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1. Introduction. Let {Gi}i∈I be a family of nontrivial groups. We
shall consider their free product G = ∗i∈IGi in which every element x has
a unique representation as a reduced word

(1) x = g1 . . . gn, where n ≥ 0, gk ∈ Gik
\ {e} and ik 6= ik+1 .

For such an x we define its length |x| = n and its type putting t(x) = i1 . . . in
(cf. [6]). A function f on ∗i∈IGi is said to be radial if f(x) depends
only on |x|, and f is said to be type-dependent if f(x) depends only on
t(x). In particular, each radial function is type-dependent. Note that each
type-dependent function f can be uniquely expressed as the composition
f = f ′ ◦ t, where f ′ is a function on the set of all types on G.

Harmonic analysis on the free product of groups was studied in several
papers (see [2] and [3] and the references given there). For instance Iozzi and
Picardello [3] considered the free product of finite cyclic groups of the same
order and convolution algebras of radial functions. Such algebras are com-
mutative and their multiplicative functionals are called spherical functions.
In this paper we deal with positive definite type-dependent functions on the
free product of any groups and the crucial result is given in Theorem 3.2.
Our main tool is the notion of τ -positive definite function and Theorem 3.2
provides a motivation for the study of this notion presented in Section 2.
In the next section our main result is stated and proved. Then we use our
technique to describe positive definite spherical functions (defined in [2]) on
the free product of two cyclic groups and on the free product of cyclic groups
of the same order (cf. [3]).

We adopt the following notation: if X is a set then F(X) denotes the
linear space of all finitely supported complex functions on X (i.e. F(X)
consists of all linear combinations

∑
aiδxi

where δx is the characteristic
function of {x}) and F0(X) is the subspace of F(X) formed by all f ∈ F(X)
such that

∑
f(x) = 0. The dual space, i.e. the set of all complex functions

on X will be denoted by F ′(X). For any complex functions f , g on X we
write 〈f, g〉 = 〈f, g〉X =

∑
f(x)g(x) whenever the sum is finite.
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2. τ-positive definite functions on S(I). Let I be any fixed set, let
S(I) (or simply S) denote the set of all formal words of the form

(2) u = i1 . . . in, n ≥ 0, ik ∈ I, ik 6= ik+1 ,

and denote by e the empty word in S. For such a u we define its length
|u| = n and put u∗ = in . . . i1. Let τ : I → [0,∞) be a fixed function. We
define a complex *-algebra Fτ (S) = 〈F(S), ∗

τ
,∗ 〉 by the following relations:

δi ∗
τ
δi = (1− τ(i))δi + τ(i)δe for i ∈ I ,(3.a)

δi1 ∗
τ
. . . ∗

τ
δin = δu for u = i1 . . . in ∈ S(I) ,(3.b)

(δu)∗ = δu∗ for u ∈ S(I) .(3.c)

Fτ (S) is in fact the free complex unital algebra generated by {δi}i∈I (with
unit δe) and with the only relations

(δi)∗ = δi and δi ∗
τ
δi = (1− τ(i))δi + τ(i)δe for i ∈ I .

Note that F0(S) is an ideal in Fτ (S). For f ∈ F(S), φ ∈ F ′(S) we define
their dual left and right τ -convolutions f

τ
φ, φ

τ
f ∈ F ′(S) putting for any

g ∈ F(S)

(4) 〈f
τ
φ, g〉 = 〈φ, f∨ ∗

τ
g〉, 〈φ

τ
f, g〉 = 〈φ, g ∗

τ
f∨〉 ,

where by definition f∨(u) = f(u∗). This means that for any f ∈ F(S) the
map F ′(S) 3 φ 7→ f

τ
φ ∈ F ′(S) (resp. F ′(S) 3 φ 7→ φ

τ
f ∈ F ′(S)) is dual

to F(S) 3 g 7→ f∨ ∗
τ
g ∈ F(S) (resp. F(S) 3 g 7→ g ∗

τ
f∨ ∈ F(S)). Obviously

(f1 + f2)
τ
φ = f1

τ
φ+ f2

τ
φ ,(5.a)

f1
τ

(f2
τ
φ) = (f1 ∗

τ
f2)

τ
φ ,(5.b)

(f
τ
φ)∨ = φ∨

τ
f∨ ,(5.c)

and similarly for the right convolution, where f, f1, f2 ∈ F(S) and φ ∈
F ′(S).

