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1. Introduction. Several techniques have been developed to study
Pettis integrability of weakly measurable functions with values in Banach
spaces. As shown by M. Talagrand [Tal, it is fruitful to regard a weakly mea-
surable mapping as a pointwise compact set of measurable functions—its
Pettis integrability is then a purely measure-theoretic question of an ap-
propriate continuity of a measure. On the other hand, properties of weakly
measurable functions can be translated into the language of topological mea-
sure theory by means of weak Baire measures on Banach spaces. This ap-
proach, originated by G. A. Edgar [E1, E2], was remarkably developed by
M. Talagrand.

Following this idea, we show that the Pettis Integral Property of a Ba-
nach space F, together with the requirement of separability of F-valued
Pettis integrals, is equivalent to the fact that every weak Baire measure on
E'is, in a certain weak sense, concentrated on a separable subspace. We base
on a lemma which is a version of Talagrand’s Lemma 5-1-2 from [Ta]. Our
lemma easily yields a sequential completeness of the spaces of Grothendieck
measures, a related result proved by Pallarés—Vera [PV]. We also present
two results on Pettis integrability in the spaces of continuous functions.

2. Preliminaries. As regards terminology concerning measurability in
Banach spaces, we follow Edgar [E1, E2] and Talagrand [Ta]. These papers
are also excellent sources for the facts we mention below without proof. We
now briefly recall the basic concepts.

Let (2, X, 1) be a finite measure space and let f : 2 — FE be a function
with values in a Banach space E. Then f is weakly measurable provided x* f
is measurable for every x* € E*. If moreover |z* f| < K almost everywhere
for some constant K and every x* € E then f is said to be scalarly bounded.
(We denote by F,. the ball with center at the origin and radius r in a Banach
space F.)

A weakly measurable function f : 2 — FE is Pettis integrable if for every
A € X there exists v(A) € E such that 2*v(A) = [, z* f dp, for all 2* € E*.
In that case the vector-valued measure v : Y — F is called an indefinite
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Pettis integral of f. As is explained in 3-3 of [Ta], it is a little loss of
generality to consider only scalarly bounded functions.

A Banach space E is said to have the Pettis Integral Property (abbrevi-
ated to PIP) if every E-valued scalarly bounded function f (defined on an
arbitrary finite measure space) is Pettis integrable.

For a Banach space E, Ba(E) denotes the Baire o-algebra for the weak
topology on E. A weak Baire measure on FE is a finite measure defined
on Ba(FE). A Banach space E is measurable-compact if every weak Baire
measure on F is T-additive (see [E1] for the definition of 7-additivity). This
is equivalent to saying that for every such measure p there is a separable
subspace F of E with p*(F) = u(E) (via Tortrat’s theorem, cf. [Tal, 2-3-2).

If f: 2 — FE is a scalarly bounded function then the image measure
f(u) given by f(u)(B) = u(f~1(B)) is a weak Baire measure on E. Now
f is Pettis integrable if and only if the identity map ig : E — FE is Pettis
integrable with respect to f(u); this may be easily deduced from Musia/l
[M1], Proposition 1, or 4-1-7 of Talagrand [Ta].

Talagrand obtained the following characterization of Pettis integrability
in the language of weak Baire measure (see [Tal], 5-2-4).

Given a finite space (2,3, 1) and a scalarly bounded function f : 2 — E,
f is Pettis integrable if and only if the weak Baire measure f(u) is convexly
T-additive, i.e. for every family H C Ba(E) of closed convex sets with (\'H
= () there is a countable subfamily Ho C H such that f(u)((\Ho) = 0.

Thus a Banach space E has PIP if and only if it is convexly measure-
compact, that is, if every weak Baire measure on F is convexly T-additive.

Of some interest is the question for which spaces E every E-valued Pettis
integral has a relatively compact or separable range (see Musia/l [M1, M2],
Talagrand [T], and [Ta], 4-1-6 and 5-3-2). The latter property means that
Pettis integrable functions can be weakly approximated by simple functions
(Musia/l [M2], Theorem 3).

