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ON PETTIS INTEGRALS WITH SEPARABLE RANGE
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1. Introduction. Several techniques have been developed to study
Pettis integrability of weakly measurable functions with values in Banach
spaces. As shown by M. Talagrand [Ta], it is fruitful to regard a weakly mea-
surable mapping as a pointwise compact set of measurable functions—its
Pettis integrability is then a purely measure-theoretic question of an ap-
propriate continuity of a measure. On the other hand, properties of weakly
measurable functions can be translated into the language of topological mea-
sure theory by means of weak Baire measures on Banach spaces. This ap-
proach, originated by G. A. Edgar [E1, E2], was remarkably developed by
M. Talagrand.

Following this idea, we show that the Pettis Integral Property of a Ba-
nach space E, together with the requirement of separability of E-valued
Pettis integrals, is equivalent to the fact that every weak Baire measure on
E is, in a certain weak sense, concentrated on a separable subspace. We base
on a lemma which is a version of Talagrand’s Lemma 5-1-2 from [Ta]. Our
lemma easily yields a sequential completeness of the spaces of Grothendieck
measures, a related result proved by Pallarés–Vera [PV]. We also present
two results on Pettis integrability in the spaces of continuous functions.

2. Preliminaries. As regards terminology concerning measurability in
Banach spaces, we follow Edgar [E1, E2] and Talagrand [Ta]. These papers
are also excellent sources for the facts we mention below without proof. We
now briefly recall the basic concepts.

Let (Ω,Σ, µ) be a finite measure space and let f : Ω → E be a function
with values in a Banach space E. Then f is weakly measurable provided x∗f
is measurable for every x∗ ∈ E∗. If moreover |x∗f | ≤ K almost everywhere
for some constant K and every x∗ ∈ E∗

1 then f is said to be scalarly bounded .
(We denote by Fr the ball with center at the origin and radius r in a Banach
space F .)

A weakly measurable function f : Ω → E is Pettis integrable if for every
A ∈ Σ there exists ν(A) ∈ E such that x∗ν(A) =

∫
A

x∗f dµ, for all x∗ ∈ E∗.
In that case the vector-valued measure ν : Σ → E is called an indefinite
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Pettis integral of f . As is explained in 3-3 of [Ta], it is a little loss of
generality to consider only scalarly bounded functions.

A Banach space E is said to have the Pettis Integral Property (abbrevi-
ated to PIP) if every E-valued scalarly bounded function f (defined on an
arbitrary finite measure space) is Pettis integrable.

For a Banach space E, Ba(E) denotes the Baire σ-algebra for the weak
topology on E. A weak Baire measure on E is a finite measure defined
on Ba(E). A Banach space E is measurable-compact if every weak Baire
measure on E is τ -additive (see [E1] for the definition of τ -additivity). This
is equivalent to saying that for every such measure µ there is a separable
subspace F of E with µ∗(F ) = µ(E) (via Tortrat’s theorem, cf. [Ta], 2-3-2).

If f : Ω → E is a scalarly bounded function then the image measure
f(µ) given by f(µ)(B) = µ(f−1(B)) is a weak Baire measure on E. Now
f is Pettis integrable if and only if the identity map iE : E → E is Pettis
integrable with respect to f(µ); this may be easily deduced from Musia/l
[M1], Proposition 1, or 4-1-7 of Talagrand [Ta].

Talagrand obtained the following characterization of Pettis integrability
in the language of weak Baire measure (see [Ta], 5-2-4).

Given a finite space (Ω,Σ, µ) and a scalarly bounded function f : Ω → E,
f is Pettis integrable if and only if the weak Baire measure f(µ) is convexly
τ -additive, i.e. for every family H ⊆ Ba(E) of closed convex sets with

⋂
H

= ∅ there is a countable subfamily H0 ⊆ H such that f(µ)(
⋂
H0) = 0.

Thus a Banach space E has PIP if and only if it is convexly measure-
compact, that is, if every weak Baire measure on E is convexly τ -additive.

Of some interest is the question for which spaces E every E-valued Pettis
integral has a relatively compact or separable range (see Musia/l [M1, M2],
Talagrand [T], and [Ta], 4-1-6 and 5-3-2). The latter property means that
Pettis integrable functions can be weakly approximated by simple functions
(Musia/l [M2], Theorem 3).

