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ON VECTOR-VALUED INEQUALITIES FOR SIDON SETS
AND SETS OF INTERPOLATION

BY

N. J. KALTON (COLUMBIA, MISSOURI)

Let E be a Sidon subset of the integers and suppose X is a Banach
space. Then Pisier has shown that E-spectral polynomials with values in
X behave like Rademacher sums with respect to L,-norms. We consider
the situation when X is a quasi-Banach space. For general quasi-Banach
spaces we show that a similar result holds if and only if E is a set of interpo-
lation ([p-set). However, for certain special classes of quasi-Banach spaces
we are able to prove such a result for larger sets. Thus if X is restricted
to be “natural” then the result holds for all Sidon sets. We also consider
spaces with plurisubharmonic norms and introduce the class of analytic
Sidon sets.

1. Introduction. Suppose G is a compact abelian group. We denote
by pe normalized Haar measure on GG and by I the dual group of G. We
recall that a subset E of I' is called a Sidon set if there is a constant M
such that for every finitely nonzero map a : £ — C we have

S~ la()| < Mmax| 3 a(nr(9)].
YEE

YEE

We define A to be the Cantor group, i.e. A = {+1}N. Ift € A
we denote by e,(t) the nth coordinate of ¢. The sequence (&,) is an ex-
ample of a Sidon set. Of course the sequence (g,) is a model for the
Rademacher functions on [0,1]. Similarly we denote the coordinate maps
on TN by n,.

Suppose now that G is a compact abelian group. If X is a Banach
space, or more generally a quasi-Banach space with a continuous quasinorm
and ¢ : G — X is a Borel map we define ||¢[/, for 0 < p < oo to be
the Ly-norm of ¢, i.e. [¢ll, = ([ lo(g)IIP duc(g))/? if 0 < p < oo and
[@lloc = esssupgeq [[H(9)]l-
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It is a theorem of Pisier [12] that if E is a Sidon set then there is a

constant M so that for every subset {7v1,...,7,} of E, every z1,...,z,
chosen from a Banach space X and every 1 < p < oo we have
n n n
@ e < [, < e
k=1 P k=1 P k=1 P

Thus a Sidon set behaves like the Rademacher sequence for Banach space
valued functions. The result can be similarly stated for (7,) in place of
(en). Recently Asmar and Montgomery-Smith [1] have taken Pisier’s ideas
further by establishing distributional inequalities in the same spirit.

It is natural to ask whether Pisier’s inequalities can be extended to ar-
bitrary quasi-Banach spaces. This question was suggested to the author
by Asmar and Montgomery-Smith. For convenience we suppose that every
quasi-Banach space is r-normed for some r < 1, i.e. the quasinorm satisfies
llz+yl|” < |lz||” +||y||" for all z, y; an r-norm is necessarily continuous. We
can then ask, for fixed 0 < p < oo, for which sets E inequality (*) holds,
if we restrict X to belong to some class of quasi-Banach spaces, for some
constant M = M(E, X).

It turns out Pisier’s results do not in general extend to the non-locally
convex case. In fact, we show that if we fix » < 1 and ask that a set E
satisfies (x) for some fixed p and every r-normable quasi-Banach space X
then this condition precisely characterizes sets of interpolation as studied in
[2]-[5], [8], [9], [13] and [14]. We recall that E is called a set of interpolation
(set of type (Iy)) if it has the property that every f € ¢ (E) (the collection
of all bounded complex functions on E) can be extended to a continuous
function on the Bohr compactification bI" of I.