A celebrated example of a weakly measurable function with values in
¢ (k) given by Fremlin—Talagrand [FT] shows that /> does not have PIP
and that there is an £*°(k)-valued Pettis integrable function with a nonsep-
arable Pettis integral (where  is an uncountable cardinal).

3. Pettis integrals with separable range. Let f: (2, X, u) — E be
a scalarly bounded function. Then X (f) = {z*f : * € E}} is a pointwise
compact set of measurable functions which is bounded in L*°-norm. Recall
that f is Pettis integrable if and only if the canonical injection X (f) — L'(p)
is pointwise-to-weak continuous (Edgar [E2], Proposition 4.2). We shall
denote the topology of pointwise convergence by ;.
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The proof of the following lemma reproduces an argument from Tala-
grand [Ta], 5-1-2.

LEMMA. Let (2, X, 1) be a measurable space and let C be an absolutely
convex set of measurable functions which is ,-compact and bounded in L>.
Then the following are equivalent:

(i) the map p: C — R, u(g) = [, gdu, is 1,-continuous;
(ii) there exists a countable 29 C (2 such that [,gdp = 0 whenever
g € C and g|o, = 0.

Proof. (i)=(ii). By 7p-continuity, for every natural number n there
exist a finite set 29 C £ and J,, > 0 such that |[, gdu| < 1/n whenever
g € C and |g|,| < 6,. Clearly | J,, £2,, is as desired.

(ii)=(i). Assume that (ii) holds but p is not 7,-continuous; it is then
not continuous at 0. There is a § > 0 such that 0 is in the 7,-closure of the
set Y ={geC: [,gdu>d}. For every pair (F,e) where e >0 and F is a
finite subset of {2 we put

U(F,e)={9€C:lgr|<e} and C(F,e)=U(F,e)NY.

Let H(F,¢) be the closure of C(F,¢) in the weak topology of L'(u). The
sets H form a nested family of convex and weakly compact subsets in L ().
Hence there is an h € () H(F,¢); we have [, hdu > 4.

For a fixed pair (F,e) there exists a sequence (f,) C C(F,¢) converging
to h almost everywhere (since the latter set is convex, its weak closure
coincides with the norm closure). Denote by f(F,e) any cluster point of
(fn) in (C,1p); clearly f(F,e) = h almost everywhere.

Now take 2y as in (ii) and let f be a cluster point of the net (f(F,1/n) :
F C 2, n=12..). Wehave fjo, =0, so [, fdu = 0; on the other
hand, f = h almost everywhere, so | o fdp >0 >0, a contradiction.

DEFINITION. Given a weak Baire measure A on a Banach space E, we
say that A\ is scalarly concentrated on a subspace G of F if x‘*G = 0 implies
x* = 0 A-almost everywhere.

THEOREM 1. Let f be a scalarly bounded function on a finite measure
space (£2,X, ) with values in a Banach space E. Then the following are
equivalent:

(a) fis Pettis integrable and its Pettis integral has a separable range;
(b) the measure f(u) is scalarly concentrated on a separable subspace

of E.

Consequently, a Banach space E has the Pettis Integral Property and
every F-valued Pettis integral has a separable range if and only if every
weak Baire measure on E is scalarly concentrated on a separable subspace.
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Proof. (a)=(b). Let G be a separable subspace of E containing the
values of the Pettis integral of f. Now xTG = 0 implies [ 42" fdp =0 for
every A € X, and it follows that x*f = 0 py-almost everywhere, so z* = 0
f(p)-almost everywhere.

(b)=(a). Put A = f(u) and let G, the closure of a countable set D C
FE, be a subspace of E such that A is scalarly concentrated on G. Now
m|*D = 0 implies * = 0 A-almost everywhere so by the Lemma the map
x* — [pa*d\is 7, (=weak®) continuous for every B € Ba(E). Thus the
canonical embedding E* — L()) is 7,-to-weak continuous and ig : E — F
is Pettis integrable with respect to A. If xg = f B i d)\ then a:|*G = 0 implies
x*xg = 0; hence ¢ € G. It follows that f is Pettis integrable and the range
of its Pettis integral is contained in G.