A celebrated example of a weakly measurable function with values in
`∞(κ) given by Fremlin–Talagrand [FT] shows that `∞ does not have PIP
and that there is an `∞(κ)-valued Pettis integrable function with a nonsep-
arable Pettis integral (where κ is an uncountable cardinal).

3. Pettis integrals with separable range. Let f : (Ω,Σ, µ) → E be
a scalarly bounded function. Then X(f) = {x∗f : x∗ ∈ E∗

1} is a pointwise
compact set of measurable functions which is bounded in L∞-norm. Recall
that f is Pettis integrable if and only if the canonical injection X(f) → L1(µ)
is pointwise-to-weak continuous (Edgar [E2], Proposition 4.2). We shall
denote the topology of pointwise convergence by τp.
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The proof of the following lemma reproduces an argument from Tala-
grand [Ta], 5-1-2.

Lemma. Let (Ω,Σ, µ) be a measurable space and let C be an absolutely
convex set of measurable functions which is τp-compact and bounded in L∞.
Then the following are equivalent :

(i) the map µ : C → R, µ(g) =
∫

Ω
g dµ, is τp-continuous;

(ii) there exists a countable Ω0 ⊆ Ω such that
∫

Ω
g dµ = 0 whenever

g ∈ C and g|Ω0 = 0.

P r o o f. (i)⇒(ii). By τp-continuity, for every natural number n there
exist a finite set Ω0 ⊆ Ω and δn > 0 such that |

∫
Ω

g dµ| ≤ 1/n whenever
g ∈ C and |g|Ωn

| ≤ δn. Clearly
⋃

n Ωn is as desired.
(ii)⇒(i). Assume that (ii) holds but µ is not τp-continuous; it is then

not continuous at 0. There is a δ > 0 such that 0 is in the τp-closure of the
set Y = {g ∈ C :

∫
Ω

g dµ ≥ δ}. For every pair (F, ε) where ε > 0 and F is a
finite subset of Ω we put

U(F, ε) = {g ∈ C : |g|F | ≤ ε} and C(F, ε) = U(F, ε) ∩ Y .

Let H(F, ε) be the closure of C(F, ε) in the weak topology of L1(µ). The
sets H form a nested family of convex and weakly compact subsets in L1(µ).
Hence there is an h ∈

⋂
(F,ε) H(F, ε); we have

∫
Ω

h dµ ≥ δ.
For a fixed pair (F, ε) there exists a sequence (fn) ⊆ C(F, ε) converging

to h almost everywhere (since the latter set is convex, its weak closure
coincides with the norm closure). Denote by f(F, ε) any cluster point of
(fn) in (C, τp); clearly f(F, ε) = h almost everywhere.

Now take Ω0 as in (ii) and let f be a cluster point of the net (f(F, 1/n) :
F ⊆ Ω0, n = 1, 2, . . .). We have f|Ω0 = 0, so

∫
Ω

f dµ = 0; on the other
hand, f = h almost everywhere, so

∫
Ω

f dµ ≥ δ > 0, a contradiction.

Definition. Given a weak Baire measure λ on a Banach space E, we
say that λ is scalarly concentrated on a subspace G of E if x∗|G = 0 implies
x∗ = 0 λ-almost everywhere.

Theorem 1. Let f be a scalarly bounded function on a finite measure
space (Ω,Σ, µ) with values in a Banach space E. Then the following are
equivalent :

(a) f is Pettis integrable and its Pettis integral has a separable range;
(b) the measure f(µ) is scalarly concentrated on a separable subspace

of E.

Consequently , a Banach space E has the Pettis Integral Property and
every E-valued Pettis integral has a separable range if and only if every
weak Baire measure on E is scalarly concentrated on a separable subspace.



74 G. PLEBANEK

P r o o f. (a)⇒(b). Let G be a separable subspace of E containing the
values of the Pettis integral of f . Now x∗|G = 0 implies

∫
A

x∗f dµ = 0 for
every A ∈ Σ, and it follows that x∗f = 0 µ-almost everywhere, so x∗ = 0
f(µ)-almost everywhere.

(b)⇒(a). Put λ = f(µ) and let G, the closure of a countable set D ⊆
E, be a subspace of E such that λ is scalarly concentrated on G. Now
x∗|D = 0 implies x∗ = 0 λ-almost everywhere so by the Lemma the map
x∗ →

∫
B

x∗ dλ is τp (=weak∗) continuous for every B ∈ Ba(E). Thus the
canonical embedding E∗ → L1(λ) is τp-to-weak continuous and iE : E → E
is Pettis integrable with respect to λ. If x0 =

∫
B

iE dλ then x∗|G = 0 implies
x∗x0 = 0; hence x0 ∈ G. It follows that f is Pettis integrable and the range
of its Pettis integral is contained in G.