Definition 2.1. We say that a complex function φ on S(I) = S is
τ -positive definite if 〈φ, α∗ ∗

τ
α〉 ≥ 0 for all α ∈ F(S). Similarly, a complex

function ψ on S is τ -negative definite if 〈ψ, β∗ ∗
τ
β〉 ≤ 0 for all β ∈ F0(S).

We will denote by Pτ (S) and by Nτ (S) the convex cones of all τ -positive
definite and all τ -negative definite functions on S, respectively.

Notice that in the case τ ≡ 1, S(I) can be regarded as the free product
group ∗i∈IZ2 and in the case τ ≡ 0 as a *-semigroup generated by I in
which i2 = i∗ = i for all i ∈ I.
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Proposition 2.2. Let σ, τ : I → [0,∞). Then there exists a *-isomor-
phism Hτσ of Fσ(S) onto Fτ (S). Moreover , there exists an automorphism
Tτσ of the linear space F ′(S) such that

Tτσ(Pσ(S)) = Pτ (S) ,(a)
Tτσ(Nσ(S)) = Nτ (S) ,(b)
Tτσ(f

σ
φ) = Hτσ(f)

τ
Tτσ(φ) ,(c)

Tτσ(φ
σ
f) = Tτσ(φ)

τ
Hτσ(f) ,(d)

where f ∈ F(S), φ ∈ F ′(S).

P r o o f. For any i ∈ I we put

(6) Hτσ(δi) =
1 + σ(i)
1 + τ(i)

δi +
τ(i)− σ(i)
1 + τ(i)

δe .

Simple calculation shows that Hτσ(δi ∗
σ
δi) = Hτσ(δi) ∗

τ
Hτσ(δi), hence Hτσ

extends to a *-homomorphism of Fσ(S) into Fτ (S). Moreover, Hυτ ◦Hτσ =
Hυσ so Hτσ is an isomorphism. Defining Tτσ : F ′(S) → F ′(S) to be the
dual of Hστ : F(S) → F(S) we have

(7) (Tτσφ)(u) = 〈φ,Hστ (δu)〉 and 〈(Tτσφ), g〉 = 〈φ,Hστ (g)〉
for any g ∈ F(S) and the proposition easily follows.

Example 2.3. In the examples below we assume τ ≡ 0, so that we treat
S as a *-semigroup in which i2 = i∗ = i for each generator i ∈ I and our
notion of positive definiteness coincides with that on *-semigroups (see [1]).

1) Let A = (aij), i, j ∈ I ∪ {e}, be a positive definite matrix such that
aii = 1 for all i ∈ I ∪ {e}. Define a function φA on S in the following way:
φA(e) = 1 and for u ∈ S as in (2), n ≥ 1,

φA(u) = aei1ai1i2ai2i3 . . . aine .

Note that for any u, v ∈ S we have φA(v∗u) = α(v)aj1i1α(u), where α(e) =
1, α(u) = ai1i2ai2i3 . . . aine for u as in (2), |u| ≥ 1, and i1, j1 are the first
letters of u and v respectively; for u = e or v = e we put i1 = e or j1 = e
respectively. Hence for any complex finitely supported function f on S we
have ∑

u,v∈S(I)

φA(v∗u)f(u)f(v) =
∑

i,j∈I∪{e}

ajis(i)s(j)

with s(e) = f(e) and s(i) =
∑
α(u)f(u) for i ∈ I, where the summation

is over all u ∈ S as in (2) with i1 = i. This proves that φA is a 0-positive
definite (τ ≡ 0) function on S. Note that if matrices A = (aij), B = (bij),
i, j ∈ I ∪ {e}, satisfy our assumptions then φAφB = φA◦B , where A ◦ B
denotes the Schur product (aijbij), i, j ∈ I ∪ {e}.
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2) Assume that r ∈ [0, 1], I = {1, . . . , N}, N ≥ 2, and consider the
matrix A = (aij), i, j ∈ I ∪ {0}, given by aii = 1 for i ≥ 0, ai0 = a0i =

√
r

for i ≥ 1 and aij = (Nr − 1)/(N − 1) for i 6= j, i, j ≥ 1. Note that A is
positive definite. Indeed, for any complex z0, z1, . . . , zN we have

N∑
i,j=0

aijzizj = |z0 +
√
r(z1 + . . .+ zN )|2

+
1− r

N − 1

∑
1≤i<j≤N

|zi − zj |2 ≥ 0 .

