COLLOQUIUM MATHEMATICUM

VOL. LXIV

1993

FASC. 2

ON VECTOR-VALUED INEQUALITIES FOR SIDON SETS AND SETS OF INTERPOLATION

by N. J. KALTON (COLUMBIA, MISSOURI)

Let E be a Sidon subset of the integers and suppose X is a Banach space. Then Pisier has shown that E-spectral polynomials with values in X behave like Rademacher sums with respect to L_p -norms. We consider the situation when X is a quasi-Banach space. For general quasi-Banach spaces we show that a similar result holds if and only if E is a set of interpolation (I_0 -set). However, for certain special classes of quasi-Banach spaces we are able to prove such a result for larger sets. Thus if X is restricted to be "natural" then the result holds for all Sidon sets. We also consider spaces with plurisubharmonic norms and introduce the class of analytic Sidon sets.

1. Introduction. Suppose G is a compact abelian group. We denote by μ_G normalized Haar measure on G and by Γ the dual group of G. We recall that a subset E of Γ is called a *Sidon set* if there is a constant M such that for every finitely nonzero map $a: E \to \mathbb{C}$ we have

$$\sum_{\gamma \in E} |a(\gamma)| \le M \max_{g \in G} \left| \sum_{\gamma \in E} a(\gamma) \gamma(g) \right|.$$

We define Δ to be the Cantor group, i.e. $\Delta = \{\pm 1\}^{\mathbb{N}}$. If $t \in \Delta$ we denote by $\varepsilon_n(t)$ the *n*th coordinate of *t*. The sequence (ε_n) is an example of a Sidon set. Of course the sequence (ε_n) is a model for the Rademacher functions on [0, 1]. Similarly we denote the coordinate maps on $\mathbb{T}^{\mathbb{N}}$ by η_n .

Suppose now that G is a compact abelian group. If X is a Banach space, or more generally a quasi-Banach space with a continuous quasinorm and $\phi : G \to X$ is a Borel map we define $\|\phi\|_p$ for $0 to be the <math>L_p$ -norm of ϕ , i.e. $\|\phi\|_p = (\int_G \|\phi(g)\|^p d\mu_G(g))^{1/p}$ if $0 and <math>\|\phi\|_{\infty} = \operatorname{ess\,sup}_{q \in G} \|\phi(g)\|$.

Research supported by NSF-grant DMS-8901636.

It is a theorem of Pisier [12] that if E is a Sidon set then there is a constant M so that for every subset $\{\gamma_1, \ldots, \gamma_n\}$ of E, every x_1, \ldots, x_n chosen from a Banach space X and every $1 \le p \le \infty$ we have

(*)
$$M^{-1} \left\| \sum_{k=1}^{n} x_k \varepsilon_k \right\|_p \le \left\| \sum_{k=1}^{n} x_k \gamma_k \right\|_p \le M \left\| \sum_{k=1}^{n} x_k \varepsilon_k \right\|_p.$$

Thus a Sidon set behaves like the Rademacher sequence for Banach space valued functions. The result can be similarly stated for (η_n) in place of (ε_n) . Recently Asmar and Montgomery-Smith [1] have taken Pisier's ideas further by establishing distributional inequalities in the same spirit.

It is natural to ask whether Pisier's inequalities can be extended to arbitrary quasi-Banach spaces. This question was suggested to the author by Asmar and Montgomery-Smith. For convenience we suppose that every quasi-Banach space is *r*-normed for some r < 1, i.e. the quasinorm satisfies $||x+y||^r \leq ||x||^r + ||y||^r$ for all x, y; an *r*-norm is necessarily continuous. We can then ask, for fixed 0 , for which sets*E*inequality (*) holds, if we restrict*X*to belong to some class of quasi-Banach spaces, for some constant <math>M = M(E, X).

It turns out Pisier's results do not in general extend to the non-locally convex case. In fact, we show that if we fix r < 1 and ask that a set Esatisfies (*) for some fixed p and every r-normable quasi-Banach space Xthen this condition precisely characterizes sets of interpolation as studied in [2]-[5], [8], [9], [13] and [14]. We recall that E is called a *set of interpolation* (*set of type* (I_0)) if it has the property that every $f \in \ell_{\infty}(E)$ (the collection of all bounded complex functions on E) can be extended to a continuous function on the Bohr compactification $b\Gamma$ of Γ .

