COLLOQUIUM MATHEMATICUM

VOL. LXIV 1993 FASC. 2

ON NORMAL CR-SUBMANIFOLDS OF S-MANIFOLDS

BY

JOSE L. CABRERIZO, LUIS M. FERNANDEZ anp
MANUEL FERNANDEZ (SEVILLA)

0. Introduction. Many authors have studied the geometry of sub-
manifolds of Kaehlerian and Sasakian manifolds. On the other hand, David
E. Blair has initiated the study of S-manifolds, which reduce, in particular
cases, to Sasakian manifolds ([1, 2]).

I. Mihai ([8]) and L. Ornea ([9]) have investigated CR-submanifolds of
S-manifolds. The purpose of the present paper is to study a special kind of
such submanifolds, namely the normal CR-submanifolds.

In Sections 1 and 2, we review basic formulas and definitions for sub-
manifolds in Riemannian manifolds and in S-manifolds, respectively, which
we shall use later. In Section 3, we introduce normal CR-submanifolds of
S-manifolds and we study some properties of their geometry. Finally, in Sec-
tion 4, we consider those submanifolds in the case of the ambient S-manifold
being an S-space form.

1. Preliminaries. Let A be a Riemannian manifold of dimension n
and M an m-dimensional submanifold of N'. Let g be the metric tensor field
on N as well as the induced metric on M. We denote by V the covariant
differentiation in A" and by V the covariant differentiation in M determined
by the induced metric. Let T'(N) (resp. T'(M)) be the Lie algebra of vector
fields in AV (resp. in M) and T(M)= the set of vector fields normal to M.

The Gauss—Weingarten formulas are given by

VxY =VxY +0(X,)Y),
VxV =—-AyX +DxV, X, YeT(M),VeT(M)™*,

where D is the connection in the normal bundle, o is the second fundamental
form of M and Ay the Weingarten endomorphism associated with V. Then

(1.1)
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Ay and o are related by
(1.2) 9(AvX,)Y) = g(o(X,Y), V).

We denote by R and R the curvature tensor fields associated with V and
V, respectively. The Gauss equation is given by

(1.3)  R(X,Y,Z,W)=R(X,Y,Z, W)+ g(c(X, Z),s(Y,W))
—g((X,W),0(Y,2)), X,Y,Z,WeT(M).

Moreover, we have the following Codazzi equation:

(1'4) R(X, Y, Z, V) - g(( iXU)(Y7 Z)7V) —g((vg/(f)(X, Z)7V)

for any X,Y,Z € T(M) and V € T(M)+, where V'o is the covariant
derivative of the second fundamental form given by

(1.5) (Vxo)(Y,Z) = Dxo(Y,Z) = o(VxY,Z) = o(Y,VxZ)

for any X,Y,Z € T(M). Finally, the submanifold M is said to be totally
geodesic in N if its second fundamental form is identically zero, and it is
said to be minimal if H = 0, where H is the mean curvature vector, defined
by H = (1/m) trace (o).

2. CR-submanifolds of S-manifolds. Let (N, g) be a Riemannian
manifold with dim(N') = 2n +s. It is said to be an S-manifold if there exist
on N an f-structure f ([10]) of rank 2n and s global vector fields &1, ..., &
(structure vector fields) such that ([1]):

(i) If m1,...,ns are the dual 1-forms of &1, ..., &, then

f&a =0, ngof=0, f2:_I+Z€a®77aa
9(X,Y) =g(fX, fY)+&(X,Y),

for any X, Y €e T(N), a =1,...,s, where ®(X,Y) = > 7o (X)na(Y).
(ii) The f-structure f is normal, that is,

£, £ 42> €a®@dn, =0,

where [f, f] is the Nijenhuis torsion of f.
(iii) m A ... AnsA(dna)™ #0and dny = ... = dns = F, for any «, where
F is the fundamental 2-form defined by F(X,Y) = g(X, fY), X, Y € T(N).