The corresponding positive definite function φA is

φA(u) =


1 if u = e ,

r

(
Nr − 1
N − 1

)|u|−1

if u 6= e .

3. Type-dependent functions. Let H be a finite group, #(H) = k,
and let µH (resp. µ) denote the probability measure equidistributed over H
(resp. over H \ {e}). Since µH ∗ µH = µH and µH = (1/k)δe + ((k− 1)/k)µ
we immediately obtain

(8) µ ∗ µ = (1− r)µ+ rδe ,

where r = 1/(k − 1). Now let {Gi}i∈I be a fixed family of discrete groups.
We put τ(i) = 1/(#(Gi)− 1).

Assume for a moment that all Gi are finite and let Ft(G) denote the
linear space of all finitely supported type-dependent complex functions on
G = ∗i∈IGi. Then Ft(G) consists of all linear combinations of the µu,
where for u ∈ S = S(I) as in (2), µu denotes the probability measure
equidistributed over all elements of type u, i.e. µu(x) = τ(i1) . . . τ(in) if
t(x) = u and µu(x) = 0 otherwise. By (8) and by the definition of the free
product we have

µi ∗ µi = (1− τ(i))µi + τ(i)µe for i ∈ I ,(9.a)
µu = µi1 ∗ . . . ∗ µin for u = i1 . . . in ∈ S ,(9.b)

(µu)∗ = µu∗ for u ∈ S .(9.c)

Formulas (3) make it obvious that the *-algebra Fτ (S) is isomorphic to
Ft(G) and the isomorphism is given by

F(S) 3 f 7→
∑
u∈S

f(u)µu .

The following proposition explains the term “dual τ -convolution” intro-
duced in Section 2.
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Proposition 3.1. Under the above assumptions we have∑
u∈S

f(u)µu ∗ (φ ◦ t) = (f
τ
φ) ◦ t ,

(φ ◦ t) ∗
∑
u∈S

f(u)µu = (φ
τ
f) ◦ t

for any φ ∈ F ′(S), f ∈ F(S).

P r o o f. For any x ∈ G we have( ∑
u∈S

f(u)µu ∗ (φ ◦ t)
)
(x) =

〈 ∑
u∈S

f(u)µu ∗ (φ ◦ t), δx
〉

=
〈 ∑

u∈S

f(u)µu ∗ (φ ◦ t), µt(x)

〉
=

〈
φ ◦ t,

( ∑
u∈S

f(u)µu

)∨
∗ µt(x)

〉
= 〈φ, f∨ ∗

τ
δt(x)〉S = 〈f

τ
φ, δt(x)〉S = (f

τ
φ)(t(x)) .

We are now able to formulate the main result.

Theorem 3.2. Let {Gi}i∈I be any family of discrete groups and suppose
that φ is a complex function on S(I). Then the function φ◦t is positive (resp.
negative) definite on the free product group G = ∗i∈IGi if and only if φ is
τ -positive (resp. τ -negative) definite on S(I), where τ(i) = 1/(#(Gi) − 1)
for any i ∈ I.

P r o o f. Let φ be a τ -positive definite function on S(I) = S. Fix f in
F(G) and define f̃ ∈ F(S) by f̃(u) =

∑
f(x), where the summation is over

all x ∈ G of type u. We are going to show that

(10) (f∗ ∗ f)∼ = f̃∗ ∗
τ
f̃ +R ,

where R is a finite sum of terms of the form β∗ ∗
τ
β, β ∈ F0(S). We shall do

it by induction on n, the maximal length of elements in the support of f .
If n = 0 we have f = f(e)δe and the formula is obvious (R = 0). Now

take any f ∈ F(G). Then f can be expressed as

f = f(e)δe +
∑

x∈G\{e}

f(x)δx = f(e)δe +
∑
i∈I

∑
g∈Gi\{e}

δg ∗ fg ,

where all fg satisfy the induction assumption, i.e.

(f∗g ∗ fg)∼ = f̃∗g ∗
τ
f̃g +R(g) .

We use the following simple formulas:

(δg ∗ fg)∼ = δi ∗
τ
f̃g if g ∈ Gi \ {e} ,
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[(δh∗fh)∗∗(δg∗fg)]∼ =



[f∗g ∗ fg]∼ = f̃∗g ∗
τ
f̃g +R(g) if h = g ,

f̃∗h ∗τ δi ∗τ f̃g if h 6= g ,

h, g ∈ Gi \ {e} ,
f̃∗h ∗τ δj ∗τ δi ∗τ f̃g if g ∈ Gi \ {e} ,

h∈Gj\{e}, i 6= j.