The last statement of the theorem follows from the equivalence (a)⇔(b)
(in the proof of necessity one can reduce the problem to the case of a weak
Baire measure λ with λ∗(E1) = λ(E)).

Although the material above is not very far from Talagrand’s ideas from
[Ta], Theorem 1 seems to be worth spelling out as the condition involved in
this characterization of Pettis integrability is more transparent than that of
convex τ -additivity.

If λ is a τ -additive weak Baire measure on a Banach space E then
λ∗(G) = λ(E) for some separable G; clearly λ is then scalarly concentrated
on G. As will be explained in the last section, this cannot be reversed.
On the other hand, there are Pettis integrals with non-separable range, and
so there are convexly τ -additive weak Baire measures that are not scalarly
concentrated on separable subspaces. However, the following seems to be
open.

Problem. Suppose that a Banach space E enjoys PIP. Does it follow
that every Pettis integral in E has a separable range? In other words, is
it true that every weak Baire measure on E is scalarly concentrated on a
separable subspace provided each is convexly τ -additive?

4. A note on Grothendieck measures. In this section we shall show
that the sequential completeness of the space of Grothendieck measures on
a topological space is a trivial consequence of our Lemma.

Let X be a completely regular topological space. We adhere to the
standard notation and denote by Mσ(X) the space of Baire measures on
X. Wheeler [Wh] introduced the subspace Mg(X) of Mσ(X) and called
its elements Grothendieck measures. A Baire measure is a Grothendieck
measure if it is τp-continuous on absolutely convex and τp-compact sets in
Cb(X), the space of all continuous bounded functions on X.
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Pallarés–Vera [PV] showed that Grothendieck measures are tightly con-
nected with Pettis integration of weakly continuous functions. They also
proved the following result.

Corollary ([PV], Corollaries 8 and 9). If a measure µ ∈ M+
σ (X) is

a weak∗ cluster point of a sequence (µn) ⊆ M+
g (X) then µ ∈ M+

g (X).
Consequently , Mg(X) is weak∗ sequentially complete.

P r o o f. Let C ⊆ Cb(X) be absolutely convex and τp-compact. Then
C is uniformly bounded (Wheeler [Wh], p. 119). For every n there is a
countable Xn ⊆ X such that g ∈ C, g|Xn

= 0 implies
∫

X
g dµn = 0. It

follows that the set
⋃

n Xn satisfies condition (ii) of the Lemma so µ is
τp-continuous on C. This proves that µ ∈ M+

g (X). The second statement
follows by a standard argument (see [PV], proof of Corollary 9).

5. Pettis integration in C(K). In this section K always stands for a
compact Hausdorff space. The dual of C(K), the Banach space of continuous
functions with the supremum norm, is identified with the space of signed
Radon measures on K of bounded variation, and will be denoted by M(K)
(M+(K) stands for its positive cone). In particular, δt denotes the Dirac
measure at t ∈ K.

We shall say that K has property (∗) if for every function f : K → R, f is
continuous on K provided it is sequentially continuous (i.e. lim f(tn) = f(t)
for every sequence (tn) converging to t in K).

As mentioned in Section 2, a Pettis integral with values in C(K) need
not have a separable range (recall that the Banach space `∞(κ) is isometric
to C(K), where K is the Čech–Stone compactification of κ with the discrete
topology). On the other hand, if K is the support of a Radon measure then
every weakly compact set in C(K) is separable (this is a theorem due to
Rosenthal, see Talagrand [Ta], 12-1-5), so in that case every C(K)-valued
Pettis integral has a separable range, as the range of a vector measure in a
Banach space is relatively weakly compact.

Theorem 2. If K has property (∗) then every Pettis integral in C(K)
has a separable range.

P r o o f. Let µ be a weak Baire measure on C(K) such that the identity
i : C(K) → C(K) is scalarly bounded and Pettis integrable with respect
to µ. For every t, s ∈ K put %(s, t) =

∫
C(K)

|δt − δs| dµ. Clearly this
defines a pseudometric on K. For a fixed t ∈ K, the function %(·, t) is
sequentially continuous on K from the Lebesgue theorem. Property (∗)
implies that % is a continuous pseudometric on K. Let K ′ be a quo-
tient space of K and π : K → K ′ be the canonical map. Since K ′ is
compact and metrizable (see Engelking [En], 3.2.11 and 4.2.I), the space
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E = {h ◦ π : h ∈ C(K ′)} is separable. We shall check that
∫

i dµ takes its
values in E.