However, in spite of this result, there are specific classes of quasi-Banach
spaces for which (x) holds for a larger class of sets E. If we restrict X to
be a natural quasi-Banach space then (x) holds for all Sidon sets E. Here a
quasi-Banach space is called natural if it is linearly isomorphic to a closed
linear subspace of a (complex) quasi-Banach lattice Y which is g-convex for
some q > 0, i.e. such that for a suitable constant C we have

H(gjl i) | < c(kzijl o)

for every yi1,...,yn € Y. Natural quasi-Banach spaces form a fairly broad
class including almost all function spaces which arise in analysis. The reader
is referred to [6] for a discussion of examples. Notice that, of course, the
spaces L, for ¢ < 1 are natural so that, in particular, (x) holds for all p and
all Sidon sets E for every 0 < p < oo. The case p = ¢ here would be a direct
consequence of Fubini’s theorem, but the other cases, including p = co, are
less obvious.
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A quasi-Banach lattice X is natural if and only if it is A-conwver, i.e.
it has an equivalent plurisubharmonic quasi-norm. Here a quasinorm is
plurisubharmonic if it satisfies

27

o o do
< 0 _
lall< [ e+ el 3

for every x,y € X. There are examples of A-convex spaces which are not
natural, namely the Schatten ideals S, for p < 1 [7]. Of course, it follows
that S, cannot be embedded in any quasi-Banach lattice which is A-convex
when 0 < p < 1. Thus we may ask for what sets E (%) holds for every
A-convex space. Here, we are unable to give a precise characterization of
the sets F such that (x) holds. In fact, we define E to be an analytic Sidon
set if (%) holds, for p = oo (or, equivalently for any other 0 < p < o0),
for every A-convex quasi-Banach space X. We show that any finite union
of Hadamard sequences in N C Z is an analytic Sidon set. In particular,
a set such as {3"} U {3"™ 4+ n} is an analytic Sidon set but not a set of
interpolation. However, we have no example of a Sidon set which is not an
analytic Sidon set.

We would like to thank Nakhlé Asmar, Stephen Montgomery-Smith and
David Grow for their helpful comments on the content of this paper.

2. The results. Suppose G is a compact abelian group and I is its
dual group. Let E be a subset of I'. Suppose X is a quasi-Banach space
and that 0 < p < oo; then we will say that E has property C,(X) if there
is a constant M such that for any finite subset {v1,...,7,} of E and any
x1,...,2T, of X we have (%), i.e.

n n n
M men| < | o wen], < w Xwen]|
k=1 p k=1 p k=1 p

(Note that in contrast to Pisier’s result (x), we here assume p fixed.) We
start by observing that F is a Sidon set if and only if E has property Co (C).
It follows from the results of Pisier [12] that a Sidon set has property C,(X)
for every Banach space X and for every 0 < p < oo. See also Asmar and
Montgomery-Smith [1] and Pelczyniski [11].

Note that for any t € A we have || Y er(t)zrerllp, = || D zrer|p- Now
any real sequence (aq, ..., a,) with max |ax| < 1 can be written in the form
ap = Zj’;l 279ek(t;) and it follows quickly by taking real and imaginary
parts that there is a constant C' = C(r, p) so that for any complex aq, ..., a,
and any r-normed space X we have

n n
IS v, < Ut e,
k=1 p k=1 p
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From this it follows quickly that | >.7_,zxnkll, is equivalent to
| > r_; zkekllp- In particular, we can replace e by 7 in the definition
of property C,(X).

We note that if E has property C,(X) then it is immediate that E has
property Cp,(¢,(X)) and further that E has property C,(Y) for any quasi-
Banach space finitely representable in X (or, of course, in £,(X)).

For a fixed quasi-Banach space X and a fixed subset E of I" we let Pg(X)
denote the space of X-valued E-polynomials, i.e. functions ¢ : G — X of
the form ¢ = 3 5 x(7)y where x(7) is only finitely nonzero. If f € (o (E)
we define Tt : Pg(X) — Pr(X) by

Ty (S 2(r) = 3 et

We then define || f|| s, (,x) to be the operator norm of Ty on Pgr(X) for
the L,-norm (and to be oo if this operator is unbounded).

LEMMA 1. In order that E has property C,(X) it is necessary and suffi-
cient that there exists a constant C' such that

I fllm,B,x) S Cllfllee forall f € Lo (E).

