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A SIERPIŃSKI–ZYGMUND FUNCTION WHICH HAS
A PERFECT ROAD AT EACH POINT

BY

UDAYAN B. DARJ I (AUBURN, ALABAMA)

Perfect roads were defined by Maximoff in 1936 [M1]. They were studied
in connection with derivatives and Darboux Baire class 1 functions [M2].

Definition. Suppose f : R → R. The function f has a perfect road at
p means there is a Cantor set C such that p is a two-sided limit point of C
and f |C is continuous at p. When we say f is of perfect road type, we mean
f has a perfect road at each point.

For Baire class 1 functions there are many conditions which are equiva-
lent to a function being of perfect road type. We state some of them here.

Theorem [Br]. If f is of Baire class 1, then the following are equivalent.

(a) f is Darboux.
(b) f is of perfect road type.
(c) The graph of f is connected.

Equivalence of (a) and (b) in the above theorem was first shown by
Maximoff in [M1].

In the same paper, he raises the following natural question about func-
tions of perfect road type: If f is of perfect road type, does there have to
be a Cantor set C such that f |C is continuous? Under the assumption of
the continuum hypothesis, Maximoff gives a counterexample to this ques-
tion [M1]. We answer this question in the negative in a strong way (1). We
construct in ZFC a Sierpiński–Zygmund function that has a perfect road at
each point. Let us recall the theorem of Sierpiński and Zygmund.

Theorem [SZ]. There is a function f : R → R such that if M ⊆ R and
|M | = 2ω, then f |M is not continuous.

Now, we state the result of this paper.

(1) This question was related to the author by Richard Gibson. At the time, neither
the author nor Richard Gibson was aware of Maximoff’s result.
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Theorem. There exists in ZFC a function h : R → R such that h has
a perfect road at each point but if M is any set such that |M | = 2ω, then
h|M is not continuous.

Before we construct h, we will need three lemmas. We leave easy proofs
of the first two lemmas to the reader.

Lemma 1 [Ku]. Suppose U ⊆ R, and f : U → R is continuous. Then
there is a Gδ set M containing U and a continuous function g defined on
M such that g|U = f . Moreover , if G = {h : R → R | there is a Gδ set M
such that h|M is continuous and h is zero on M c}, then |G| = 2ω.

Lemma 2. Let C be a Cantor set. Then there is a collection G of Cantor
sets such that

1)
⋃

G = C,
2) if g, h ∈ G and g 6= h, then g ∩ h = ∅, and
3) if U is an open set in C, then there are 2ω Cantor sets in G that

intersect U .

The third lemma is central to the proof of our theorem. It easily follows
from the continuum hypothesis or from a consequence of Martin’s axiom.
However, we prove it in ZFC.

Lemma 3. Let {pα}α<2ω be a well-ordering of R. Then there exists a
sequence {Cα} of Cantor sets such that

1) pα is a two-sided limit point of Cα,
2) if β < α then pβ 6∈ Cα,
3) if α 6= β then [Cα\{pα}] ∩ [Cβ\{pβ}] = ∅.
P r o o f. Let {Fn} be a sequence of Cantor sets such that if n 6= m, then

Fn ∩ Fm = ∅ and
⋃

Fn is dense in R. Using Lemma 2 for each positive
integer n, let Gn be a collection of Cantor sets such that

⋃
Gn = Fn, Gn is

a pairwise disjoint collection, and if U is an open set in Fn, then there are 2ω

Cantor sets in Gn that intersect U . Let G =
⋃

Gn. Note that the collection
G has the property that if O is an open subset of R, then 2ω elements of G
intersect O; and also note that G is a pairwise disjoint collection.