The last statement of the theorem follows from the equivalence (a)<(b)
(in the proof of necessity one can reduce the problem to the case of a weak
Baire measure A with \*(E;) = A\(E)).

Although the material above is not very far from Talagrand’s ideas from
[Ta], Theorem 1 seems to be worth spelling out as the condition involved in
this characterization of Pettis integrability is more transparent than that of
convex T-additivity.

If \ is a 7-additive weak Baire measure on a Banach space E then
A*(G) = A(F) for some separable G clearly A is then scalarly concentrated
on G. As will be explained in the last section, this cannot be reversed.
On the other hand, there are Pettis integrals with non-separable range, and
so there are convexly T-additive weak Baire measures that are not scalarly
concentrated on separable subspaces. However, the following seems to be
open.

PROBLEM. Suppose that a Banach space E enjoys PIP. Does it follow
that every Pettis integral in E has a separable range? In other words, is
it true that every weak Baire measure on E is scalarly concentrated on a
separable subspace provided each is convexly T-additive?

4. A note on Grothendieck measures. In this section we shall show
that the sequential completeness of the space of Grothendieck measures on
a topological space is a trivial consequence of our Lemma.

Let X be a completely regular topological space. We adhere to the
standard notation and denote by M, (X) the space of Baire measures on
X. Wheeler [Wh] introduced the subspace Mg (X) of M,(X) and called
its elements Grothendieck measures. A Baire measure is a Grothendieck
measure if it is 7,-continuous on absolutely convex and 7,-compact sets in
Chy(X), the space of all continuous bounded functions on X.
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Pallarés—Vera [PV] showed that Grothendieck measures are tightly con-
nected with Pettis integration of weakly continuous functions. They also
proved the following result.

COROLLARY ([PV], Corollaries 8 and 9). If a measure p € MF(X) is
a weak® cluster point of a sequence (pn) € MJF(X) then p € M (X).
Consequently, Mg (X) is weak™ sequentially complete.

Proof. Let C C Cy(X) be absolutely convex and 7,-compact. Then
C' is uniformly bounded (Wheeler [Wh], p. 119). For every n there is a
countable X;, C X such that g € C, gx, = 0 implies fng,un =0. It
follows that the set |J,, X, satisfies condition (ii) of the Lemma so p is
mp-continuous on C. This proves that u € M (X). The second statement
follows by a standard argument (see [PV], proof of Corollary 9).

5. Pettis integration in C(K). In this section K always stands for a
compact Hausdorff space. The dual of C(K), the Banach space of continuous
functions with the supremum norm, is identified with the space of signed
Radon measures on K of bounded variation, and will be denoted by M (K)
(MT(K) stands for its positive cone). In particular, d; denotes the Dirac
measure at t € K.

We shall say that K has property (x) if for every function f : K — R, fis
continuous on K provided it is sequentially continuous (i.e. lim f(¢,) = f(t)
for every sequence (t,) converging to ¢ in K).

As mentioned in Section 2, a Pettis integral with values in C(K) need
not have a separable range (recall that the Banach space ¢>°(k) is isometric
to C(K), where K is the Cech-Stone compactification of x with the discrete
topology). On the other hand, if K is the support of a Radon measure then
every weakly compact set in C'(K) is separable (this is a theorem due to
Rosenthal, see Talagrand [Ta], 12-1-5), so in that case every C(K)-valued
Pettis integral has a separable range, as the range of a vector measure in a
Banach space is relatively weakly compact.

THEOREM 2. If K has property (x) then every Pettis integral in C(K)
has a separable range.