Proof. If E has property C,(X) then it also satisfies (%) for (1,) in
place of (g,,) for a suitable constant M. Thus if f € /o (F) and ¢ € Pg(X)
then

1Ty 6llp < M2[| flloc 101l -

For the converse direction, we consider the case p < co. Suppose {71, ...
..y7Yn} i a finite subset of E. Then for any x1,...,x,

cr [ Hzn:fﬁknkupd,uwzc_p i fHZn:xknk(s)%(t)HperN(S)dMG(f)
™ k=1 ™ G k=1
< inafk'Ykad,UJG
G k=1
<or [ [ menntorno)] due(s) duct)
™ G k=1

<C? szn:%mkadmN-
T k=1

This estimate together with a similar estimate in the opposite direction gives
the conclusion. The case p = oo is similar. =

If E is a subset of I, N € N and § > 0 we let AP(E,N,d) be the set
of f € Lo (FE) such that there exist gi,...,gn € G (not necessarily distinct)
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and o, ...,ay € C with max;<j<n || <1 and
N

‘f(v) - Zajv(gj)‘ <6
j=1

for y € E.
The following theorem improves slightly on results of Kahane [5] and

Méla [8]. Perhaps also, our approach is slightly more direct. We write
B

ls (E)
={f €l(E) : [[fllc <1}
THEOREM 2. Let G be a compact abelian group and let I be its dual

group. Suppose E is a subset of I'. Then the following conditions on E are
equivalent:

(1) E is a set of interpolation.

(2) There exists an integer N so that By gy C AP(E,N,1/2).

(3) There exists M and 0 < 0 < 1 so that if f € By_(g) then there exist
complex numbers (c;)32, with |c;| < M&7 and (g;)32, in G with

foy) = Zm(gj)

forvye E.
Proof. (1)=(2). It follows from the Stone-Weierstrass theorem that

T® c | J AP(E,m,1/5).
m=1

Let p = ppe. Since each AP(E,m,1/5) N'T¥ is closed it is clear that there
exists m so that u(AP(E,m,1/5)NT¥) > 1/2. Thus if f € T¥ we can find
fi,fo € AP(E,m,1/5) NTF so that f = fifs. Hence f € AP(E,m?,1/2).
This clearly implies (2) with N = 2m?.

(2)=(3). Welet § = 27'/N and M = 2. Then given f € By (p) we can
find (cj)évzl and (gj)évzl with |¢;] <1 < Mé7 and

[#(n - icjfy(gj)\ <1/2

for v € E. Let fi(v) =2(f(y) — Zjvzl ¢;v(g;)) and iterate the argument.
(3)=(1). Obvious. =
THEOREM 3. Suppose G is a compact abelian group, E is a subset of
the dual group I' and that 0 < r < 1, 0 < p < oo. In order that E

satisfies Cp(X) for every r-normable quasi-Banach space X it is necessary
and sufficient that E be a set of interpolation.
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Proof. First suppose that F is a set of interpolation so that it satisfies
(3) of Theorem 2. Suppose X is an r-normed quasi-Banach space. Suppose
f € By_(p). Then there exist (¢;)32; and (g;)52, so that |¢;] < M7 and

f(v) =>"¢jv(g;) for v € E. Now it ¢ € Pe(X ) it follows that

Tyo(h Z cip(gih
and so

e 1/s
izl < 21 ( 30 5°) ol
j=1
where s = min(p,r). Thus [|f[|sm,zx) < C where C = C(p,r, E) and so
by Lemma 1, E has property C,(X).

Now, conversely, suppose that 0 < r < 1, 0 < p < oo and that F has
property C,(X) for every r-normable space X. It follows from consideration
of {oo-products that there exists a constant C' so that for every r-normed
space X we have || f|| s, (2,x) < Cllflleo for f € £ (E).