In the case s = 1, an S-manifold is a Sasakian manifold. For s > 2,
examples of S-manifolds are given in [1,2,3,6]. Thus, the bundle space of
a principal toroidal bundle over a Kaehler manifold with certain conditions
is an S-manifold. In this way, a generalization of the Hopf fibration 7 :
S+l PC™ is introduced in [1] as a canonical example of an S-manifold
playing the role of the complex projective space in Kaehler geometry and

(2.1)
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the odd-dimensional sphere in Sasakian geometry. This space is given by
(see [1, 2] for more details):

H2 8 = {(21, ..., 25) € S x . x S 7i(zy) = ... = 7(y))

For the Riemannian connection V of g on an S-manifold AV, the following
formulas were also proved in [1]:

(2.2) Vxéa=—fX, Xe€TWN), a=1,...,s,
(23)  (VxHY =D {g(fX, [V)a +na(Y)f?X}, X, Y €T(N).

Let £ denote the distribution determined by —f? and M the comple-
mentary distribution. M is determined by f? + I and spanned by &, ..., &.
If X € L, then n,(X) =0 for any «, and if X € M, then fX = 0.

A plane section m on N is called an invariant f-section if it is determined
by a vector X € L(z), = € N, such that {X, fX} is an orthonormal pair
spanning the section. The sectional curvature of 7 is called an f-sectional
curvature. If N is an S-manifold whose invariant f-sectional curvature is a
constant k, then its curvature tensor has the form ([7])

(2.4) R(Xv Y, Z,W) = Z{g(va fW)na(Y)nﬂ(Z)
a,p

= 9(fX, fZ)na(Y)ngW) + g(fY, f Z)na(X)ns(W)
—9(fY, fW)na(X)ng(Z)}

+ 1 (k+3){g(f X, fW)g(fY, fZ) = 9(f X, fZ)g(FY, fW)}
+ (k= s){F(X,W)F(Y,Z) — F(X,Z)F(Y,W)
—2F(X,Y)F(Z,W)}, X,Y,Z W e T(N),

and thus, the S-manifold is denoted by N (k) and it is said to be an S-space
form. For example, the Euclidean space E?"*% is an S-space form with f-
sectional curvature —3s ([6]) and H?"** is an S-space form with f-sectional
curvature 4 — 3s ([1]).

Now, let M be an m-dimensional submanifold immersed in N'. M is said
to be an invariant submanifold if &, € T(M) for any a and fX € T (M)
for any X € T'(M). On the other hand, it is said to be an anti-invariant
submanifold if fX € T(M)* for any X € T(M).

Given any vector field V € T(M)=+, we write fV =tV + nV, where tV
(resp. nV) is the tangential component (resp. normal component) of fV.
Then ¢ is a tangent-bundle valued 1-form on the normal bundle of M and
n is an endomorphism of the normal bundle of M. Moreover, if n does not
vanish, it is an f-structure.

Now, assume that the structure vector fields &1, ..., &, are tangent to M
(and so, dim(M) > s). Then M is called a CR-submanifold of N if there
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exist two differentiable distributions D and D+ on M satisfying:

(i) T(M) = Do D+ &M, where D, D+ and M are mutually orthogonal
to each other.
(ii) The distribution D is invariant under f, that is, fD, = D, for any
x e M.
(iii) The distribution D1 is anti-invariant under f, that is, f fDi C
T,(M)* for any x € M.

We denote by 2p and ¢ the real dimensions of D, and Dj respectively,
for any x € M. Then, if p = 0 we have an anti-invariant submanifold
tangent to &1, ...,&s, and if ¢ = 0 we have an invariant submanifold. The
CR-submanifold is called a generic submanifold if ¢ = n —p, that is, if given
V e T(M)*, there exists Z € DT such that V = fZ.

As an example, it is easy to prove that each hypersurface of N which is
tangent to &1, ..., & inherits the structure of CR-submanifold of N.

A CR-submanifold of an S-manifold is said to be (D, D™)-geodesic if
o(X,Z)=0forany X € D, Z € DL, and it is said to be Dt-geodesic if
o(Y,Z) =0 for any Y, Z € D*.

Now, denote by P and @ the projection morphisms of T'(M) on D and
D+, respectively. Then, for any X € T(M), we have X = PX + QX +
> Na(X)&n. Define the tensor field v of type (1, 1) on M by vX = fPX,
and the non-null normal-bundle valued 1-form v on M by uX = fQX.
Then it is easy to show that:

(2.5) uov =20,

(2.6) Naou=mn,0v=0 forany «,
(2.7) vX =0 ifandonlyif X e DtaM,
(2.8) uX =0 ifandonlyif X e Do M.