Hence we have

[f∗ ∗ f ]∼ − f̃∗ ∗ f̃
=

∑
i,j∈I

∑
g∈Gi\{e}
h∈Gj\{e}

{[(δh ∗ fh)∗ ∗ (δg ∗ fg)]∼ − f̃∗h ∗
τ
δj ∗

τ
δi ∗

τ
f̃g}

=
∑
i∈I

( ∑
g∈Gi\{e}

[f̃∗g ∗
τ
f̃g +R(g)− f̃∗g ∗

τ
δi ∗

τ
δi ∗

τ
f̃g]

+
∑

g,h∈Gi\{e}
g 6=h

[f̃∗h ∗
τ
δi ∗

τ
f̃g − f̃∗h ∗

τ
δi ∗

τ
δi ∗

τ
f̃g]

)

=
∑
i∈I

( ∑
g∈Gi\{e}

[(1− τ(i))f̃∗g ∗
τ
(δe − δi) ∗

τ
f̃g +R(g)]

+
∑

g,h∈Gi\{e}
g 6=h

[−τ(i)f̃∗h ∗
τ
(δe − δi) ∗

τ
f̃g]

)

=
∑
i∈I

(
R(i) +

∑
g∈Gi\{e}

R(g)
)
,

where
R(i) =

∑
g∈Gi\{e}

f̃∗g ∗
τ
(δe − δi) ∗

τ
f̃g

if τ(i) = 0 (i.e. if Gi is infinite), and

R(i) =
1
2
τ(i)

∑
g,h∈Gi\{e}

g 6=h

(f̃g − f̃h)∗ ∗
τ
(δe − δi) ∗

τ
(f̃g − f̃h)

when Gi is finite. Since we have (δe− δi) ∗
τ
(δe− δi) = (1+ τ(i))(δe− δi) and

(δe − δi) ∗
τ
α ∈ F0(S) for any α ∈ F(S), formula (10) is proved.

Next, 〈φ ◦ t, f1〉G = 〈φ, f̃1〉S for any f1 ∈ F(G) and

〈φ ◦ t, f∗ ∗ f〉G = 〈φ, f̃∗ ∗
τ
f̃ 〉S + 〈φ,R〉S ≥ 0

so φ ◦ t is a positive definite function on G.
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Now, suppose that φ ◦ t is positive definite on G and first suppose that
all Gi are finite. Fix α ∈ F(S) and let f =

∑
α(u)µu, u ∈ S. Then, by

(9) we have 0 ≤ 〈φ ◦ t, f∗ ∗ f〉G = 〈φ, α∗ ∗
τ
α〉S so φ is τ -positive definite on

S. In the general case for any natural n define τn(i) = τ(i) if τ(i) > 0 and
τn(i) = 1/n if τ(i) = 0. Let G′ = ∗i∈IG

′
i, where G′i = Gi if Gi is finite and

G′i = Zn+1 otherwise. In virtue of Proposition 2 of [5] the function φ ◦ t′ is
positive definite on G′, where t′ is the type on G′, so φ is τn-positive definite
on S for all n ∈ N. Hence we have

0 ≤ lim
n→∞

〈φ, α∗ ∗
τn

α〉 = 〈φ, α∗ ∗
τ
α〉 .

Since the arguments remain true for negative definite functions, the proof
is complete.

Corollary 3.3. Let {Gi}i∈I be any family of finite groups, let G =
∗i∈IGi and consider the natural projection E from the functions on G onto
the type-dependent functions on G defined by (Eφ)(x) = 〈φ, µt(x)〉. Then E
maps positive (resp. negative) definite functions to positive (resp. negative)
definite functions.

P r o o f. Let f be any function in Ft(G) (resp. in Ft(G)∩F0(G)). Then
〈Eφ, f∗ ∗ f〉 = 〈φ, E(f∗ ∗ f)〉 = 〈φ, f∗ ∗ f〉, which concludes the proof.

Corollary 3.4. Let G be the amalgamated free product ∗A,i∈IGi and let
φ be any function on S(I). Then the function φ◦t is positive (resp. negative)
definite on G if and only if φ is τ -positive (resp. τ -negative) definite on S(I),
where τ(i) = ((Gi : A)− 1)−1.