Suppose F is a finite subset of E. We define an r-norm || || 4 on o (F) by
setting ||f]la to be the infimum of (3~ |¢;|")!/" over all (cj)32 and (g;)52,
such that

=2_c(9))

for v € F. Notice that [|fif2lla < [[fillallfolla for all fi, fo € A= Ll (F).
For v € F let e, be defined by e (y) = 1 if v = x and 0 otherwise. Then
for f € A, with || f]le <1,

(I roveal ) <e( |5 ool e

But for any g € G, || > 7v(9)ey]|a < 1. Define H to be the subset of h € G
such that || >0 cp f(7)v(R)ey[la < 3/PC. Then pg(H) > 2/3. Thus there
exist hi,he € H such that hihy = 1 (the identity in G). Hence by the
algebra property of the norm

Iflla < 3%/PC?

1/p

and so if we fix an integer Cyp > 3%/PC? we can find ¢; and g; so that

>_le|" < Cg and
7 =Y cv(g;)

for v € F. We can suppose |¢;| is decreasing and hence that |c;| < Coj /.
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Choose Ny so that Cp Z;(;NO+1 71" < 1/2. Thus

No
£ =Y egy)| <172

j=1
for v € F. Since each |c;| < Cp this implies that B, _(r) C AP(F,N,1/2)
where N = CyNp.

As this holds for every finite set F' it follows by an easy compactness

argument that By gy C AP(E, N,1/2) and so by Theorem 2, E is a set of
interpolation. m

THEOREM 4. Let X be a natural quasi-Banach space and suppose 0 <
p < 0o. Then any Sidon set has property Cp(X).

Proof. Suppose E is a Sidon set. Then there is a constant Cj so
that if f € (o (E) then there exists v € C(G)* such that u(y) = f(vy) for
v € E and ||p|| < Col|flloo- We will show the existence of a constant C' such
that || f|lsm,z,x) < Cllflloc- If no such constant exists then we may find a
sequence F, of finite subsets of E such that lim C,, = co where C,, is the
least constant such that || f||a, (2, x) < Cnllflle for all f € lo(Ep).

Now the spaces M,(E,,X) are each isometric to a subspace of
lo(Lp(G, X)) and hence so is Y = ¢o(Mp(Ey, X)). In particular, YV is
natural. Notice that Y has a finite-dimensional Schauder decomposition.
We will calculate the Banach envelope Y, of Y. Clearly Y. = ¢y(Y,,) where
Y,, is the finite-dimensional space M, (E,,X) equipped with its envelope
norm [/

Suppose f € foc(E,). Then clearly ||l < £, (5,x) and 50 [f] <
I f]le. Conversely, if f € £o(Ey,) there exists v € C(G)* with ||v|| < Col|f|l
and such that [~ydv = f(v) for v € E,. In particular, Cy'||f|| < f is in
the absolutely closed convex hull of the set of functions {g : g € G} where
9(v) = v(g) for v € E,. Since H'gVHMp(E,X) =1 for all ¢ € G we see that
[flloe < flle < Coll flloo-

This implies that Y, is isomorphic to ¢g. Since Y has a finite-dimensional
Schauder decomposition and is natural we can apply Theorem 3.4 of [6] to
deduce that Y =Y, is already locally convex. Thus there is a constant C{,
independent of n so that [|f[|a,(z,x) < Cpllflle Whenever f € loo(Ep).
This contradicts the choice of F,, and proves the theorem. m

We now consider the case of A-convex quasi-Banach spaces. For this
notion we will introduce the concept of an analytic Sidon set. We say a
subset E of I' is an analytic Sidon set if E satisfies Coo(X) for every A-
convex quasi-Banach space X.

PROPOSITION 5. Suppose 0 < p < co. Then E is an analytic Sidon set
if and only if E satisfies Cp(X) for every A-convex quasi-Banach space X .
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Proof. Suppose first FE is an analytic Sidon set, and that X is an A-
convex quasi-Banach space (for which we assume the quasinorm is plurisub-
harmonic). Then L,(G,X) also has a plurisubharmonic quasinorm and
so E satisfies (x) for X replaced by L,(G,X) and p replaced by oo with
constant M. Now suppose z1,...,2, € X and v1,...,7, € E. Define

Y1, Yn € Lp(G, X) by yr(9) = vr(g)zx. Then

n
DT
Ly(G,X) H P p

n

oo | S vento

and a similar statement holds for the characters ¢ on the Cantor group. It
follows quickly that F satisfies (%) for p and X with constant M.