Moreover, a direct computation gives
9(X,Y) =g(vX,vY) + g(uX,uY) + &(X,Y),
F(X,)Y)=g(X,vY), F(X,Y)=F(wX,vY),
for any X, Y € T(M).
For later use, we recall some lemmas:

LEMMA 2.1 ([5]). Let M be a CR-submanifold of an S-manifold N .
Then:

(29) vaa == *’UX,
(2.10) o(X, &) = —uX,
(2.11) Ayé, € DF,

for any X € T(M), V€ TIM)t and a € {1,...,s}.
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LEMMA 2.2 ([5]). Let M be a CR-submanifold of an S-manifold N. If
X, Y € T(M), then:

(2.12) PVx0Y — PAyy X =vVxY =) no(Y)PX,
(2.13) QVx0Y = QAuy X =to(X,Y) = > na(Y)
(2.14) o(X,vY)+ DxuY =uVxY +no(X, Y) ,
(2.15) g X fY) = na(VxoY — Auy X) .

From Lemma 2.2 we obtain
(2.16) (Vx0)Y = Aw X +to(X,Y) = > {na(V)f°X + g(fX, fY)éa},
(2.17) (Vxu)Y =no(X,Y) —o(X,vY),
for any X, Y € T'(M).

3. Normal CR-submanifolds of an S-manifold. In this section, let
M be a CR-submanifold of an S-manifold N'. We say that M is a normal
CR-submanifold of N if

(3.1) Ny(X,Y) = 2tdu(X,Y) - 2> F(X,Y)&
for any X,Y € T(M), where N, denotes the Nijenhuis torsion of v. Notice
that (3.1) is equivalent to
(3.2)  (Vuxv)Y — (Vyyv)X +0((Vyv)X — (VXU) )
=t(Vxw)Y — (Vyu)X) —=2) F(X,Y)&.

THEOREM 3.1. A CR-submanifold M of an S-manifold N is normal if
and only if

(3.3) AyyvX =vAuy X
for any X € D and any Y € D+,
Proof. If we define the tensor field
S(X,Y) = (Vuxv)Y = (Vyyv) X +o((Vyv)X — (Vxv)Y)
—t(Vxu)V = (Vyw)X)+2) F(X,Y), X,Y €TM),

then M is normal if and only if S is identically zero. A direct expansion,
by using (2.16) and (2.17), gives

(34) S(X,Y) = A,yvX —vAuyy X — AuxvY +vA,xY, X, Y € T(M) .
Now, if M is a normal CR-submanifold of N, (3.3) follows from (3.4)
since uX = 0 for any X € D.

Conversely, if (3.3) holds, we shall prove that S vanishes by using the
decomposition T(M) = DED-@M. First, since uX = 0 for any X € D and
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v€y = 0 = u&, for any a, we observe from (3.3) and (3.4) that S(X,Y) =0
for any X € D and any Y € T(M).
Moreover, if Y € DL, from (2.11) we have A,y &, € DL, and so vA,v&a
= 0 for any a. Consequently, S(X,&,) = 0 for any o and any X € T'(M).
Finally, if Y, Z € D, (3.4) becomes

S(X, Y) == U(Any — AfyX) N
since vX = vY =0 and uX = fX, vY = fY. But, from (1.1), (1.2) and
(2.3), we easily show that A;xY = Ay X. m

COROLLARY 3.2. A CR-submanifold M of an S-manifold N is normal
if and only if
(3.5) g(o(X, oY) + o (Y,0X), f2) =0,

(3.6) 9(o(X, 2), fW) =0,
for any X,Y € D and any Z,W € D*.

Proof. Since v is skew-symmetric, from (3.3) we see that M is normal
if and only if
(3.7) g(o(X,vY),uZ) = —g(o(Y,vX),uZ)
for any X € T(M), Y € D, Z € D*.

Now, if M is normal, from (3.7) we get (3.5) taking X € D and (3.6)
taking X € DT. Conversely, if (3.5) and (3.6) are satisfied, we observe that
(3.7) is satisfied if X € D and if X € DL, Finally, if X € M, we have
vX = 0 and, by using (2.5) and (2.10), o(X,vY) = 0 for any ¥ € D. So,
(3.7) holds for any X € T(M). =

COROLLARY 3.3. Each normal generic submanifold of an S-manifold is
(D, DH)-geodesic.

LEMMA 3.4. Let M be a normal CR-submanifold of an S-manifold N .
Then the following assertions are satisfied:

(3.8) o(fX,Z)=fo(X,2),
(3.9) to(fX, fX) = to(X, X),
(3.10) Asz S 'D,

for any X € D and any Z € D*.

