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INTEGRAL CLOSURES OF IDEALS
IN THE REES RING

BY

Y. TIRAS (ANKARA)

Introduction. The important ideas of reduction and integral closure of
an ideal in a commutative Noetherian ring A (with identity) were introduced
by Northcott and Rees [4]; a brief and direct approach to their theory is given
in [6, (1.1)]. We begin by briefly summarizing some of the main aspects.

Let a be an ideal of A. We say that a is a reduction of the ideal b
of A if @ C b and there exists s € N such that ab® = b**!. (We use N
(respectively Ng) to denote the set of positive (respectively non-negative)
integers.) An element = of A is said to be integrally dependent on a if there
exist n € N and elements c1,...,¢, € A with ¢; € a’ fori = 1,...,n such
that

e 4 ez, =0.

In fact, this is the case if and only if a is a reduction of a + Ax; moreover,
a={y € A:y is integrally dependent on a}

is an ideal of A, called the classical integral closure of a, and it is the largest
ideal of A which has a as a reduction in the sense that a is a reduction of @
and any ideal of A which has a as a reduction must be contained in a.

In [8], Sharp, Tirag and Yassi introduced concepts of reduction and inte-
gral closure of an ideal I of a commutative ring R (with identity) relative to a
Noetherian module M, and they showed that these concepts have properties
which reflect those of the classical concepts outlined in the last paragraph.
Again, we provide a brief review.

We say that I is a reduction of the ideal J of R relative to M if I C J
and there exists s € N such that IJSM = J*t'M. An element = of R is
said to be integrally dependent on I relative to M if there exists n € N such

that
n . .
" M C (waﬂ) M.
=1

In fact, this is the case if and only if I is a reduction of I + Rx relative to M
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[8, (1.5)(iv)]; moreover,
I ={y € R : y is integrally dependent on I relative to M}

is an ideal of R, called the integral closure of I relative to M, and is the
largest ideal of R which has I as a reduction relative to M. In this paper,
we indicate the dependence of I~ on the Noetherian R-module M by means
of the extended notation 1—(M),

Now we give the definition of the Rees ring. The classical reference is [5,
p. 33]. Let R be a commutative ring with identity.

Let t be an indeterminate. Let S = {t' : i € No}. Then S is a multi-
plicatively closed subset of R[t]. So we get the ring S™!(R[t]). The homo-
morphism

Y Rit] = STURIE), e f/1,
is an injective ring homomorphism, and so we can consider R[t] as a sub-
ring of STY(R[t]). Put § =t¢~. Then R[{][t7'] = ST'(R[t]) or R[t,t7'] =
S—1(RJ[t]). Next, suppose that I is a proper ideal of R generated by ay, ..., ay,
(n € N). Then R = Rlaxt, ... ,a,t,t~] = R[It,t7!] is a subring of R[t,t™1].
R is called the Rees ring of R with respect to I (see [2, p. 120]). Note
that each element of R is of the form > b;t* where m,n € Z (the set of
integers), and, for i > 0, b; € I'. Note also that for i < 0 we interpret I*
as R.
Now we give another definition which will be helpful in this section.

(1.1) DEFINITION. Let (R,,)nez be a family of subgroups of R. We say
that R is a graded ring if the following conditions are satisfied.

(i) R is the direct sum of the subgroups R, i.e. R=3Y " R,.

(ii) Ry - Ry C Rgyq for all q,¢' € Z. (Observe that R, - Ry is the set
of all elements z of R such that x is a sum of a finite number of elements of
the form a - b with a € Ry, b € Ry .)

The following proposition comes from [3].

(1.2) PROPOSITION (3, Proposition 28, p. 115]. Let A be a graded ring. If
K is a submodule of the graded A-module E =, _, E*, then the following
statements are equivalent:

(a) K =3 ep(E" N K);

(b) If y € K, then all the homogeneous components of y belong to K;

(c) K can be generated by homogeneous elements.

Next we give the notations and terminology which we will need through-
out this paper.

(1.3) Notations and terminology. Let R be a commutative Noetherian
ring and I be an ideal of R generated by ai,...,as, I = (a1,...,as). Let
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R = R[It,t~'] be the Rees ring of R with respect to I. Let R = @,,.;, Rn
where R,, denotes the subgroup of R consisting of 0 and the homogeneous
elements of R of degree n. For all k € N, by (1.2)(a),

Rt =EP@R;NRt").

i€z
Therefore
_ Itket if 4> —k
R,NRt™" = , ’
{ Rt if ¢ < —k.