Proof. Let u be a weak Baire measure on C'(K) such that the identity
i: C(K) — C(K) is scalarly bounded and Pettis integrable with respect
to p. For every t,s € K put o(s,t) = fC(K)‘ét — 05| du.  Clearly this
defines a pseudometric on K. For a fixed t € K, the function (-, t) is
sequentially continuous on K from the Lebesgue theorem. Property (%)
implies that ¢ is a continuous pseudometric on K. Let K’ be a quo-
tient space of K and m : K — K’ be the canonical map. Since K’ is
compact and metrizable (see Engelking [En], 3.2.11 and 4.2.I), the space
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E ={hom:he C(K')} is separable. We shall check that [idu takes its
values in E.

Let B € Ba(C(K)) and let f = [pidp € C(K). If t,s € K and
7(t) = 7(s) then §; = 5 p-almost everywhere. Therefore

@)= [ordu= [ d.dp=f(s),
B B

and it follows that f € E.

Let p be a weak Baire measure on C(K) and let B € Ba(C(K)). As
remarked by Edgar [E2] (p. 568), there are two reasons for which [, idpu
may not exist in C(K). Simply the only candidate for [ idpu is the function
¢ defined by ¢(t) = [ p 0t du. This ¢ is sequentially continuous on K but
need not be continuous. Even if ¢ is continuous on K, the condition A\(p) =
[ A = dp may fail for some non-atomic A € M{ (K) (cf. Edgar’s remark
on the Fremlin-Talagrand example, [E2], p. 569).

The condition (%) for K we have defined above might seem to be a
reasonable way to overcome the first obstacle in seeking Pettis integrals in
C(K). Unfortunately, (%) is not necessary for C'(K) having PIP, at least
when the continuum hypothesis (CH) holds. This may be seen by analyzing
Talagrand’s example 16-4-1 from [Ta]. The space K he has constructed
under CH is such that C(K) is measure-compact (hence has PIP), and there
exists a non-isolated point tg € K which is not a limit of a sequence from
K\{to}. The latter property means that K fails (x) since x¢, is sequentially
continuous but not continuous.

THEOREM 3. If K is a first-countable compact space then C(K) has the
Pettis Integral Property and every C(K)-valued Pettis integral has a sepa-
rable range.

Proof. We shall check that if z € C'(K)** is weak* sequentially contin-
uous on C(K)* then z is weak™ continuous (so z € C'(K)). This property,
sometimes called the Mazur Property, is known to imply PIP (cf. [E2]).
The rest will follow from Theorem 2.

If z € C(K)** is weak™ sequentially continuous on C'(K)* then the func-
tion ¢ given by ¢(t) = z(d;) is continuous. Put w(A) = z(A) — A(¢). Now
we have w(d;) = 0; we are to prove that w = 0.

Fix € > 0. We shall prove that for every t € K there is a neighbourhood
V of t such that |w(v)| < ev(K) for every v € M™(K) concentrated on V.
Suppose otherwise: let (V;,) be a countable base at t and let v, € M (K)
be such that |w(vy,)| > € and v, (V},) = 1 for every n. Note that the sequence
vy, converges weak™ to d;; hence |w(d;)| > €, a contradiction.

It follows that there is a finite cover {V1, ..., Vi } of K such that |w(v)| <
ev(K) for every v € MT(K) with v(V;) = v(K) for some i < k. Let
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{A1,..., A} be the collection of all atoms of this partition. For A €
M (K) we have

W] < D fw(a,)l < D7 eA(A) =¢,

i<m i<m

where )4 denotes the restriction of a measure X\ to a set A. Thus w = 0
and the proof is complete.

We do not know if property () implies that C'(K) has PIP. It is worth
recalling that () is much weaker than the assumption of first-countability.
For instance, it is relatively consistent with the usual axioms of set theory
to assume that every Cantor cube 2% has property (x) (cf. [Ma] and [AC];
see also [P1], where the measure-compactness of C'(2") is derived from that
fact).

Theorem 3 is applicable to K being the two arrows space (cf. [En],
3.10.C) which is separable and first-countable. Here C'(K) has PIP but is
not measure-compact (cf. [E2], Example 5.7, see also [SW]). This means that
there exists a weak Baire measure on C'(K) that vanishes on all separable
subspaces but is scalarly concentrated on a certain separable subspace.
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