Proposition. Let D be a closed subspace of E such that D ⊂ D1 ∩
D2, V1D ⊂ D2, V2D ⊂ D1 and V1V2|D = V2V1|D. Then U 6= ∅ whenever
one of the following equalities holds:

D = D2, D = D1, V1D = D2, V2D = D1 .

P r o o f. If D = D2, the assertion is a straightforward consequence of (2).
If V1D = D2, set D′

1 = V1D1, V ′
1 = V −1

1 and D′ = V1D; then, by the
previous case, with V ′

1 , V2 and D′ instead of V1, V2 and D, the result follows.

III. Applications to a problem of Krein

P r o o f o f T h e o r e m B. The property of k that is assumed in the
statement of Theorem B is the same as saying that E(a,b−1) equals the
domain D

(a,b−1)
1 ≡ E(a−1,b−1) of V

(a,b−1)
1 . Now, the last holds iff V

(a,b−1)
1

is unitary, as follows from the consideration of the unitary operator J =
J (a,b) ∈ L(E(a,b)) given by J(Sm

1 Sn
2 v) ≡ Sa−m

1 Sb−n
2 v, because JDj = Rj ,

j = 1, 2. Consequently, Theorem B follows from

(1) Proposition. If there exists an integer s ∈ [0, b) such that V
(a,s)
1 is

unitary , then:

(i) K is nonvoid ;
(ii) there exists only one function k′ : %(∞,s) → L(G) of positive type

that extends k|%(a,s) .

P r o o f. (i) We know that it is enough to prove that U is nonvoid. The
hypothesis implies that V1 ≡ V

(a,b)
1 is a unitary operator in E ≡ E(a,b)

and that the same happens with its restriction V
(a,b−1)
1 , so E(a,b−1) =
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D
(a,b−1)
1 ≡ E(a−1,b−1); thus, D := E(a−1,b−1) equals D2 ≡ D

(a,b)
2 . Then

Proposition (II.3) may be applied, because V1V2d = V2V1d holds for every
d ∈

∨
{V m

1 V n
2 v : 0 ≤ m < a, 0 ≤ n < b, v ∈ G} ≡ E(a−1,b−1).

(ii) Let K ∈ K and let k′ be its restriction to %(∞,s). We have to show
that k′ is well determined by k, i.e., by V1 and V2. Now, E(∞,s) ≡ E(∞,s)(k′)
contains E = E(a,s) as a closed subspace. Since V

(a,s)
1 is unitary, D

(a,s)
1 ≡

E(a−1,s) = E(a,s) and it follows that D
(a,s)
1 = E(a+k,s) for k = 0, 1, . . . Then,

for v, w ∈ G and m ≥ 0, we have 〈k′(m,n)v, w〉G ≡ 〈k′(−m,−n)∗v, w〉G =
〈V m

1 V n
2 v, w〉G if 0 ≤ n ≤ s and 〈k′(m,n)v, w〉G ≡ 〈k′(−m,−n)∗v, w〉G =

〈V m
1 v, V −n

2 w〉G if 0 ≥ n ≥ −s.

Remark on related results. If, in the statement of Proposition (1), s = 0,
then (ii) is equivalent to V

(a,s)
1 being unitary. Thus, Theorem B extends

the following result [Ar1]: if there exists only one extension of positive type
k′ : Z → L(G) of the one-dimensional restriction k|%(a,0) of k then K 6= ∅.
The last result is the discrete version of a theorem of Livsic on the continuous
Krein problem (see [B]) and it extends a theorem of Devinatz [D], according
to which if both one-dimensional restrictions of k (k|%(a,0) and k|%(0,b)) have
only one extension of positive type then K 6= ∅.

A more general condition. Assume the hypothesis of Proposition (1). Its
proof shows that U1 6= ∅. Then Theorem A implies that

(2) 〈(V1PD1)
rV m

1 V n+1
2 v, V n′+1

2 w〉E = 〈(V1PD1)
rV m

1 V n
2 v, V n′

2 w〉E ,

∀r ≥ 0, 0 ≤ m ≤ a, 0 ≤ n, n′ < b, v, w ∈ G .

Now, the restriction K|%(∞,b) of any K ∈ K given by K(m,n) ≡ PF
G Um

1 Un
2 |G

with (U1, U2, F ) ∈ U1 is completely determined by k. In fact, if 0 ≤ n ≤ b,
then K(m,n) = PE

G PF
E Um

1 Un
2 |G = PE

G (PF1
E Wm

1 )V n
2 |G, with W1 ∈ L(F1)

the minimal unitary dilation of V1PD1 ∈ L(E). That is, K|%(∞,b) is the
same as the function K1 : %(∞,b) → L(G) defined by

(3)

K1(m,n) = K1(−m,−n)∗ = PE
G (V1PD1)

mV n
2 |G
if (m,n) ∈ %

(∞,b)
+ ,

K1(m,n) = K1(−m,−n)∗ = PE
G (V1PD1)

∗−mV n
2 |G

if (−m,−n) ∈ %
(∞,b)
+ .