Let M be a finitely generated R-module. Then it is easy to see that
M[t] = >"._; R[tlu; where uq,...,u, is a generating set for M.
Let S = {t':i € Ny} be a multiplicatively closed subset of R[t]. Then

Mlt) — STHML),  fe S/,

is an injective module homomorphism. Now let

p
R(R,I) = P 1" = { S ait' € Rt t 7" a; € Ii} .
n i=—q

Then R(R,I) is a subring of R[t,t71]. Also let

R(M, 1) = { S mitt € Mit,t7') :my € P‘M}.
We can regard R(M,I) as an R(R,I)-module with the following scalar
multiplication:

R(R,I) x R(M,I) — R(M,I),

m p m p
< Z Citi, Z m]‘tj) g Z Z Cimth_j,
i=—n i=—q i=—nj=—q
where ¢;m; € ' M.

Let X1,..., X, X541 be indeterminates over R. Then R[X;,..., Xs41]
is a Noetherian ring. It is readily seen that M[Xjy, ..., Xs1+1] is a Noetherian
R[X1,..., Xsy1]-module, and M|ait, ..., ast,t71] is a Noetherian R[ait, ...
..., ast, t7-module.

2. Some related results. Throughout this section, unless otherwise
stated, R will denote a commutative ring with identity. Essentially our aim
is to investigate some interrelations between the Rees ring of R with respect
to an ideal of R and the ground ring R.

We begin with a well-known lemma which gives us the connection be-
tween the integral closure of an ideal in the Rees ring and the integral closure
of the ideal in the ground ring R.
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(2.1) LEMMA. Let R be a commutative Noetherian ring, I be an ideal
of R, and R be the Rees ring of R with respect to I. Let t be an indeterminate
and v =t~1. Then

(W'R)NR = (I')
where the bar refers to classical integral closure. m

From now on, let M = R(M, I) = Mlait, ..., ast, t~']. Also, (Rt=*)=(M),
for k € N, is the integral closure of Rt~* relative to M.
Now for all ¢ > —k, k € N, define

Cir={rx€R: 2t € R; N (Rt*’f)*(M)}.
It is clear that for all i > —k, C; j, is an ideal of R. In particular,
Cor = RN (Rt~F)=MD

Now we give the relation between (I®)~(M) and (Rt=*)~(M)_ The fol-
lowing theorem can be used to reduce problems about the integral closure
of the powers of I relative to M to the corresponding problems for powers
of the principal ideal Rt~* in R.

(2.2) THEOREM. Let R be a commutative Noetherian ring and I be an
ideal of R. Let R be the Rees ring of R with respect to I. Let M be a
Noetherian R-module and M = R(M,I). Then for k € N,

(Rt =M AR = (1F)=(D
Proof. Let € (I*)~(™). Then there is an n € N such that

2" M C (ix”w) M.
=1

It is enough to show that an element of the form z"m;t/, where m; € I' M,
isin (301, 2" {(Rt~F)")M. Since

a"m; € "M CY 2" ' I(IF)' M,
i=1
we have 2"m; = Y 1 | 2" 'f; where 3; € I7(I*)"M, and the result follows.

For the converse, let us first give some useful ideas about the ideal C; i,
we have just defined. It is easy to see that I-C;  C Ciyq for all ¢ > 1 and
Ci-f—l,k - Ci,k: for all ¢ > 0.

Also I' C Ci—kr C I'=F for i — k > —k (k € N). Indeed, if x € I, then
xt~ %+ ¢ R_; ;. Therefore xt= %+ € R;_;, N (Rt~*)~(™)_ Since the second
inclusion is clear, we omit its proof.

Now to complete the proof we show that I is a reduction of C;_j
relative to M. It is enough to show that each element of C;_j, 1 is integrally
dependent on I’ relative to M by the preceding paragraph and [8, (1.5)(v)].
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Let x € Ci_i . Then xtiF e (Rt*k)’(M). Thus there exists an n € N such
that

(%) R(ztFyn . M C (Z(Rt’k)r(thi’k)”’T> M.