P r o o f. For any i ∈ I choose a set Si ∪ {e} of left coset representatives
of Gi modulo A. Then each x in G has a unique representation as a reduced
word

x = s1 . . . sna, where n ≥ 0, a ∈ A, sk ∈ Sik
, ik 6= ik+1 ,

and t(x) = i1 . . . in (see [6] for details). For i ∈ I let τ(i) be the inverse of
(Gi : A)−1 = #(Si) and let {Hi}i∈I be a family of groups such that #(Hi) =
(Gi : A). We show that a type-dependent function φ ◦ t is positive (resp.
negative) definite on G if and only if φ◦ t is positive (resp. negative) definite
on H = ∗i∈IHi. To see this take a family of bijections hi : Hi \ {e} → Si

and put h(g1 . . . gn) = hi1(g1) . . . hin(gn), where gk ∈ Hik
\ {e} and g1 . . . gn

is a reduced word in H. It is obvious that t(h(x2)−1h(x1)) = t(x−1
2 x1) for

any x1, x2 ∈ H. It is enough to note that for any f ∈ F(G), α ∈ F(H)∑
y1,y2∈G

φ(t(y−1
2 y1))f(y1)f(y2) =

∑
x1,x2∈H

φ(t(x−1
2 x1))fH(x1)fH(x2) ,∑

x1,x2∈H

φ(t(x−1
2 x1))α(x1)α(x2) =

∑
y1,y2∈G

φ(t(y−1
2 y1))αG(y1)αG(y2) ,
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where fH(x) =
∑
f(h(x)a), a ∈ A and αG(y) = α(x) if y = h(x) and

αG(y) = 0 if y 6∈ h(H).

4. Free product of two groups. From now on we restrict our atten-
tion to the case #(I) = 2, say I = {+,−} (cf. [2]). Our aim is to characterize
positive definite spherical functions on G = Zr ∗ Zs, r ≥ s, considered by
D. I. Cartwright and P. M. Soardi in [2]. Recall that a type-dependent func-
tion φ on G = Zr ∗ Zs is said to be spherical if φ(e) = 1, φ(x) = φ(x−1)
for all x ∈ G and there exists a complex number λ such that φ ∗ χ1 = λφ
(χ1 denotes the characteristic function of the set {x ∈ G : |x| = 1}). Let
us also mention that our notion of type-dependent function coincides with
the notion of “semiradial function” used in [2]. Since spherical functions
are type-dependent Theorem 3.2 allows us to consider S(I) = S instead of
Zr∗Zs. For simplicity we write +n and −n, n ∈ N, to denote u = +−+ . . .±
and u = − + − . . .∓ ∈ S, respectively, |u| = n, and 0 to denote the empty
word in S. For example −(2j + 1) denotes the word −+ . . .− with length
2j + 1.

Let β+, β− be any positive numbers and consider the measure µ =
β+δ+ + β−δ− on S. For any τ : I = {+,−} → [0,∞) let A(τ, µ) denote
the convolution subalgebra of Fτ (S) generated by µ. Note that for any
ε, η ∈ {+,−}, n ∈ N we have

(11) δεn ∗
τ
δη =

{
δε(n+1) if ε(−1)n = η ,
(1− τη)δεn + τηδε(n−1) otherwise ,

where τ+ = τ(+) and τ− = τ(−). The following property can be proved
similarly to Proposition 2 of [2].

Proposition 4.1. For a complex function f on S, f ∗
τ
µ = µ ∗

τ
f , if and

only if f(+2j) = f(−2j) and

β+τ+f(+2j + 1)− β−τ−f(−(2j + 1))
= [(1− τ+)β+ − (1− τ−)β−]f(+2j) + β+f(−(2j − 1))− β−f(+2j − 1)

for all j ≥ 1. If , moreover , f has finite support , then f ∗
τ
µ = µ ∗

τ
f if and

only if f ∈ A(τ, µ). Thus A(τ, µ) is a maximal abelian subalgebra of Fτ (S).

Now we are going to describe multiplicative functionals on A(τ, µ).

