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FOR ORDINARY DIFFERENTIAL EQUATIONS
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0. Introduction. This paper presents conditions for the existence and
uniqueness of solutions for multipoint boundary value problems of the form

(0.1) x′ = f(t, x) , x = (x1, . . . , xn),
(0.2) xs(t1) = αm , xj(τ) = αj , xr(t2) = αp

(j = 1, . . . , n, j 6= m, p, m 6= p)

where f : [t1, t2] × Rn → Rn, τ ∈ [t1, t2], s,m, r, p ∈ {1, . . . , n}, n ≥ 3,
and α = (α1, . . . , αn) ∈ Rn. Specifically, we present conditions where some
restriction on the signs of the entries in the Jacobian matrix of f plays a
role.

In [8] the author has given such a criterion for a certain class of two-point
boundary value problems for Eq. (0.1). The first results of this nature were
established by Garner [5, 6] and Garner and Burton [7]. Their theorems
only concern the situation when (0.1) is linear and (s,m, r, p) = (1, 1, n, n).
Results in the same spirit, with an nth-order (n ≥ 3) differential equation
in place of (0.1), have been obtained in [4] for linear cases and in [1, 2,
9] for nonlinear cases. The principal result of the present paper is Theo-
rem 3.1, which generalizes the theorems in [5–7]. One can also derive as
applications of this theorem various results which, in some cases, improve
the theorems in [1, 2, 4, 9]. These applications are presented in the last
section.

1. Notation and definitions. We shall assume that all matrices
introduced in this paper are real n×n matrices. For a matrix A = (aij) the
matrix diag(a11, . . . , ann) will be denoted by diag A. The symbol A◦ will
denote the matrix A−diag A. The set of all matrices Λ = (λij) with entries
of the form

λij = λiλj , i, j = 1, . . . , n ,

where λi = ±1, i = 1, . . . , n, will be denoted by ∆. It is clear that ∆
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consists of exactly 2n−1 different symmetric matrices having all entries equal
to 1 or −1.

Definition 1.1. Let Λ be a matrix in ∆ and let J ⊂ R. A matrix
A = (aij(t)), t ∈ J , belongs to the class D+

Λ (J) if

λijaij(t) ≥ 0 on J, i, j = 1, . . . , n ,

and A is in D−
Λ (J) if −A ∈ D+

Λ (J). The class D+
Λ (J) was used in [8].

Definition 1.2. Let Λ ∈ ∆ and J ⊂ R. A matrix U ∈ D+
Λ (J)

(U ∈ D−
Λ (J)) is said to be a minor-matrix of a family F ⊂ D+

Λ (J) (resp.
F ⊂ D−

Λ (J)) if for each F ∈ F
λijfij(t) ≥ λijuij(t) on J, i, j = 1, . . . , n ,

where F = (fij) and U = (uij). If

λijfij(t) ≤ λijuij(t) on J, i, j = 1, . . . , n ,

for each F ∈ F , then U is said to be a major-matrix of F .

It is clear that for every F ⊂ D+
Λ (J) (F ⊂ D−

Λ (J)) the matrix with all
entries zero is the trivial minor-matrix (resp. major-matrix) of F .

Definition 1.3. A matrix U = (uij(t)), t ∈ J , is said to be upper
(lower) irreducible on J with respect to a pair of indices (s,m), s 6= m
(sth row and mth column) if there exist a finite sequence k0, k1, . . . , kl−1

of indices in {1, . . . , n} and a nondecreasing (resp. nonincreasing) sequence
ξ1, . . . , ξl−1 of points in J such that

ukqkq+1(ξq+1) 6= 0 for q = 0, 1, . . . , l − 2 ,

kq 6= kq+1 for q = 0, 1, . . . , l − 2 , k0 = s, kl−1 = m .

Clearly it is sufficient to consider l ≤ n.
U is irreducible on J with respect to (s,m), s 6= m, if U is upper and

lower irreducible on J with respect to (s,m).

We note here that if there exists t0 ∈ J such that the constant matrix
U(t0) is irreducible in the classical sense then U is irreducible on J with
respect to each pair of indices.

The interval J = [t1, t2] will be fixed throughout this paper. For τ ∈ J ,
set J1 = [t1, τ ] and J2 = [τ, t2]. Moreover, we denote by Ci (i = 1, 2) the
class of all continuous n-vector functions on Ji (i = 1, 2).

2. Preliminary estimates. This section will be devoted to a variety of
estimates concerning partial derivatives (with respect to the initial values)
of solutions of (0.1). As will be seen these estimates play an essential role.

In the sequel we make the following assumptions with regard to (0.1).
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(A) Both f = (f1, . . . , fn) and its Jacobian matrix fx = (fij), where
fij = ∂fi/∂xj , i, j = 1, . . . , n, are continuous on J × Rn.

(B) All solutions of all initial value problems for (0.1) extend to J .

It is well known that if the right-hand side of (0.1) is as stated above
then for each initial condition x(τ) = α, where (τ, α) ∈ J × Rn, (0.1) has a
unique solution x defined on the whole of J . That solution will be denoted
by x(t) = x(t; τ, α). It is also well known that the solution x(t; τ, α) is
continuously differentiable with respect to the initial values (τ, α) ∈ J ×Rn.