However, in spite of this result, there are specific classes of quasi-Banach spaces for which (*) holds for a larger class of sets E. If we restrict X to be a natural quasi-Banach space then (*) holds for all Sidon sets E. Here a quasi-Banach space is called *natural* if it is linearly isomorphic to a closed linear subspace of a (complex) quasi-Banach lattice Y which is q-convex for some q > 0, i.e. such that for a suitable constant C we have

$$\left\| \left(\sum_{k=1}^{n} |y_k|^q \right)^{1/q} \right\| \le C \left(\sum_{k=1}^{n} \|y_k\|^q \right)^{1/q}$$

for every $y_1, \ldots, y_n \in Y$. Natural quasi-Banach spaces form a fairly broad class including almost all function spaces which arise in analysis. The reader is referred to [6] for a discussion of examples. Notice that, of course, the spaces L_q for q < 1 are natural so that, in particular, (*) holds for all p and all Sidon sets E for every 0 . The case <math>p = q here would be a direct consequence of Fubini's theorem, but the other cases, including $p = \infty$, are less obvious. A quasi-Banach lattice X is natural if and only if it is *A*-convex, i.e. it has an equivalent plurisubharmonic quasi-norm. Here a quasinorm is *plurisubharmonic* if it satisfies

$$\|x\| \le \int_{0}^{2\pi} \|x + e^{i\theta}y\| \frac{d\theta}{2\pi}$$

for every $x, y \in X$. There are examples of A-convex spaces which are not natural, namely the Schatten ideals S_p for p < 1 [7]. Of course, it follows that S_p cannot be embedded in any quasi-Banach lattice which is A-convex when 0 . Thus we may ask for what sets <math>E (*) holds for every A-convex space. Here, we are unable to give a precise characterization of the sets E such that (*) holds. In fact, we define E to be an analytic Sidon set if (*) holds, for $p = \infty$ (or, equivalently for any other 0),for every A-convex quasi-Banach space <math>X. We show that any finite union of Hadamard sequences in $\mathbb{N} \subset \mathbb{Z}$ is an analytic Sidon set. In particular, a set such as $\{3^n\} \cup \{3^n + n\}$ is an analytic Sidon set but not a set of interpolation. However, we have no example of a Sidon set which is not an analytic Sidon set.

We would like to thank Nakhlé Asmar, Stephen Montgomery-Smith and David Grow for their helpful comments on the content of this paper.

2. The results. Suppose G is a compact abelian group and Γ is its dual group. Let E be a subset of Γ . Suppose X is a quasi-Banach space and that $0 ; then we will say that E has property <math>C_p(X)$ if there is a constant M such that for any finite subset $\{\gamma_1, \ldots, \gamma_n\}$ of E and any x_1, \ldots, x_n of X we have (*), i.e.

$$M^{-1} \left\| \sum_{k=1}^{n} x_k \varepsilon_k \right\|_p \le \left\| \sum_{k=1}^{n} x_k \gamma_k \right\|_p \le M \left\| \sum_{k=1}^{n} x_k \varepsilon_k \right\|_p.$$

(Note that in contrast to Pisier's result (*), we here assume p fixed.) We start by observing that E is a Sidon set if and only if E has property $\mathcal{C}_{\infty}(\mathbb{C})$. It follows from the results of Pisier [12] that a Sidon set has property $\mathcal{C}_p(X)$ for every Banach space X and for every 0 . See also Asmar and Montgomery-Smith [1] and Pełczyński [11].

Note that for any $t \in \Delta$ we have $\|\sum \varepsilon_k(t)x_k\varepsilon_k\|_p = \|\sum x_k\varepsilon_k\|_p$. Now any real sequence (a_1, \ldots, a_n) with $\max |a_k| \leq 1$ can be written in the form $a_k = \sum_{j=1}^{\infty} 2^{-j}\varepsilon_k(t_j)$ and it follows quickly by taking real and imaginary parts that there is a constant C = C(r, p) so that for any complex a_1, \ldots, a_n and any *r*-normed space X we have

$$\left\|\sum_{k=1}^{n} a_k x_k \varepsilon_k\right\|_p \le C \|a\|_{\infty} \left\|\sum_{k=1}^{n} x_k \varepsilon_k\right\|_p$$

From this it follows quickly that $\|\sum_{k=1}^{n} x_k \eta_k\|_p$ is equivalent to $\|\sum_{k=1}^{n} x_k \varepsilon_k\|_p$. In particular, we can replace ε_k by η_k in the definition of property $\mathcal{C}_p(X)$.

We note that if E has property $C_p(X)$ then it is immediate that E has property $C_p(\ell_p(X))$ and further that E has property $C_p(Y)$ for any quasi-Banach space finitely representable in X (or, of course, in $\ell_p(X)$).

For a fixed quasi-Banach space X and a fixed subset E of Γ we let $\mathcal{P}_E(X)$ denote the space of X-valued E-polynomials, i.e. functions $\phi : G \to X$ of the form $\phi = \sum_{\gamma \in E} x(\gamma)\gamma$ where $x(\gamma)$ is only finitely nonzero. If $f \in \ell_{\infty}(E)$ we define $T_f : \mathcal{P}_E(X) \to \mathcal{P}_E(X)$ by

$$T_f\left(\sum x(\gamma)\gamma\right) = \sum f(\gamma)x(\gamma)\gamma$$

We then define $||f||_{\mathcal{M}_p(E,X)}$ to be the operator norm of T_f on $\mathcal{P}_E(X)$ for the L_p -norm (and to be ∞ if this operator is unbounded).