We claim that
n
Z" M C (Z x"*T(I’f)’") M.
r=1

Let y € 2" - M. Then y = 2™ - m for some m € M. Hence (zt'=*)" . m €
R(xt'=F)" . M. By (%),
(2t *)" . m e (Z(Rt_k)TR(xti_k)"_’“) M.
r=1
Therefore

n
xntn(i—k)m — Z xn—'rt(i—k:)(n—r)—kr,yr with = M.
r=1

By comparing components of degree n(i — k), we get

x"-me (ix”"’([i)ﬂ <M.

This means z is integrally dependent on I’ relative to M. Then by
8, (1.5)(v)], I" is a reduction of C;_j i, relative to M for all i > 1. Now the
result follows from [8, (1.5)(vii)]. m

One could naturally ask whether there exist any relations, as in (2.2),
between (Rt~*)~M) . M and (I*)=(M) . M. It will be shown in (2.5) that
the answer is yes, and to prove this we need to show first that the integral
closure of a homogeneous ideal in a graded ring is homogeneous.

(2.3) PROPOSITION. Let R = @D, ., Ry be a graded Noetherian ring and
let I be a homogeneous ideal in R. Then I, the integral closure of I in R, is
a homogeneous ideal of R.

Proof. Let T = R[t,t~!]. Consider

q
Tn:{ZTnitieTZTniERn}, ne.
i=—p

For n € Z, T, is an additive subgroup of T'. Also T}, - T}, € Th4n. Let R =
R[It,t71]. Then R = P, 5 (R[It,t7']), is a graded subring of R[t,t™].

Now let = >37 _ a; € I. Then by [6, (1.1)(ii)], at is integral over
R[It,t71]. By [1, Proposition 20, p. 321] all homogeneous components of xt
are integral over R[It,t~!]. This completes the proof. m
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(2.4) COROLLARY. Let R = @, ., Ry, be a graded ring and let I be a
homogeneous ideal of R. Suppose that M is a Noetherian graded R-module.
Then I=M) s a homogeneous ideal of R.

Proof. Let the bar refer to the natural ring homomorphism R —
R/0 :x M. By [8, (1.6)], I-™) = (I)~U) the integral closure I in R.
By (2.3), I=™™) is a homogeneous ideal. Now the result follows from the
definition of the graded ring structure on the residue class ring. =

Now we are able to give an answer to the question asked just after (2.2).

(2.5) THEOREM. Let R and M be as in (2.2). Then for all k € N,

(Rt™F)=MD .MM = T~ . .

Proof. By the result about C;j given in (2.2), the zero component
of (Rt=%)=M) .M is Cyx - M. This gives us (I*)~"M) . M = Cy - M C
(Rt=F)=M) .M N M.

Let m € (Rt=%)=M) .M N M. Since m is a homogeneous element
of (Rt=#)=(M) . M of degree 0, it belongs to Cy . - M. This completes the
proof. m

We conclude this paper by giving the interrelation between the associated
primes in R and in R. To do this we need the following proposition.

(2.6) PROPOSITION [3, Proposition 20, p. 99]. Let N be a p-primary
submodule of an R-module E& and let K be an arbitrary submodule of E. If
K ¢ N, then (N : K) is a p-primary ideal. If K C N, then (N: K)=R. m

(2.7) PROPOSITION. Let R and M be as in (2.5). Let
M
p € Assg ((Ik)(M) M>
for k € N. Then there exists

M

P € Assg ((Rt—k)—(M) M>

such that PN R = p.
Proof. Let
M
= e 51~ DO
nezZ
We have shown that
M
Go = rr=on 31

Let p € Assg Go. Then there exists go € G such that (0 :g go) = p.

Now consider Rgp, a homogeneous submodule of G. Take a minimal primary
n

decomposition for 0 in Rgo (because R is Noetherian). Then 0 = (;_; a,
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with «; being P;-primary homogeneous submodules of Rgy (1 < i < n).
Then

n

p=(0:rg)=RN0:r Rg)= (| (BN (ai:r Rgo)).
Q(Z)Ei’éi
Thus by (2.6), (a; :r Rgo) is a P;-primary ideal and by [7, (9.33)(ii)],
P; € Assg go C Assg G. Now the result follows by [7, 3.50]. =

I am extremely grateful to Professor R. Y. Sharp, The University of
Sheffield, England, for his advice and suggestions on this work.
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