The extension K1 of a function of positive type k : %(a,b) → L(G) is well
defined even if K = ∅. If K1 itself is of positive type, then, considering K1

instead of k, we define the isometries V
(∞,b)
1 and V

(∞,b)
2 that act in E(∞,b),

and V
(∞,b)
1 is unitary; thus, by Corollary (II.2), there exist two commutative

unitary operators U1, U2 ∈ L(F ) such that F ⊃ E(∞,b), U1|E(∞,b) = V
(∞,b)
1
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and U2|D(∞,b)
2

= V
(∞,b)
2 . Thus K(m,n) ≡ PF

G Um
1 Un

2 |E is such that K ∈ K
and K|%(∞,b) = K1.

If there exists (U1, U2, F ) ∈ U1 then

(4) 〈K1(r + m−m′, n− n′)v, w〉G = 〈(V1PD1)
rV m

1 V n
2 v, V m′

1 V n′

2 w〉E
∀r ≥ 0, 0 ≤ m,m′ ≤ a, 0 ≤ n, n′ ≤ b, v, w ∈ G .

In fact, under such conditions we have

〈PF
G Ur+m−m′

1 Un−n′

2 v, w〉G = 〈Ur
1 Um

1 Un
2 v, Um′

1 Un′

2 w〉F
= 〈(PF

E Ur
1 |E)V m

1 V n
2 v, V m′

1 V n′

2 w〉G
= 〈(V1PD1)

rV m
1 V n

2 v, V m′

1 V n′

2 w〉E .

Conversely, if (4) holds, the definition (3) of K1 shows that also (2) holds.
Summing up:

(5) Lemma. K1 is of positive type ⇔ (4) holds ⇔ U1 6= ∅ ⇒ ∃K ∈ K
that extends K1.

So we get the following extension of Theorem B.

(6) Theorem C. Let k : %(a,b) → L(G) be a function of positive type
such that k(0) = I.

(a) If one of the restrictions k|%(a,0) and k|%(0,b) has only one extension
of positive type to Z, then the hypothesis of Theorem B holds.

(b) Let E, V1 and V2 be the Hilbert space and the isometries associated
with k. If the hypothesis of Theorem B holds, the extension K1 : %(∞,b) →
L(G) of k defined by (3) is of positive type.

(c) K1 is of positive type iff (4) holds.
(d) If K1 is of positive type, then K 6= ∅ and there exists K ∈ K such

that K extends K1.

IV. On the relations with a theorem of Ando

A similar approach to another extension problem. Let us now consider
another problem concerning the existence of extensions of positive type of a
given function. Set Z2

+ = {(m,n) ∈ Z2 : m,n ≥ 0} and let h : Z2
+ → L(G)

be a given function such that h(0, 0) = I. We want to give conditions that
ensure that the set H of positive type extensions H : Z2 → L(G) of h is
nonvoid.

If ∃H ∈ H, Naimark’s dilation theorem says that there exists a unitary
representation W : Z2 → L(F ) such that F ⊃ G, H(m,n) ≡ PF

G W (m,n)|G
and F =

∨
{W (m,n)G : (m,n) ∈ Z2}. Defining h1, h2 : Z → L(g) by
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setting, for every m ≥ 0,

h1(m) = h1(−m)∗ = h(m, 0) ,

h2(m) = h2(−m)∗ = h(0,m) ,

it follows that

(1)
∣∣∣ ∑

{〈h(m,n)v1(m), v2(n)〉G : m,n ≥ 0}
∣∣∣2

≤
∑

{〈h1(m− n)v1(m), v1(n)〉G : m,n ≥ 0}

×
∑

{〈h2(n−m)v2(m), v2(n)〉G : m,n ≥ 0}
for all v1, v2 : {m ∈ Z : m ≥ 0} → G with finite support ,

is a necessary condition on h, which we assume from now on. Then, for
j = 1, 2, hj is of positive type; let Uj ∈ L(Fj) be its minimal unitary dilation.
Set also G1 =

∨
{Um

1 G : m ≥ 0}, V1 = U1|G1 , G̃2 =
∨
{Um

2 G : m ≤ 0},
Ṽ2 = U∗

2 |G̃2
. If there exists W : Z2 → L(F ) as above it may be assumed

that F ⊃ F1, F2 and that, if E is the span in F of G1 and G̃2, then

(2) 〈h(m,n)u, w〉G = 〈V m
1 u, Ṽ n

2 w〉E , ∀m,n ≥ 0, u, w ∈ G .

Now, E can be defined directly from h. In fact, (2) shows that there exists a
well determined continuous positive sesquilinear form B in the vector space
G1 × G̃2 such that, for all m,n,m′, n′ ≥ 0, u, w, u′, w′ ∈ G,

B[(V m
1 u, Ṽ n

2 w), (V m′

1 u′, Ṽ n′

2 w′)] = 〈V m
1 u, V m′

1 u′〉G1 + 〈h(m,n′)u, w′〉G
+ 〈u′, h(m′, n)w′〉G + 〈Ṽ n

2 w, Ṽ n′

2 w′〉
G̃2

.