LEMMA 1. In order that E has property $C_p(X)$ it is necessary and sufficient that there exists a constant C such that

$$||f||_{\mathcal{M}_p(E,X)} \le C ||f||_{\infty} \quad \text{for all } f \in \ell_{\infty}(E) \,.$$

Proof. If E has property $\mathcal{C}_p(X)$ then it also satisfies (*) for (η_n) in place of (ε_n) for a suitable constant M. Thus if $f \in \ell_{\infty}(E)$ and $\phi \in \mathcal{P}_E(X)$ then

$$||T_f \phi||_p \le M^2 ||f||_\infty ||\phi||_p.$$

For the converse direction, we consider the case $p < \infty$. Suppose $\{\gamma_1, \ldots, \gamma_n\}$ is a finite subset of E. Then for any x_1, \ldots, x_n

$$C^{-p} \int_{\mathbb{T}^{\mathbb{N}}} \left\| \sum_{k=1}^{n} x_{k} \eta_{k} \right\|^{p} d\mu_{\mathbb{T}^{\mathbb{N}}} = C^{-p} \int_{\mathbb{T}^{\mathbb{N}}} \int_{G} \left\| \sum_{k=1}^{n} x_{k} \eta_{k}(s) \gamma_{k}(t) \right\|^{p} d\mu_{\mathbb{T}^{\mathbb{N}}}(s) d\mu_{G}(t)$$

$$\leq \int_{G} \left\| \sum_{k=1}^{n} x_{k} \gamma_{k} \right\|^{p} d\mu_{G}$$

$$\leq C^{p} \int_{\mathbb{T}^{\mathbb{N}}} \int_{G} \left\| \sum_{k=1}^{n} x_{k} \eta_{k}(s) \gamma_{k}(t) \right\|^{p} d\mu_{\mathbb{T}^{\mathbb{N}}}(s) d\mu_{G}(t)$$

$$\leq C^{p} \int_{\mathbb{T}^{\mathbb{N}}} \left\| \sum_{k=1}^{n} x_{k} \eta_{k} \right\|^{p} d\mu_{\mathbb{T}^{\mathbb{N}}}.$$

This estimate together with a similar estimate in the opposite direction gives the conclusion. The case $p=\infty$ is similar.

If E is a subset of Γ , $N \in \mathbb{N}$ and $\delta > 0$ we let $AP(E, N, \delta)$ be the set of $f \in \ell_{\infty}(E)$ such that there exist $g_1, \ldots, g_N \in G$ (not necessarily distinct) and $\alpha_1, \ldots, \alpha_N \in \mathbb{C}$ with $\max_{1 \le j \le N} |\alpha_j| \le 1$ and

$$\left|f(\gamma) - \sum_{j=1}^{N} \alpha_j \gamma(g_j)\right| \le \delta$$

for $\gamma \in E$.

The following theorem improves slightly on results of Kahane [5] and Méla [8]. Perhaps also, our approach is slightly more direct. We write $B_{\ell_{\infty}(E)}$

$$= \{ f \in \ell_{\infty}(E) : \|f\|_{\infty} \le 1 \}.$$

THEOREM 2. Let G be a compact abelian group and let Γ be its dual group. Suppose E is a subset of Γ . Then the following conditions on E are equivalent:

(1) E is a set of interpolation.

(2) There exists an integer N so that $B_{\ell_{\infty}(E)} \subset AP(E, N, 1/2)$.

(3) There exists M and $0 < \delta < 1$ so that if $f \in B_{\ell_{\infty}(E)}$ then there exist complex numbers $(c_j)_{j=1}^{\infty}$ with $|c_j| \leq M\delta^j$ and $(g_j)_{j=1}^{\infty}$ in G with

$$f(\gamma) = \sum_{j=1}^{\infty} c_j \gamma(g_j)$$

for $\gamma \in E$.

Proof. (1) \Rightarrow (2). It follows from the Stone–Weierstrass theorem that

$$\mathbb{T}^E \subset \bigcup_{m=1}^{\infty} AP(E, m, 1/5)$$

Let $\mu = \mu_{\mathbb{T}^E}$. Since each $AP(E, m, 1/5) \cap \mathbb{T}^E$ is closed it is clear that there Let $\mu = \mu_{\mathbb{T}^E}$. Since each $AI(E, m, 1/5) \cap \mathbb{T}^E$ is closed it is clear that there exists m so that $\mu(AP(E, m, 1/5) \cap \mathbb{T}^E) > 1/2$. Thus if $f \in \mathbb{T}^E$ we can find $f_1, f_2 \in AP(E, m, 1/5) \cap \mathbb{T}^E$ so that $f = f_1 f_2$. Hence $f \in AP(E, m^2, 1/2)$. This clearly implies (2) with $N = 2m^2$. (2) \Rightarrow (3). We let $\delta = 2^{-1/N}$ and M = 2. Then given $f \in B_{\ell_{\infty}(E)}$ we can find $(c_j)_{j=1}^N$ and $(g_j)_{j=1}^N$ with $|c_j| \le 1 \le M\delta^j$ and

$$\left|f(\gamma) - \sum_{j=1}^{N} c_j \gamma(g_j)\right| \le 1/2$$

for $\gamma \in E$. Let $f_1(\gamma) = 2(f(\gamma) - \sum_{j=1}^N c_j \gamma(g_j))$ and iterate the argument. $(3) \Rightarrow (1)$. Obvious.