Proof. (3.8) follows easily from (1.1), (2.3) and (3.6). Now, from (3.5)
we get (3.9). Finally, from (3.6) we have g(A;2X,Y) =0 for any Y € D+,
and from (2.10) we have 7, (A¢zX) = 0 for any a. Consequently, (3.10)
holds. =

In [5], CR-products of S-manifolds are defined as CR-submanifolds such
that the distribution D & M is integrable and locally they are Riemannian
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products My x Ms, where M; (resp. My) is a leaf of D & M (resp. DF).
Moreover, from Theorem 3.1 and Proposition 3.2 in [5], we deduce that a
CR-submanifold M of an S-manifold A is a CR-product if and only if one
of the following assertions is satisfied:

(312)  g(o(X,Y),fZ)=0, Xe€D, YeT(M), ZecD",
(3.13) VyXeDaeM, XeD YeT(M).

Then, from (3.6), we can prove the following:

ProposiTION 3.5. A CR-product in an S-manifold is a normal CR-
submanifold.

THEOREM 3.6. Let M be a normal CR-submanifold of an S-manifold N.
Then M is a CR-product if and only if D & M is integrable.

Proof. We recall that D & M is integrable if and only if
(3.14) o(X, fY) = o(fX,Y)
for any X,Y € D ([8)).

Now, the necessary condition is obvious, by definition. Conversely, we
prove (3.12). Let X € D. If Y € D*, then (3.12) is (3.6). On the other
hand, if Y € M, from (2.8) and (2.10) we get o(X,Y’) = 0. Finally, if Y € D,
from (3.5) and (3.14), (3.12) holds. =

To finish this section, we recall that a submanifold M of an S-manifold
N is said to be totally f-umbilical ([9]) if there exists a normal vector field
V such that

(3.15)  o(X,Y) = g(fX, fY)V + ) {1a(Y)o(X, &) + 1a(X)o (Y, €a)}

for any X,Y € T(M). These submanifolds have been studied in [4]. We
can prove the following:

PROPOSITION 3.7. A totally f-umbilical CR-submanifold of an S-mani-
fold is a normal CR-submanifold.

Proof. From (3.15) we easily get (3.5) and (3.6). m

4. Normal CR-submanifolds of S-space forms. Let N (k) be an
S-space form and let M be a CR-submanifold of N(k). Then, by using
(2.4), the Codazzi equation (1.4) gives

4.1 (Vxo)(Y,2) = (Vyo) (X, Z) = ((k — 5)/4A){g(X,vZ)uY
—g9(Y,vZ)uX 4 29(X,vY)uZ},
for any X,Y,Z € T(M). Now, we have:
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PROPOSITION 4.1. If M is a normal CR-submanifold of N (k), then
(12)  R(X,fX,Z,7) =2 — 2| ;X — 2]0(X, 2)]?
+29(to(Z,7),to(X, X))
for any unit vector fields X € D and Z € D*.
Proof. By using (1.4) and (1.5), we have
(4.3)  R(X,fX,Z,fZ)=g(Dxo(fX,Z) ~ Dyxo(X,Z2), fZ)
—9(o([X, [X],2), [ 2) + 9(0(X,Vx2) = o(fX,Vx Z), [Z).
Now, from (1.1), (2.3), (3.6) and (3.8), a direct expansion gives
(4.4) 9(Dxo(fX,Z) = Dpxo(X, Z),fZ) = =2||o(X, Z)|*.
On the other hand, by using (3.6) again,
(4.5)  g(o([X, fX],2),f2) = 9(0(QIX, [X], 2), [ Z)
+> 90X, fX])ea, 2), FZ) .-
But, from (2.2) and since X and Z are unit vector fields, we see that
No([X, fX]) = 2 for any a. Moreover, from (2.13), we obtain Q[X, fX] =

to(X,X) 4+ to(fX, fX). Then, taking into account (2.10) and (3.9), (4.5)
becomes

(4'6) g(U([X, fX]aZ)7fZ) = 2g(0(tU(X,X),Z),fZ) —2s.

However, since Z € D+ and by using (1.2) and (2.13), it is easy to show
that g(o(to(X,X),Z), fZ) = —g(to(X, X),to(Z,Z)). Substituting this in
(4.6), we have

@7 go(X,fX),2), fZ) = —2s — 2g(to(X, X), to(Z, Z)).