Thus, the vector space G1 × G̃2 and the form B generate a Hilbert space E
such that we may assume that G1, G̃2 ⊂ E, G1 ∨ G̃2 = E, and also G ⊂ E.
So we have associated with h a Hilbert space E and two isometries, V1 and
Ṽ2, that act in E, such that (2) holds. Then it is easy to check the following

(3) Proposition. Let h : Z2
+ → L(G) be such that h(0) = 1 and that (1)

holds. If E, V1 and Ṽ2 are the Hilbert space and the isometries acting in it as-
sociated with h, there exists a bijection between the set H of positive type ex-
tensions H : Z2 → L(G) of h and the set U of minimal commutative unitary
extensions of V1 and Ṽ2. That bijection associates with each (U1, Ũ2, F ) ∈ U
the function H : Z2 → L(G) given by H(m,n) ≡ PF

G Um
1 Ũ−n

2 |G. In particu-
lar , H is nonvoid iff U is nonvoid.

An example. Let (T1, T2) be a commuting pair of contractions in the
Hilbert space G. A fundamental theorem due to Ando (see [An] or [N–F])
states that there exists a commuting pair (U1, U2) of unitary operators in a
Hilbert space F ⊃ G such that Tm

1 Tn
2 = PF

G Um
1 Un

2 |G, ∀m,n ≥ 0. Following
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[C–S], we say that such a (U1, U2) is an Ando dilation of (T1, T2); let A
be the set of all minimal Ando dilations, modulo unitary equivalences, of
(T1, T2). Define h : Z2

+ → L(G) by h(m,n) ≡ Tm
1 Tn

2 ; then (1) holds and,
as before, a Hilbert space E and two isometries acting in E, V1 and Ṽ2, are
associated with the commuting pair of contractions (T1, T2). In this case,
the definition of the scalar product in E shows that

〈(g1, g2), (g′1, g
′
2)〉E = 〈g1, g

′
1〉G1 + 〈PG1

G g1, g
′
2〉G̃2

+ 〈PG1
G g′1, g2〉G̃2

+ 〈g2, g
′
2〉G̃2

, ∀(g1, g2), (g′1, g
′
2) ∈ G1 × G̃2 ,

so PE

G̃2
|G1 = PG1

G and PE
G1
|
G̃2

= P G̃2
G .

Proposition (3) yields

(4) Corollary. Let (T1, T2) be a commuting pair of contractions in
a Hilbert space G, and V1 and Ṽ2 the isometries acting in E associated
with (T1, T2). There is a bijection between A, the set of all minimal Ando
dilations modulo unitary equivalences of (T1, T2), and U , the set of minimal
commutative unitary extensions of V1 and Ṽ2 such that (U1, U2) ⊂ L(F )
belongs to A iff (U1, U

∗
2 , F ) belongs to U .

In order to be complete, let us sketch in this context the proof of Ando’s
theorem by means of the commutant lifting theorem (see [C–S]). The last
says that ∃%2 ∈ L(G1) such that %2V1 = V1%2 and PG1

G %2 = T2P
G1
G . Let

µ2 ∈ L(J) be the minimal unitary dilation of %2; then µ2 is a unitary dilation
of T2, so we may assume that J ⊃ G̃2 and µ∗2|G̃2

= Ṽ2. We may also assume
that J ⊃ E: in fact, J ⊃ G1 and, for m,n ≥ 0 and u, w ∈ G,

〈V m
1 u, Ṽ n

2 w〉J = 〈V m
1 u, µ−n

2 w〉J = 〈µn
2V m

1 u, w〉J = 〈%n
2V m

1 u, w〉G1

= 〈Tn
2 PG1

G V m
1 u, w〉E = 〈Tn

2 Tm
1 u, w〉E = 〈V m

1 u, Ṽ n
2 w〉E ,

by (2). Then, by Theorem A and Corollary (4), there exists an Ando dilation
(U1, U2) ⊂ L(F ) such that F ⊃ J and U2|J = µ2 because PV1G1µ

n
2V1PG1 =

V1PG1µ
n
2PG1 for n = 1, 2, . . .

An application of Ando’s theorem to Krein’s problem. With the notation
of Section III, the following is an obvious consequence of Theorem A.

(5) Proposition. Let k : %(a,b) → L(G) be a function of positive type
and E, V1 and V2 the Hilbert space and the isometries associated with k. If
(V1PD1)(V2PD2) = (V2PD2)(V1PD1), then K is nonvoid.

Moreover, applying Ando’s theorem to the commutative pair
(V1PD1 , V2PD2) we get elements (U1, U2, F ) of U such that the correspond-
ing extensions of k have maximum entropy in the sense of [Se]; this remark
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will be developed elsewhere. Proposition (5) applies, for example, when
k(s) = 0 whenever s 6= 0.
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