THEOREM 3. Suppose G is a compact abelian group, E is a subset of the dual group Γ and that $0 < r < 1, 0 < p \le \infty$. In order that E satisfies $\mathcal{C}_p(X)$ for every r-normable quasi-Banach space X it is necessary and sufficient that E be a set of interpolation.

Proof. First suppose that E is a set of interpolation so that it satisfies (3) of Theorem 2. Suppose X is an *r*-normed quasi-Banach space. Suppose $f \in B_{\ell_{\infty}(E)}$. Then there exist $(c_j)_{j=1}^{\infty}$ and $(g_j)_{j=1}^{\infty}$ so that $|c_j| \leq M\delta^j$ and $f(\gamma) = \sum c_j \gamma(g_j)$ for $\gamma \in E$. Now if $\phi \in \mathcal{P}_E(X)$ it follows that

$$T_f\phi(h) = \sum_{j=1}^{\infty} c_j\phi(g_jh)$$

and so

$$||T_f\phi||_p \le M\Big(\sum_{j=1}^\infty \delta^{js}\Big)^{1/s} ||\phi||_p$$

where $s = \min(p, r)$. Thus $||f||_{\mathcal{M}_p(E,X)} \leq C$ where C = C(p, r, E) and so by Lemma 1, E has property $\mathcal{C}_p(X)$.

Now, conversely, suppose that 0 < r < 1, 0 and that <math>E has property $\mathcal{C}_p(X)$ for every *r*-normable space X. It follows from consideration of ℓ_{∞} -products that there exists a constant C so that for every *r*-normed space X we have $\|f\|_{\mathcal{M}_p(E,X)} \le C \|f\|_{\infty}$ for $f \in \ell_{\infty}(E)$.

Suppose F is a finite subset of E. We define an r-norm $|| ||_A$ on $\ell_{\infty}(F)$ by setting $||f||_A$ to be the infimum of $(\sum |c_j|^r)^{1/r}$ over all $(c_j)_{j=1}^{\infty}$ and $(g_j)_{j=1}^{\infty}$ such that

$$f(\gamma) = \sum_{j=1}^{\infty} c_j \gamma(g_j)$$

for $\gamma \in F$. Notice that $||f_1f_2||_A \le ||f_1||_A ||f_2||_A$ for all $f_1, f_2 \in A = \ell_{\infty}(F)$.

For $\gamma \in F$ let e_{γ} be defined by $e_{\gamma}(\gamma) = 1$ if $\gamma = \chi$ and 0 otherwise. Then for $f \in A$, with $||f||_{\infty} \leq 1$,

$$\left(\int\limits_{G} \left\|\sum_{\gamma \in F} f(\gamma) e_{\gamma} \gamma\right\|_{A}^{p} d\mu_{G}\right)^{1/p} \leq C \left(\int\limits_{G} \left\|\sum_{\gamma \in F} e_{\gamma} \gamma\right\|_{A}^{p} d\mu_{G}\right)^{1/p}$$

But for any $g \in G$, $\|\sum \gamma(g)e_{\gamma}\|_{A} \leq 1$. Define H to be the subset of $h \in G$ such that $\|\sum_{\gamma \in F} f(\gamma)\gamma(h)e_{\gamma}\|_{A} \leq 3^{1/p}C$. Then $\mu_{G}(H) \geq 2/3$. Thus there exist $h_{1}, h_{2} \in H$ such that $h_{1}h_{2} = 1$ (the identity in G). Hence by the algebra property of the norm

$$||f||_A \le 3^{2/p} C^2$$

and so if we fix an integer $C_0>3^{2/p}C^2$ we can find c_j and g_j so that $\sum |c_j|^r\leq C_0^r$ and

$$f(\gamma) = \sum c_j \gamma(g_j)$$

for $\gamma \in F$. We can suppose $|c_j|$ is decreasing and hence that $|c_j| \leq C_0 j^{-1/r}$.

Choose N_0 so that $C_0 \sum_{j=N_0+1}^{\infty} j^{-1/r} \leq 1/2$. Thus

$$\left|f(\gamma) - \sum_{j=1}^{N_0} c_j \gamma(g_j)\right| \le 1/2$$

for $\gamma \in F$. Since each $|c_j| \leq C_0$ this implies that $B_{\ell_{\infty}(F)} \subset AP(F, N, 1/2)$ where $N = C_0 N_0$.