Finally, since 7o(VfxZ) = 14(VxZ) = 0 for any «, from (2.12), (3.5)
and (3.6) we get

=9(0(X,PVyxZ + fPVxZ), fZ)
== g(Asz, PVsz - PAsz) .

But, by using (2.12) and (4.3), it easy to check that PV ;xZ =
—PA;zX. Consequently and taking into account (3.10), (4.8) gives
(49) 9(o(X,VyxZ) - 0o([X,VxZ),[Z) = -29(A;zX,PA;zX)
=24z X|.
Then, substituting (4.4), (4.7) and (4.9) in (4.3), we complete the proof. m
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PROPOSITION 4.2. Let M be a normal CR-submanifold of an S-space
form N'(k). Then

(410)  [lo(X, 2| + [ Az X|]* = g(to (X, X),t0(Z, Z)) = (k + 3s)/4
for any unit vector fields X € D and Z € D™ .

Proof. From (2.4), we have R(X, fX, Z, fZ) = —(k—s)/2. Then, from
(4.2), the proof is complete. m

COROLLARY 4.3. If M is a normal D*-geodesic CR-submanifold of an
S-space form N (k), then k > —3s.

PROPOSITION 4.4. If M is a normal CR-submanifold of an S-space form
N (k) such that the distribution D & M is integrable, then k > —3s and M
is a CR-product.

Proof. From Theorem 3.6, M is a CR-product. Now, from (3.12), we
have g(0(X,Y), fZ) =0 for any X,Y € D. Then, if X € D is a unit vector
field, to(X, X) = 0 and, by using (4.10), k > —3s. =

For the (2n + s)-dimensional euclidean S-space form E?"*$(—3s) (see
[6]), we can prove:

THEOREM 4.5. If M is a normal (D, DL)-geodesic and D+ -geodesic CR-
submanifold of E*"*%(—3s), then M is a CR-product.

Proof. From (4.10), we have A;zX = 0 for any X € D and Z € D*.
From (3.11), M is a CR-product. =

COROLLARY 4.6. FEvery normal DL—geodesic generic submanifold of
E?"+5(-3s) is a CR-product.

Finally, consider the (2n + s)-dimensional S-space form H?"%(4 — 3s)
(see [1]). Let M be a CR-submanifold of H?"*%(4 — 3s). Denote by v
the complementary distribution of fD in T(M)L. Then fv C v. Let
{El, ey E2p}, {Fl, PN ,Fq}, {Nl, NN ,NT, le, ey fNr} be local fields of
orthonormal frames on D, D and v, respectively, where 2r is the real
dimension of v. For later use, we shall prove:

LEMMA 4.7. If M is a CR-product in H*""5(4 — 3s), then
(4.11) lo(X, Z)|| =1
for any unit vector fields X € D and Z € D*.

Proof. We observe that M is a normal CR-submanifold due to Propo-
sition 3.5, and so (4.10) holds with (k + 3s)/4 = 1. Moreover, from (3.11),
we have A;zX =0 and, from (3.12), to(X, X) =0. =
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LEMMA 4.8. Let M be a CR-product in H*"%(4 — 3s). Then the vector
fieldso(E;, F,), i =1,...,2p,a=1,...,q, are 2pq orthonormal vector fields
on v.

Proof. From (4.11) and by linearity, we get
g(o-(Ei’ Z)v U(Ejv Z)) =0

for any i,j = 1,...,2p, ¢ # j and any unit vector field Z € DL. Now,
from (3.6), if ¢ = 1, the proof is complete. On the other hand, if ¢ > 2, by
linearity again, we have
9(o(Es, Fo),0(Ej, Fy)) + g(o(Ei, Fy), 0(Ej, Fo)) = 0

forany 7,7 =1,...,2p, i # j, a,b=1,...,q, a # b. Next, by using (3.13)
and the Bianchi identity, we obtain R(X,Y,Z,W) = 0 for any X,Y € D,
Z,W € D But, if i # j and a # b, (2.4) gives R(E;, E;, F,, Fy) = 0.
Then, from the Gauss equation (1.3), we get

g(U(Eia Fa)a U(Ej’ Fb)) - g(O'(Ei, Fb)a U(Ej7Fa)) =0

forany i,j =1,...,2p, i # j, a,b=1,...,q, a # b, and this completes the
proof. m

Now, we shall study the normal CR-submanifolds of H?""%(4 — 3s):

THEOREM 4.9. Let M be a normal CR-submanifold of H*""5(4 — 3s)
such that the distribution D @& M is integrable. Then:

(a) M is a CR-product My x Ma.