Proposition 4.2. Let τ : I = {+,−} → [0,∞), let β+, β− be positive
numbers, µ = β+δ+ +β−δ− and λ∈C, λ 6=x0 =(β+(1−τ+)+β−(1−τ−))/2.
Then there exists a unique function φλ on S satisfying

φλ
τ
µ = λφλ, φλ(u) = φ∨λ(u) for all u ∈ S, φλ(0) = 1 .
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P r o o f. Let φ be any function on S. Since

(φ
τ
µ)(u) = 〈φ

τ
µ, δu〉 = 〈φ, δu ∗

τ
µ〉 = β+〈φ, δu ∗

τ
δ+〉+ β−〈φ, δu ∗

τ
δ−〉

and by (11) we must solve the following equations:

(12.a) φ(+2j) = φ(−2j) ,
(12.b) λ = β+φλ(+1) + β−φλ(−1) ,
(12.c) λφλ(+2j) = β−τ−φλ(+2j−1)+β−(1−τ−)φλ(+2j)+β+φλ(+2j+1) ,

for j ≥ 1 ,
(12.d) λφλ(+2j + 1) = β+τ+φλ(+2j) + β+(1− τ+)φλ(+2j + 1)

+β−φλ(+2j + 2), for j ≥ 0 ,
(12.e) λφλ(−2j) = β+τ+φλ(−(2j − 1)) + β+(1− τ+)φλ(−2j)

+β−φλ(−(2j + 1)), for j ≥ 1 ,
(12.f) λφλ(−(2j + 1)) = β−τ−φλ(−2j) + β−(1− τ−)φλ(−(2j + 1))

+β+φλ(−(2j + 2)), for j ≥ 0 .

In particular,

(13.a) β+φλ(+1) + β−φλ(−1) = λ ,

(13.b) β+[β+τ+ + (β+(1− τ+)− λ)φλ(+1)]
= β−[β−τ− + (β−(1− τ−)− λ)φλ(−1)] .

The last two equations have a unique solution (φλ(+1), φλ(−1)) if λ 6= x0,
namely

φλ(+1) =
λ2 − β−(1− τ−)λ+ β2

+τ+ − β2
−τ−

β+[2λ− β+(1− τ+)− β−(1− τ−)]
,(14.a)

φλ(−1) =
λ2 − β+(1− τ+)λ− β2

+τ+ + β2
−τ−

β−[2λ− β+(1− τ+)− β−(1− τ−)]
(14.b)

and the rest of the proof is as in [2].

R e m a r k 4.3. a) For any polynomial P we have

〈φλ, P (µ)〉 = 〈φλ
τ
P (µ), δ0〉 = P (λ) ,

hence g 7→ 〈φλ, g〉 is the unique multiplicative functional on A(τ, µ) taking
the value λ at µ. The function φλ is called the (τ, µ)-spherical function. It
is worth pointing out that this notion coincides with the notion of spherical
function defined in [2] when τ+ = 1/(r − 1), τ− = 1/(s − 1), β+ = r − 1,
β− = s− 1.

b) It is easy to check that if β−(1 + τ−) = β+(1 + τ+) and λ = x0 then
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the equations (13) are linearly dependent. Moreover, for λ 6= x0

φλ(+1) =
2λ− β−(1− τ−) + β+(1− τ+)

4β+
,

φλ(−1) =
2λ− β+(1− τ+) + β−(1− τ−)

4β−
.

Therefore if β−(1 + τ−) = β+(1 + τ+) then it is natural to define φx0 to be
the pointwise limit of φλ as λ → x0. On the other hand, if β−(1 + τ−) 6=
β+(1+ τ+) then the equations (13) are inconsistent for λ = x0 and φx0 does
not exist.

In case τ+ = τ− = 0 the formulas (12) easily yield

Corollary 4.4. Let β+, β− be positive numbers, µ = β+δ++β−δ−, and
assume that τ+ = τ− = 0. Then for λ 6= (β+ + β−)/2 the (τ, µ)-spherical
function φλ is given by

φλ(0) = 1 ,

φλ(+−+ . . .±) =
λ

2λ− β− − β+
λ+λ−λ+ . . . λ± ,

φλ(−+− . . .∓) =
λ

2λ− β− − β+
λ−λ+λ− . . . λ∓ ,

where λ+ = (λ− β−)/β+ and λ− = (λ− β+)/β−.

Now we are in a position to present the main theorem of this section.

Theorem 4.5. Let τ+, τ− ≥ 0, β+, β− > 0 and let φλ be the (τ, µ)-
spherical function. Assume that β−(1+τ−) ≤ β+(1+τ+). Then the following
conditions are equivalent :

(a) φλ is τ -positive definite on S,
(b) −τ+ ≤ φλ(+1) ≤ 1 and −τ− ≤ φλ(−1) ≤ 1,
(c) λ ∈ [−β+τ+ − β−τ−,−β+τ+ + β−] ∪ [−β−τ− + β+, β+ + β−].