As this holds for every finite set F it follows by an easy compactness argument that $B_{\ell_{\infty}(E)} \subset AP(E, N, 1/2)$ and so by Theorem 2, E is a set of interpolation.

THEOREM 4. Let X be a natural quasi-Banach space and suppose $0 . Then any Sidon set has property <math>C_p(X)$.

Proof. Suppose E is a Sidon set. Then there is a constant C_0 so that if $f \in \ell_{\infty}(E)$ then there exists $\nu \in C(G)^*$ such that $\hat{\mu}(\gamma) = f(\gamma)$ for $\gamma \in E$ and $\|\mu\| \leq C_0 \|f\|_{\infty}$. We will show the existence of a constant C such that $\|f\|_{\mathcal{M}_p(E,X)} \leq C \|f\|_{\infty}$. If no such constant exists then we may find a sequence E_n of finite subsets of E such that $\lim C_n = \infty$ where C_n is the least constant such that $\|f\|_{\mathcal{M}_p(E_n,X)} \leq C_n \|f\|_{\infty} \leq C_n \|f\|_{\infty}$ for all $f \in \ell_{\infty}(E_n)$.

Now the spaces $\mathcal{M}_p(E_n, X)$ are each isometric to a subspace of $\ell_{\infty}(L_p(G, X))$ and hence so is $Y = c_0(\mathcal{M}_p(E_n, X))$. In particular, Y is natural. Notice that Y has a finite-dimensional Schauder decomposition. We will calculate the Banach envelope Y_c of Y. Clearly $Y_c = c_0(Y_n)$ where Y_n is the finite-dimensional space $\mathcal{M}_p(E_n, X)$ equipped with its envelope norm $||f||_c$.

Suppose $f \in \ell_{\infty}(E_n)$. Then clearly $||f||_{\infty} \leq ||f||_{\mathcal{M}_p(E,X)}$ and so $||f||_{\infty} \leq ||f||_c$. Conversely, if $f \in \ell_{\infty}(E_n)$ there exists $\nu \in C(G)^*$ with $||\nu|| \leq C_0 ||f||_{\infty}$ and such that $\int \gamma \, d\nu = f(\gamma)$ for $\gamma \in E_n$. In particular, $C_0^{-1} ||f||_{\infty}^{-1} f$ is in the absolutely closed convex hull of the set of functions $\{\tilde{g}: g \in G\}$ where $\tilde{g}(\gamma) = \gamma(g)$ for $\gamma \in E_n$. Since $||\tilde{g}||_{\mathcal{M}_p(E,X)} = 1$ for all $g \in G$ we see that $||f||_{\infty} \leq ||f||_c \leq C_0 ||f||_{\infty}$.

This implies that Y_c is isomorphic to c_0 . Since Y has a finite-dimensional Schauder decomposition and is natural we can apply Theorem 3.4 of [6] to deduce that $Y = Y_c$ is already locally convex. Thus there is a constant C'_0 independent of n so that $||f||_{\mathcal{M}_p(E,X)} \leq C'_0 ||f||_{\infty}$ whenever $f \in \ell_{\infty}(E_n)$. This contradicts the choice of E_n and proves the theorem.

We now consider the case of A-convex quasi-Banach spaces. For this notion we will introduce the concept of an analytic Sidon set. We say a subset E of Γ is an *analytic Sidon set* if E satisfies $\mathcal{C}_{\infty}(X)$ for every A-convex quasi-Banach space X.

PROPOSITION 5. Suppose 0 . Then E is an analytic Sidon set $if and only if E satisfies <math>C_p(X)$ for every A-convex quasi-Banach space X.

Proof. Suppose first E is an analytic Sidon set, and that X is an Aconvex quasi-Banach space (for which we assume the quasinorm is plurisubharmonic). Then $L_p(G, X)$ also has a plurisubharmonic quasinorm and so E satisfies (*) for X replaced by $L_p(G, X)$ and p replaced by ∞ with constant M. Now suppose $x_1, \ldots, x_n \in X$ and $\gamma_1, \ldots, \gamma_n \in E$. Define $y_1, \ldots, y_n \in L_p(G, X)$ by $y_k(g) = \gamma_k(g)x_k$. Then

$$\max_{g \in G} \left\| \sum_{k=1}^{n} y_k \gamma_k(g) \right\|_{L_p(G,X)} = \left\| \sum_{k=1}^{n} x_k \gamma_k \right\|_p$$

and a similar statement holds for the characters ε_k on the Cantor group. It follows quickly that E satisfies (*) for p and X with constant M.