(b) n>pg+p+q.

(¢) If n = pq+p+q, then My is an invariant totally geodesic submanifold
immersed in H*""5(4 — 3s).

(@) o2 > 24(2p + 5).

(e) If ||o||*> = 2q(2p + s), then My is an S-space form of constant f-
sectional curvature 4 — 3s and My has constant curvature 1.

(f) If M is a minimal submanifold, then

o <dp(p+1)+2p(qg+s)+qlg—1),

where o denotes the scalar curvature and equality holds if and only if ||o||? =
2¢(2p + s).

Proof. (a) follows directly from Proposition 4.4. Now, from Lemma 4.8,
dim(v) = 2(n — p) — 2¢ > 2pq. So, (b) holds.
Next, suppose that n = pg+p—+¢q. If X,Y,Z € D and W € D, from

(2.4), R(X,Y,Z, W) = 0 and, by using a similar proof to that of Lemma 4.8,

R(X,Y,Z, W) = 0. So, the Gauss equation gives
(4.12) g(o(X, W), 0(Y,Z)) — g(c(X,Z),0(Y,W)) =0
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for any X,Y,Z € D and any W ¢ DL, Since from Proposition 3.2 of
5], o(fX,Z) = fo(X,Z), if we put Y = fX, we have, by using (3.8),
g(o(fX,W),0(X,Z)) = 0. Now, if we put Z = fY, then g(c(X,Y),
o(X,W)) =0 for any X, Y € D and W € DL, Thus, by linearity, we
get g(a(X, W), 0(Y,Z))+g(c(X,Z),0(Y,W)) =0 for any X,Y,Z € D and
any W € D* and so, from (4.12),

(4.13) g(o(X,W),0(Y,Z))=0, X,Y,ZeD, WeD*.

Since now dim(v) = 2pq, (4.13) implies that o(X,Y) = 0 for any X,Y € D.
Consequently, (c) holds from Theorem 2.4(ii) of [5].

Assertions (d) and (e) follow from Theorem 4.2 of [5]. Finally, if M is a
minimal normal CR-submanifold of H?"$(4 — 3s), then a straightforward
computation gives

o=4p(p+1)+2s(p+q) +qlg — 1) + 6pg — ||o]*.
Then, by using (d), the proof is complete. m

THEOREM 4.10. Let M be a normal, (D, CDL)-geodesic and D+ -geodesic
CR-submanifold of H*"5(4 — 3s). Then:

(a) |AfzX| =1 for any unit vector fields X € D and Z € D+,

(b) llo]12 > 2q(p + s) and equality holds if and only if o(D, D) € fD .

Proof. (a) follows inmediately from (4.10). Now, consider the above

local fields of orthonormal frames for D, D+ and v. Since o(D,D') =
O'(DJ_, @L) = 0, a direct computation gives

2p
ol =2gs + > llo(Ei, Ej)|*-

ij=1

But

q
(4.14)  o(B.E)I® = Y 9(Asr, Ei, Ej)

a=1
+ Z{Q(ANin, E;)* + g(Asn, Ei, Ej)?Y
=1

On the other hand, since a(D,@L) = 0, we see that Asp, E;, AN, E;,
ApvE; € Dforanyi=1,...,2p,a=1,...,qand [ = 1,...,r. So, from
(a), we get

2p q r
Z [Zg(AfFaEia Ej)? + Z{Q(ANin, Ej)* + g(Asn, Ei, Ej)g}]
=1

ij=1 a=1
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2p q r
=[S A Bl + S UANEN + v Eil?}] = 2pa.
=1

i=1 a=1

Consequently, [|o|* > 2¢(p + s) and, from (4.14), equality holds if and

only if (D, D) € fD*. m

Finally, from (3.6), (4.10) and (4.14), we can prove:
COROLLARY 4.11. Let M be a normal, generic and D™ -geodesic CR-

submanifold of H*"%(4 — 3s). Then:

[10]

(a) |AfzX| =1 for any unit vector fields X € D and Z € D+,
(b) lloll* = 2q(p + 5).
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