P r o o f. To show (a)⇒(b) it is sufficient to observe that for any τ -positive
definite function φ on S(I) and i ∈ I, −τ(i)φ(e) ≤ φ(i) ≤ φ(e). Moreover,
routine calculations based on (14) yield (b)⇔(c).

Now we prove (c)⇒(a) in the case τ ≡ 0 (i.e. τ+ = τ− = 0). Suppose
that λ ∈ [0, β−] ∪ [β+, β+ + β−] and define

w =
(

(λ− β+)(λ− β−)
β+β−

)1/2

,

α+ =
(

λ(λ− β−)
β+(2λ− β+ − β−)

)1/2

, α− = ε

(
λ(λ− β+)

β−(2λ− β+ − β−)

)1/2

,
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where ε = −1 if λ ∈ [0, β−] and ε = 1 if λ ∈ [β+, β+ + β−]. According to
Corollary 4.4 we have φλ(u) = α+w

n−1α± if u = +−+ . . .±, |u| = n, and
φλ(u) = α−w

n−1α∓ if u = − + − . . .∓, |u| = n, n ≥ 1, and 0 ≤ w ≤ 1,
0 ≤ α+ ≤ 1, −1 ≤ α− ≤ 1. Consider the matrix 1 α+ α−

α+ 1 w
α− w 1

 .

Its determinant is 0, so the matrix is positive definite. Hence φλ is positive
definite in view of Example 2.3.1. This proves (c)⇒(a) for τ ≡ 0.

We now turn to the general case. Let λ be as in (c) and let φλ be the
(τ, µ)-spherical function. Then

λT0τ (φλ) = T0τ (φλ
τ
µ) = T0τ (φλ)

0
H0τ (µ)

and, by (6),

H0τ (µ) = β+[(1 + τ+)δ+ − τ+δ0] + β−[(1 + τ−)δ− − τ−δ0]
= β+(1 + τ+)δ+ + β−(1 + τ−)δ− − (β+τ+ + β−τ−)δ0 ,

hence
T0τ (φλ)

0
ν = γT0τ (φλ) ,

where

ν = β+(1 + τ+)δ+ + β−(1 + τ−)δ−, γ = λ+ (β+τ+ + β−τ−) ,

so T0τ (φλ) is the (0, ν)-spherical function with eigenvalue γ. It remains to
observe that if

λ ∈ [−β+τ+ − β−τ−,−β+τ+ + β−] ∪ [−β−τ− + β+, β+ + β−]

then

γ ∈ [0, β−(1 + τ−)] ∪ [β+(1 + τ+), β+(1 + τ+) + β−(1 + τ−)] ,

so T0τ (φλ) is 0-positive definite. Consequently, φλ = Tτ0T0τ (φλ) is τ -
positive definite on S, which completes the proof.

R e m a r k 4.6. Using Theorem 3.2 we can easily apply the last theorem
to spherical functions on G = Zr ∗ Zs, r ≥ s, defined in [2]. In this case φλ

is positive definite on G if and only if

λ ∈ [−2, s− 2] ∪ [r − 2, r + s− 2] .

5. Spherical functions on Gk,N = ∗N
i=1Zk. In this part we indicate

how our technique may be used in the case of spherical functions on Gk,N ,
the free product of N cyclic groups of order k (investigated in [3–5]). Our
purpose is to provide a new proof of [4, Theorem 3]. Let R denote the class
of all complex finitely supported radial functions on Gk,N , k = 2, 3, . . . , and
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let µn be the probability measure equidistributed over the set of words of
length n in Gk,N . By [3, Corollary 1], R forms a commutative algebra, with
identity µ0 = δe, generated by µ1.

Definition 5.1. A radial function φ on Gk,N is called spherical if the
functional f 7→ 〈f, φ〉 is multiplicative on R. For any complex z we denote
by φz the unique spherical function on Gk,N such that φz(x) = z if |x| = 1
(cf. [3]).

Now, let I = {1, . . . , N} and let R̃ denote the class of all complex finitely
supported radial functions on S(I) = S. Then R̃ is a linear space with basis
{µ̃n}∞n=0, where µ̃n denotes the probability measure equidistributed over the
set Wn of words in S of length n. Note that #(W0) = 1 and for n ≥ 1,
#(Wn) = N(N − 1)n−1. For any r ∈ [0,∞) we shall write ∗

r
to denote ∗

τ
,

where τ ≡ r.