For the converse direction suppose E satisfies $\mathcal{C}_p(X)$ for every A-convex space X. Suppose X has a plurisubharmonic quasinorm. We show that $\mathcal{M}_{\infty}(E, X) = \ell_{\infty}(E)$. In fact, $\mathcal{M}_{\infty}(F, X)$ can be isometrically embedded in $\ell_{\infty}(X)$ for every finite subset F of E. Thus (*) holds for X replaced by $\mathcal{M}_{\infty}(F, X)$ for some constant M, independent of F. Denoting by e_{γ} the canonical basis vectors in $\ell_{\infty}(E)$ we see that if $F = \{\gamma_1, \ldots, \gamma_n\} \subset E$ then

$$\left(\int_{\Delta} \left\|\sum_{k=1}^{n} \varepsilon_{k}(t) e_{\gamma_{k}}\right\|_{\mathcal{M}_{\infty}(F,X)}^{p} d\mu_{\Delta}(t)\right)^{1/p} \leq M \max_{g \in G} \left\|\sum_{k=1}^{n} \gamma_{k}(g) e_{\gamma_{k}}\right\|_{\mathcal{M}_{\infty}(F,X)} = M.$$

Thus the set K of $t \in \Delta$ such that $\|\sum_{k=1}^{n} \varepsilon_k(t) e_{\gamma_k}\|_{\mathcal{M}_{\infty}(F,X)} \leq 3^{1/p} M$ has measure at least 2/3. Arguing that $K \cdot K = \Delta$ we obtain

$$\left\|\sum_{k=1}^{n}\varepsilon_{k}(t)e_{\gamma_{k}}\right\|_{\mathcal{M}_{\infty}(F,X)} \leq 3^{2/p}M^{2}$$

for every $t \in \Delta$. It follows quite simply that there is a constant C so that for every real-valued $f \in \ell_{\infty}(F)$ we have $||f||_{\mathcal{M}_{\infty}(E,X)} \leq C||f||_{\infty}$. In fact, this is proved by writing each such f with $||f||_{\infty} = 1$ in the form $f(\gamma_k) = \sum_{j=1}^{\infty} 2^{-j} \varepsilon_k(t_j)$ for a suitable sequence $t_j \in \Delta$. A similar estimate for complex f follows by estimating real and imaginary parts. Finally, since these estimates are independent of F we conclude that $\ell_{\infty}(E) = \mathcal{M}_{\infty}(E, X)$.

Of course any set of interpolation is an analytic Sidon set and any analytic Sidon set is a Sidon set. The next theorem will show that not every analytic Sidon set is a set of interpolation. If we take $G = \mathbb{T}$ and $\Gamma = \mathbb{Z}$, we recall that a Hadamard gap sequence is a sequence $(\lambda_k)_{k=1}^{\infty}$ of positive integers such that for some q > 1 we have $\lambda_{k+1}/\lambda_k \ge q$ for $k \ge 1$. It is shown in [10] and [14] that a Hadamard gap sequence is a set of interpolation. However, the union of two such sequences may fail to be a set of interpolation; for example $(3^n)_{n=1}^{\infty} \cup (3^n + n)_{n=1}^{\infty}$ is not a set of interpolation, since the closures of (3^n) and $(3^n + n)$ in $b\mathbb{Z}$ are not disjoint.

THEOREM 6. Let $G = \mathbb{T}$ so that $\Gamma = \mathbb{Z}$. Suppose $E \subset \mathbb{N}$ is a finite union of Hadamard gap sequences. Then E is an analytic Sidon set.

Proof. Suppose $E = (\lambda_k)_{k=1}^{\infty}$ where (λ_k) is increasing. We start with the observation that E is the union of m Hadamard sequences if and only if there exists q > 1 so that $\lambda_{m+k} \ge q^m \lambda_k$ for every $k \ge 1$.

We will prove the theorem by induction on m. Note first that if m = 1 then E is a Hadamard sequence and hence [14] a set of interpolation. Thus by Theorem 2 above, E is an analytic Sidon set.

Suppose now that E is the union of m Hadamard sequences and that the theorem is proved for all unions of l Hadamard sequences where l < m. We assume that $E = (\lambda_k)$ and that there exists q > 1 such that $\lambda_{k+m} \ge q^m \lambda_k$ for $k \ge 1$. We first decompose E into at most m Hadamard sequences. To do this let us define $E_1 = \{\lambda_1\} \cup \{\lambda_k : k \ge 2, \lambda_k \ge q\lambda_{k-1}\}$. We will write $E_1 = (\tau_k)_{k\ge 1}$ where τ_k is increasing. Of course E_1 is a Hadamard sequence.

For each k let $D_k = E \cap [\tau_k, \tau_{k+1}]$. It is easy to see that $|D_k| \leq m$ for every k. Further, if $n_k \in D_k$ then $n_{k+1} \geq \tau_{k+1} \geq qn_k$ so that (n_k) is a Hadamard sequence. In particular, $E_2 = E \setminus E_1$ is the union of at most m-1 Hadamard sequences and so E_2 is an analytic Sidon set by the inductive hypothesis.