Let B ∈ Ba(C(K)) and let f =
∫

B
i dµ ∈ C(K). If t, s ∈ K and

π(t) = π(s) then δt = δs µ-almost everywhere. Therefore

f(t) =
∫
B

δt dµ =
∫
B

δs dµ = f(s) ,

and it follows that f ∈ E.

Let µ be a weak Baire measure on C(K) and let B ∈ Ba(C(K)). As
remarked by Edgar [E2] (p. 568), there are two reasons for which

∫
B

i dµ
may not exist in C(K). Simply the only candidate for

∫
B

i dµ is the function
ϕ defined by ϕ(t) =

∫
B

δt dµ. This ϕ is sequentially continuous on K but
need not be continuous. Even if ϕ is continuous on K, the condition λ(ϕ) =∫

B
λ = dµ may fail for some non-atomic λ ∈ M+

1 (K) (cf. Edgar’s remark
on the Fremlin–Talagrand example, [E2], p. 569).

The condition (∗) for K we have defined above might seem to be a
reasonable way to overcome the first obstacle in seeking Pettis integrals in
C(K). Unfortunately, (∗) is not necessary for C(K) having PIP, at least
when the continuum hypothesis (CH) holds. This may be seen by analyzing
Talagrand’s example 16-4-1 from [Ta]. The space K he has constructed
under CH is such that C(K) is measure-compact (hence has PIP), and there
exists a non-isolated point t0 ∈ K which is not a limit of a sequence from
K \{t0}. The latter property means that K fails (∗) since χt0 is sequentially
continuous but not continuous.

Theorem 3. If K is a first-countable compact space then C(K) has the
Pettis Integral Property and every C(K)-valued Pettis integral has a sepa-
rable range.

P r o o f. We shall check that if z ∈ C(K)∗∗ is weak∗ sequentially contin-
uous on C(K)∗ then z is weak∗ continuous (so z ∈ C(K)). This property,
sometimes called the Mazur Property, is known to imply PIP (cf. [E2]).
The rest will follow from Theorem 2.

If z ∈ C(K)∗∗ is weak∗ sequentially continuous on C(K)∗ then the func-
tion ϕ given by ϕ(t) = z(δt) is continuous. Put w(λ) = z(λ) − λ(ϕ). Now
we have w(δt) = 0; we are to prove that w = 0.

Fix ε > 0. We shall prove that for every t ∈ K there is a neighbourhood
V of t such that |w(ν)| ≤ εν(K) for every ν ∈ M+(K) concentrated on V .
Suppose otherwise: let (Vn) be a countable base at t and let νn ∈ M+

1 (K)
be such that |w(νn)| ≥ ε and νn(Vn) = 1 for every n. Note that the sequence
νn converges weak∗ to δt; hence |w(δt)| ≥ ε, a contradiction.

It follows that there is a finite cover {V1, . . . , Vk} of K such that |w(ν)| ≤
εν(K) for every ν ∈ M+(K) with ν(Vi) = ν(K) for some i ≤ k. Let



PETTIS INTEGRALS 77

{A1, . . . , Am} be the collection of all atoms of this partition. For λ ∈
M+

1 (K) we have

|w(λ)| ≤
∑
i≤m

|w(λAi)| ≤
∑
i≤m

ελ(Ai) = ε ,

where λA denotes the restriction of a measure λ to a set A. Thus w = 0
and the proof is complete.

We do not know if property (∗) implies that C(K) has PIP. It is worth
recalling that (∗) is much weaker than the assumption of first-countability.
For instance, it is relatively consistent with the usual axioms of set theory
to assume that every Cantor cube 2κ has property (∗) (cf. [Ma] and [AC];
see also [P1], where the measure-compactness of C(2κ) is derived from that
fact).

Theorem 3 is applicable to K being the two arrows space (cf. [En],
3.10.C) which is separable and first-countable. Here C(K) has PIP but is
not measure-compact (cf. [E2], Example 5.7, see also [SW]). This means that
there exists a weak Baire measure on C(K) that vanishes on all separable
subspaces but is scalarly concentrated on a certain separable subspace.
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