For the converse direction suppose E satisfies C,,(X) for every A-convex
space X. Suppose X has a plurisubharmonic quasinorm. We show that
Mo (B, X) = lo(F). In fact, Mo (F, X) can be isometrically embedded
in ¢ (X) for every finite subset F' of E. Thus (x) holds for X replaced by
Mo (F, X) for some constant M, independent of F. Denoting by e, the
canonical basis vectors in £, (F) we see that if F' = {v1,...,7v,} C E then

TS ztwen | aua(t))”
A k=1

Moo (F,X)

Moo (F,X)

Thus the set K of t € A such that || Y7 _; ex(t)eq, [ mo (rx) < 3YPM
has measure at least 2/3. Arguing that K - K = A we obtain

|3 ae,
k=1

for every t € A. It follows quite simply that there is a constant C so that
for every real-valued f € {o(F) we have || f||m.(e,x) < C|lf|loe. In fact,
this is proved by writing each such f with ||f|lc = 1 in the form f(vx) =
> 5127 g (t;) for a suitable sequence t; € A. A similar estimate for com-
plex f follows by estimating real and imaginary parts. Finally, since these
estimates are independent of F' we conclude that (o (E) = Mo (E, X). m

< 32/p 2
Moo (F,X)

Of course any set of interpolation is an analytic Sidon set and any an-
alytic Sidon set is a Sidon set. The next theorem will show that not every
analytic Sidon set is a set of interpolation. If we take G = T and I' = Z,
we recall that a Hadamard gap sequence is a sequence (A;)72, of positive
integers such that for some ¢ > 1 we have \p11/Ap > ¢ for &k > 1. Tt is
shown in [10] and [14] that a Hadamard gap sequence is a set of interpo-
lation. However, the union of two such sequences may fail to be a set of
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interpolation; for example (3™)5% ;U (3" +n)52; is not a set of interpolation,
since the closures of (3") and (3" + n) in bZ are not disjoint.

THEOREM 6. Let G =T so that I' = 7Z. Suppose E C N is a finite union
of Hadamard gap sequences. Then E is an analytic Sidon set.

Proof. Suppose E = (\;)72,; where ()\;) is increasing. We start with
the observation that E is the union of m Hadamard sequences if and only
if there exists ¢ > 1 so that A\, +x > ¢ A for every k > 1.

We will prove the theorem by induction on m. Note first that if m =1
then F is a Hadamard sequence and hence [14] a set of interpolation. Thus
by Theorem 2 above, E is an analytic Sidon set.

Suppose now that F is the union of m Hadamard sequences and that the
theorem is proved for all unions of [ Hadamard sequences where [ < m. We
assume that £ = (Ag) and that there exists ¢ > 1 such that gy, > ¢\
for kK > 1. We first decompose F into at most m Hadamard sequences.
To do this let us define E7 = {A} U{Ap : k > 2, A\p > gA\e—1}. We will
write By = (7;)r>1 where 73 is increasing. Of course E; is a Hadamard
sequence.

For each k let Dy, = EN[7k, Tir1). It is easy to see that |Dy| <m for every
k. Further, if ny € Dy, then ngiq1 > 7,11 > gng so that (ng) is a Hadamard
sequence. In particular, E; =FE\ E; is the union of at most m—1 Hadamard
sequences and so F» is an analytic Sidon set by the inductive hypothesis.

Now suppose w € T. We define f,, € ¢s(E) by fuw(n) = w" ™ for
n € Dy. We will show that f,, is uniformly continuous for the Bohr topology
on Z; equivalently we show that f,, extends to a continuous function on the
closure E of E in the Bohr compactification bZ of Z. Indeed, if this is not
the case there exists £ € E and ultrafilters Uy and Uy on E both converging
to & so that limy,eyy, fuw(n) = (o and lim,eyy, fu(n) = ¢ where (3 # (o. We
will let 6 = %|C1 — (ol

We can partition E into m sets Ai,...,A,, so that |[A; N Dy| <1 for
each k. Clearly Uy and U; each contain exactly one of these sets. Let us
suppose Aj, € Uy and A;, € U;.