Now suppose $w \in \mathbb{T}$. We define $f_w \in \ell_{\infty}(E)$ by $f_w(n) = w^{n-\tau_k}$ for $n \in D_k$. We will show that f_w is uniformly continuous for the Bohr topology on \mathbb{Z} ; equivalently we show that f_w extends to a continuous function on the closure \widetilde{E} of E in the Bohr compactification $b\mathbb{Z}$ of \mathbb{Z} . Indeed, if this is not the case there exists $\xi \in \widetilde{E}$ and ultrafilters \mathcal{U}_0 and \mathcal{U}_1 on E both converging to ξ so that $\lim_{n \in \mathcal{U}_0} f_w(n) = \zeta_0$ and $\lim_{n \in \mathcal{U}_1} f_w(n) = \zeta_1$ where $\zeta_1 \neq \zeta_0$. We will let $\delta = \frac{1}{3} |\zeta_1 - \zeta_0|$.

We can partition E into m sets A_1, \ldots, A_m so that $|A_j \cap D_k| \leq 1$ for each k. Clearly \mathcal{U}_0 and \mathcal{U}_1 each contain exactly one of these sets. Let us suppose $A_{j_0} \in \mathcal{U}_0$ and $A_{j_1} \in \mathcal{U}_1$.

Next define two ultrafilters \mathcal{V}_0 and \mathcal{V}_1 on \mathbb{N} by $\mathcal{V}_0 = \{V : \bigcup_{k \in V} D_k \in \mathcal{U}_0\}$ and $\mathcal{V}_1 = \{V : \bigcup_{k \in V} D_k \in \mathcal{U}_1\}$. We argue that \mathcal{V}_0 and \mathcal{V}_1 coincide. If not we can pick $V \in \mathcal{V}_0 \setminus \mathcal{V}_1$. Consider the set $A = (A_{j_0} \cap \bigcup_{k \in V} D_k) \cup (A_{j_1} \cap \bigcup_{k \notin V} D_k)$. Then A is a Hadamard sequence and hence a set of interpolation. Thus for the Bohr topology the sets $A_{j_0} \cap \bigcup_{k \in V} D_k$ and $A_{j_1} \cap \bigcup_{k \notin V} D_k$ have disjoint closures. This is a contradiction since of course ξ must be in the closure of each. Thus $\mathcal{V}_0 = \mathcal{V}_1$.

Since both \mathcal{U}_0 and \mathcal{U}_1 converge to the same limit for the Bohr topology we can find sets $H_0 \in \mathcal{U}_0$ and $H_1 \in \mathcal{U}_1$ so that if $n_0 \in H_0$, $n_1 \in H_1$ then $|w^{n_1} - w^{n_0}| < \delta$ and further $|f_w(n_0) - \zeta_0| < \delta$ and $|f_w(n_1) - \zeta_1| < \delta$.

Let $V_0 = \{k \in \mathbb{N} : D_k \cap H_0 \neq \emptyset\}$ and $V_1 = \{k \in \mathbb{N} : D_k \cap H_1 \neq \emptyset\}$. Then $V_0 \in \mathcal{V}_0$ and $V_1 \in \mathcal{V}_1$. Thus $V = V_0 \cap V_1 \in \mathcal{V}_0 = \mathcal{V}_1$. If $k \in V$ there exists $n_0 \in D_k \cap H_0$ and $n_1 \in D_k \cap H_1$. Then

$$3\delta = |\zeta_1 - \zeta_0| < |f_w(n_1) - f_w(n_0)| + 2\delta$$

= |w^{n_1} - w^{n_0}| + 2\delta < 3\delta.

This contradiction shows that each f_w is uniformly continuous for the Bohr topology.

Now suppose that X is an r-normed A-convex quasi-Banach space where the quasi-norm is plurisubharmonic. Since both E_1 and E_2 are analytic Sidon sets we can introduce a constant C so that if $f \in \ell_{\infty}(E_j)$ where j=1,2then $||f||_{\mathcal{M}_{\infty}(E_j,X)} \leq C ||f||_{\infty}$. Pick a constant $0 < \delta < 1$ so that $3 \cdot 4^{1/r} \delta < C$.

Let $K_l = \{w \in \mathbb{T} : f_w \in AP(E, l, \delta)\}$. It is easy to see that each K_l is closed and since each f_w is uniformly continuous by the Bohr topology it follows from the Stone–Weierstrass theorem that $\bigcup K_l = \mathbb{T}$. If we pick l_0 so that $\mu_{\mathbb{T}}(K_{l_0}) > 1/2$ then $K_{l_0}K_{l_0} = \mathbb{T}$ and hence, since the map $w \to f_w$ is multiplicative, $f_w \in AP(E, l_0^2, 3\delta)$ for every $w \in \mathbb{T}$.

Let F be an arbitrary finite subset of E. Then there is a least constant β so that $||f||_{\mathcal{M}_{\infty}(F,X)} \leq \beta ||f||_{\infty}$. The proof is completed by establishing a uniform bound on β .