Lemma 5.2 (cf. [2, Lemma 1]). Let r ∈ [0,∞). Then for n ≥ 1

(16) µ̃1 ∗
r
µ̃n =

r

N
µ̃n−1 +

1− r

N
µ̃n +

N − 1
N

µ̃n+1 .

In particular , R̃ is a commutative algebra (with respect to ∗
r
) generated

by µ̃1.

Definition 5.3. A radial function φ on S is called r-spherical if the
functional f 7→ 〈f, φ〉 is multiplicative on R̃ with respect to ∗

r
.

Following (16) we note that, as on Gk,N , for any complex z we have a
unique r-spherical function φz,r such that φz,r(i) = z for i ∈ I (cf. [3]). In
particular, we have

Corollary 5.4. For any z ∈ C

φz,0(u) =


1 if u = e ,

z

(
Nz − 1
N − 1

)|u|−1

if u 6= e .

P r o o f. Denote by φz,0(n) the value of φz,0 at any word of length n. By
(16) we have

φz,0(1)φz,0(n) = 〈φz,0, µ̃1〉〈φz,0, µ̃n〉 = 〈φz,0, µ̃1 ∗
0
µ̃n〉

=
1
N
〈φz,0, µ̃n〉+

N − 1
N

〈φz,0, µ̃n+1〉 =
1
N
φz,0(n) +

N − 1
N

φz,0(n+ 1) .

R e m a r k 5.5. The function φz,0 ◦ t can be regarded as a spherical
function on the free group G∞,N (cf. [5], [7] and [8]).

Let Ẽ be the projection of F ′(S) onto the radial functions on S defined
by (Ẽf)(u) = 〈f, µ̃n〉, where n = |u|. Observe that Ẽ is an expectation, i.e.
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〈Ẽf1, f2〉 = 〈f1, Ẽf2〉 = 〈Ẽf1, Ẽf2〉 for all functions f1, f2 on S. Combining
Theorem 3.2 and [4, Theorem 2] we get

Corollary 5.6. For r = 1/k, k = 1, 2, . . . , Ẽ maps r-positive definite
functions to r-positive definite functions.

For any r, s ∈ [0,∞) we denote by Hsr (resp. Tsr) the map Hστ (resp.
Tστ ) defined by (6) (resp. (7)), where σ ≡ s, τ ≡ r.

Lemma 5.7. For any r ∈ [0,∞), z ∈ C

Ẽ(Tr0φz,0) = φw,r, where w = (1 + r)z − r .

P r o o f. Observe that H0r(µ̃1) = (1+ r)µ̃1− rµ̃0. Consequently, H0r(R̃)
= R̃ and thus for f, g ∈ R̃
〈Ẽ(Tr0φz,0), f ∗

r
g〉 = 〈Tr0φz,0, f ∗

r
g〉 = 〈φz,0,H0r(f ∗

r
g)〉

= 〈φz,0,H0r(f) ∗
0
H0r(g)〉 = 〈φz,0,H0r(f)〉〈φz,0,H0r(g)〉

= 〈Tr0φz,0, f〉〈Tr0φz,0, g〉 = 〈Ẽ(Tr0φz,0), f〉〈Ẽ(Tr0φz,0), g〉 ,

and 〈Ẽ(Tr0φz,0), µ1〉 = 〈φz,0,H0r(µ1)〉 = (1 + r)z − r.

Now we present a new proof of [4, Theorem 3].

Theorem 5.8. Let k ∈ {∞, 2, 3, . . .}. The spherical function φz on Gk,N

is positive definite if and only if z ∈ [−1/(k − 1), 1].

P r o o f. First observe that φw = φw,r ◦ t, where r = 1/(k − 1). It was
already noted in the proof of Theorem 4.5 that for any τ -positive definite
function on S(I) and i ∈ I,−τ(i)φ(e) ≤ φ(i) ≤ φ(e). Therefore we only
have to prove that φw,r is r-positive definite for w ∈ [−r, 1]. But φw,r =
Ẽ(Tr0φz,0) by Lemma 5.7, where z = (w+r)/(1+r) ∈ [0, 1]. Therefore φw,r

is r-positive definite by Example 2.3.2, Proposition 2.2 and Corollary 5.6.

Problem. We do not know whether Corollary 5.6 remains true for all
positive r. The affirmative solution would allow one to formulate the last
theorem for a continuous parameter r.
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