Next define two ultrafilters Vg and V; on N by Vo = {V : ey, Dk € Uo}
and Vi = {V : Ucy D € Ur}. We argue that Vg and V; coincide. If not
we can pick V' € Vo \ V1. Consider the set A = (Aj, N U,ey D) U (45, N
Urgv Di). Then A is a Hadamard sequence and hence a set of interpolation.
Thus for the Bohr topology the sets Aj, NUycy Di and Aj, MUy gy Dy have
disjoint closures. This is a contradiction since of course £ must be in the
closure of each. Thus Vy = V.

Since both Uy and U, converge to the same limit for the Bohr topology
we can find sets Hy € Uy and Hy € U; so that if ng € Hy, n; € Hy then
|w™ —w™| < ¢ and further |f,(no) — o| < 0 and |fy,(n1) — (1] < 6.
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Let Vo ={keN:DyNHy#0} and V) = {k € N: D, N Hy # (}. Then
VoeVoand Vi € Vi. Thus V =VonNVi € Vo =V;. If k € V there exists
ng € D N Hy and ny € D, N Hy. Then

30 = |G — ol < [fw(n1) = fuw(no)| + 26
= |w" —w"™|+2§ < 30.

This contradiction shows that each f,, is uniformly continuous for the Bohr
topology.

Now suppose that X is an r-normed A-convex quasi-Banach space where
the quasi-norm is plurisubharmonic. Since both E; and F, are analytic
Sidon sets we can introduce a constant C' so that if f €. (E;) where j=1,2
then || fllmo (5;,x) SC| fllo- Pick a constant 0< §< 1 so that 3-41/76<C.

Let K; ={w e T: f, € AP(E,l[,§)}. It is easy to see that each K is
closed and since each f,, is uniformly continuous by the Bohr topology it
follows from the Stone-Weierstrass theorem that | J K; = T. If we pick [y so
that pr(K;,) > 1/2 then K; K;, = T and hence, since the map w — f,, is
multiplicative, f,, € AP(E,[2,30) for every w € T.

Let F be an arbitrary finite subset of E. Then there is a least constant
B so that || fl|pm.(rx) < B flloo- The proof is completed by establishing a
uniform bound on S.

For w € T we can find ¢; with |[¢;| <1land (;j € T for 1 <j < 12 such
that

<36

5
[Fuln) = Y ey
j=1

forn e E. If ZJ is defined by Z](n) = (j then of course ||Zj||Moo(E,X) =1
Restricting to F' we see that
1foollpee ) < B+ B87(30)"

Define H : C — My (F,X) by H(z)(n) = 2"~ if n € Dy. Note that
H is a polynomial. As in Theorem 5, M (F,X) has a plurisubharmonic
norm. Hence

[HO)|" < max [ H(w)|” <15+ (385"

Thus, if x4 is the characteristic function of A,
IxEnF o (rx) <16+ (30)76"
It follows that
IXE20F v (rx) < I§+(36)"8" +1.
Now suppose f € loo(F) and || f]looc < 1. Then

I fxE;nF v (mx) < X AP Mo (2,08, IXE AP Mo (F )
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for j =1,2. Thus
1 v ey < CT(1+ 215 +2(36)"57) .
By maximizing over all f this implies
BT < CT(1+22+2(35)787),
which gives an estimate
BT <2C7(1+ 213)

in view of the original choice of §. This estimate, which is independent of
F, implies that F is an analytic Sidon set. m

Remark. We know of no example of a Sidon set which is not an analytic
Sidon set.

Added in proof. In a forthcoming paper with S. C. Tam (Factorization theorems
for quasi-normed spaces) we show that Theorem 4 holds for a much wider class of spaces.
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