For $w \in \mathbb{T}$ we can find c_j with $|c_j| \leq 1$ and $\zeta_j \in \mathbb{T}$ for $1 \leq j \leq l_0^2$ such that

$$\left|f_w(n) - \sum_{j=1}^{l_0^2} c_j \zeta_j^n\right| \le 3\delta$$

for $n \in E$. If ζ_j is defined by $\zeta_j(n) = \zeta_j^n$ then of course $\|\zeta_j\|_{\mathcal{M}_{\infty}(E,X)} = 1$. Restricting to F we see that

$$||f_w||^r_{\mathcal{M}_{\infty}(F,X)} \le l_0^2 + \beta^r (3\delta)^r$$

Define $H : \mathbb{C} \to \mathcal{M}_{\infty}(F, X)$ by $H(z)(n) = z^{n-\tau_k}$ if $n \in D_k$. Note that H is a polynomial. As in Theorem 5, $\mathcal{M}_{\infty}(F, X)$ has a plurisubharmonic norm. Hence

$$||H(0)||^r \le \max_{|w|=1} ||H(w)||^r \le l_0^2 + (3\delta)^r \beta^r.$$

Thus, if χ_A is the characteristic function of A,

$$\|\chi_{E_1\cap F}\|_{\mathcal{M}_{\infty}(F,X)}^r \le l_0^2 + (3\delta)^r \beta^r \,.$$

It follows that

$$\|\chi_{E_2\cap F}\|_{\mathcal{M}_{\infty}(F,X)}^r \le l_0^2 + (3\delta)^r \beta^r + 1.$$

Now suppose $f \in \ell_{\infty}(F)$ and $||f||_{\infty} \leq 1$. Then

 $\|f\chi_{E_j\cap F}\|_{\mathcal{M}_{\infty}(F,X)} \le \|f\chi_{E_j\cap F}\|_{\mathcal{M}_{\infty}(E_j\cap F,X)}\|\chi_{E_j\cap F}\|_{\mathcal{M}_{\infty}(F,X)}$

for j = 1, 2. Thus

$$||f||^{r}_{\mathcal{M}_{\infty}(F,X)} \leq C^{r}(1+2l_{0}^{2}+2(3\delta)^{r}\beta^{r})$$

By maximizing over all f this implies

$$\beta^r \leq C^r (1 + 2l_0^2 + 2(3\delta)^r \beta^r),$$

which gives an estimate

$$\beta^r \le 2C^r (1+2l_0^2)$$

in view of the original choice of δ . This estimate, which is independent of F, implies that E is an analytic Sidon set.

 ${\rm R} \, {\rm e} \, {\rm m} \, {\rm a} \, {\rm r} \, {\rm k}.$ We know of no example of a Sidon set which is not an analytic Sidon set.

Added in proof. In a forthcoming paper with S. C. Tam (*Factorization theorems for quasi-normed spaces*) we show that Theorem 4 holds for a much wider class of spaces.

REFERENCES

- [1] N. Asmar and S. J. Montgomery-Smith, On the distribution of Sidon series, Ark. Mat., to appear.
- [2] D. Grow, A class of I₀-sets, Colloq. Math. 53 (1987), 111–124.
- [3] S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, ibid. 12 (1964), 23-39.
- [4] —, —, Almost periodic extensions of functions, II, ibid. 15 (1966), 79–86.
- [5] J.-P. Kahane, Ensembles de Ryll-Nardzewski et ensembles de Helson, ibid. 15 (1966), 87-92.
- N. J. Kalton, Banach envelopes of non-locally convex spaces, Canad. J. Math. 38 (1986), 65-86.
- [7] —, Plurisubharmonic functions on quasi-Banach spaces, Studia Math. 84 (1986), 297–324.
- [8] J.-F. Méla, Sur les ensembles d'interpolation de C. Ryll-Nardzewski et de S. Hartman, ibid. 29 (1968), 167–193.
- [9] —, Sur certains ensembles exceptionnels en analyse de Fourier, Ann. Inst. Fourier (Grenoble) 18 (2) (1968), 32–71.
- [10] J. Mycielski, On a problem of interpolation by periodic functions, Colloq. Math. 8 (1961), 95-97.
- [11] A. Pełczyński, Commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525–531.
- [12] G. Pisier, Les inégalités de Kahane-Khintchin d'après C. Borell, in: Séminaire sur la géométrie des espaces de Banach, Ecole Polytechnique, Palaiseau, Exposé VII, 1977–78.
- C. Ryll-Nardzewski, Concerning almost periodic extensions of functions, Colloq. Math. 12 (1964), 235-237.

 [14] E. Strzelecki, Some theorems on interpolation by periodic functions, ibid. 12 (1964), 239-248.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MISSOURI-COLUMBIA COLUMBIA, MISSOURI 65211 U.S.A.

Reçu par la Rédaction le 17.3.1992

244