Now, let B be a countable basis for R. Let H0 be a countable subcollec-
tion of G such that every element of B intersects some element of H0. Sup-
pose that α < 2ω, and for each β < α, Hβ has been defined. Then we define
Hα to be some countable subcollection G such that if β < α that Hβ∩Hα = ∅
and every element of B intersects some element of Hα. Hα exists because
|
⋃

β<α Hβ | < 2ω and 2ω elements of G intersect each element of B.
Now, we have a sequence {Hα}α<2ω such that (a) Hα is a countable

collection of Cantor sets, (b)
⋃

Hα is dense in R, and (c) if α 6= β then
(
⋃

Hα) ∩ (
⋃

Hβ) = ∅.
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Fix α. Let {sn} and {tn} be two sequences, one increasing and the other
decreasing, and both converging to pα. Now, let An be a Cantor set such
that An ⊆ (sn, sn+1) ∩

⋃
Hα and A′

n ⊆ (tn+1, tn) ∩
⋃

Hα. We may assume
that (An∪A′

n)∩{pβ | β < α} = ∅, because otherwise we could write An∪A′
n

as a disjoint union of 2ω many Cantor sets, and one of them would have to
miss {pβ | β < α}. Now, we let Cα =

⋃∞
n=1(An ∪ A′

n) ∪ {pα}. So, for each
α < 2ω, we have defined a Cantor set Cα.

{Cα} obviously satisfies the first two conditions of the lemma. The third
condition is also satisfied because Cα\{pα} ⊆

⋃
Hα and if α 6= β then

(
⋃

Hα) ∩ (
⋃

Hβ) = ∅. Thus, the proof of the lemma is complete.

Now, we proceed to construct a function h of the theorem. Let {pα}α<2ω

be a well-ordering of R, and let {Cα}α<2ω be a sequence of Cantor sets as
described in Lemma 3. Let {fα}α<2ω be a well-ordering of all the functions
described in Lemma 1. Finally, let Dα = Cα\{pα}.

We construct h inductively. At the αth stage, we will define h on Dα ∪
{pα}. Let h(p0) ∈ R\{f0(p0)}. For each pα ∈ D0, let h(pα) be such that
|h(p0)− h(pα)| < |p0 − pα| and h(pα) 6∈ {fβ(pα) | β ≤ α}. Now, suppose γ
is an ordinal and h is defined on {pδ | δ < γ} ∪ (

⋃
δ<γ Dδ). If h(pγ) is not

defined yet, then we let h(pγ) ∈ R\{fδ(pγ) | δ ≤ γ}. Otherwise, we leave
h(pγ) unchanged. We note that h is not defined at any point of Dγ yet
because {Cα}α<2ω satisfies the second and the third condition of Lemma 3.
If pβ ∈ Dγ , then let h(pβ) be such that |h(pγ) − h(pβ)| < |pγ − pβ | and
pβ 6∈ {fδ(pβ) | δ ≤ β}.

Now h is a well-defined function; and for each α, h|Cα is continuous at pα.
Thus, h has a perfect road at each one of its points. We want to show that if
M ⊆ R and |M | = 2ω, then h|M is not continuous. To get a contradiction,
assume h|M is continuous for some M ⊆ R and |M | = 2ω. By Lemma 1,
there is an α such that fα|M = h|M . Since |M | = 2ω, let β > α be such that
pβ ∈ M . But, by the definition of the function h, h(pβ) 6∈ {fδ(pβ) | δ ≤ β}.
Since fα(pβ) = h(pβ), we have a contradiction. Thus, h is not continuous
on any set of size 2ω; and this completes the proof of the theorem.

Now we state some questions. The class of Perfect Road (PR), Extend-
able (Ext), Almost Continuous (AC), Connectivity (Conn), Darboux (D),
Peripherally Continuous (PC) functions are related in the following fashion
on the real line. Refer to [BHL] for definitions.

Ext → AC → Conn → D → PC

↘ ↗
PR

Question. Is there an AC Sierpiński–Zygmund function? Or even a D
Sierpiński–Zygmund function? It is shown in [RGR] that if f is an extend-
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able function then f has the “strong Cantor intermediate value property”
which implies that every open set contains a Cantor set C such that f |C is
continuous. So, there is no extendable Sierpiński–Zygmund function.
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Reçu par la Rédaction le 25.1.1991