Fix (τ, α) ∈ J × Rn. The linear differential system y′ = fx(t, x(t))y, t ∈
J , is called the variational equation along x(t) = x(t; τ, α). It is known that
the matrix X(t; τ, α) = (xij(t; τ, α)), where xij = ∂xi/∂αj , i, j = 1, . . . , n,
is the fundamental matrix solution of this equation.

Combining these comments with Lemma 2.2 and Corollary 2.1 of [8], we
infer the following result.

Lemma 2.1. Let Λ ∈ ∆ and τ ∈ J . If the family {f◦x(t, z(t)) : z ∈ C2} is
contained in D+

Λ (J2), then so is {X(t; τ, α) : α ∈ Rn}. More precisely , for
each α ∈ Rn the following estimates hold on J2:

(2.1) λijxij(t; τ, α) ≥ δij exp
t∫

τ

fii(w, x(w)) dw

+
t∫

τ

dτ1

τ1∫
τ

dτ2 . . .

τl−2∫
τ

((
exp

τl−1∫
τ

fjj(w, x(w)) dw
)

×
l−2∏
q=0

λiqiq+1fiqiq+1(τq+1, x(τq+1)) exp
τq∫

τq+1

fiqiq (w, x(w)) dw
)

dτl−1

≥ δij exp
t∫

τ

fii(w, x(w)) dw (τ0 = t), i, j = 1, . . . , n ,

where x(t) = x(t; τ, α) and i0, i1, . . . , il−1 are arbitrary indices in {1, . . . , n}
such that i0 = i, il−1 = j, iq 6= iq+1 for q = 0, 1, . . . , l − 2, and δij is the
Kronecker delta.

The fundamental matrix solution X is also defined to the left of τ . A
result parallel to Lemma 2.1, concerning the fundamental matrix solution to
the left of τ , is useful in later applications. We state it as a lemma, omitting
its proof.

Lemma 2.2. Let Λ ∈ ∆ and τ ∈ J . If the family {f◦x(t, z(t)) : z ∈ C1}
is contained in D−

Λ (J1), then {X(t; τ, α) : α ∈ Rn} is contained in D+
Λ (J1),

and for each α ∈ Rn the estimate (2.1) holds on J1.



256 M. GEWERT

R e m a r k. The assumptions of Lemmas 2.1 and 2.2 yield that the ith
coordinate fi of f is quasi-monotone with respect to xj , for i, j = 1, . . . , n,
i 6= j. Precisely, fi is nondecreasing (nonincreasing) with respect to xj if
λij = 1 (resp. −1).

Corollary 2.1. (i) In addition to the hypotheses of Lemma 2.2 assume
that for some k ∈ {1, . . . , n} there exists a function bkk continuous on J1

such that

(2.2) fkk(t, z(t)) ≤ bkk(t) on J1 for every z ∈ C1 .

Then

(2.3) λkkxkk(t; τ, α) ≥ ηkk(t) on J1 × Rn ,

where ηkk is a continuous positive function on J1.
(ii) In addition to the hypotheses of Lemma 2.1 assume that for some

k ∈ {1, . . . , n} there exists a function ckk continuous on J2 such that

(2.4) fkk(t, z(t)) ≥ ckk(t) on J2 for every z ∈ C2 .

Then

λkkxkk(t; τ, α) ≥ %kk(t) on J2 × Rn ,

where %kk is a continuous positive function on J2.

P r o o f. This is an immediate consequence of (2.1) with i = j = k.

Corollary 2.2. (i) Let the hypotheses of Lemma 2.2 be satisfied. As-
sume that the family {f◦x(t, z(t)) : z ∈ C1} has a major-matrix which is upper
irreducible on J1 with respect to a pair of indices (s,m), s 6= m. In addition,
assume that the family {diag fx(t, z(t)) : z ∈ C1} is uniformly upper bounded
on J1, i.e., (2.2) holds for k = 1, . . . , n. Then

(2.5) λsmxsm(t; τ, α) ≥ ηsm(t) on J1 × Rn ,

where ηsm is a continuous positive function on J1.
(ii) Let the hypotheses of Lemma 2.1 be satisfied. Assume that the family

{f◦x(t, z(t)) : z ∈ C2} has a minor-matrix which is lower irreducible on J2

with respect to a pair of indices (r, p), r 6= p. In addition, assume that the
family {diag fx(t, z(t)) : z ∈ C2} is uniformly lower bounded on J2, i.e., (2.4)
holds for k = 1, . . . , n. Then

λrpxrp(t; τ, α) ≥ %rp(t) on J2 × Rn ,

where %rp is a continuous positive function on J2.

P r o o f. We only prove (i), the proof of (ii) being quite similar.
Let U = (uij) ∈ D−

Λ (J1) be an upper irreducible (with respect to (s,m))
major-matrix of {f◦x(t, z(t)) : z ∈ C1}. Then it is easy to deduce from (2.1)
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with (i, j) = (s,m) and from Definitions 1.2 and 1.3 that

λsmxsm(t; τ, α) ≥
t∫

τ

dτ1

τ1∫
τ

dτ2 . . .

τl−2∫
τ

((
exp

τl−1∫
τ

fmm(w, x(w)) dw
)

×
l−2∏
q=0

λkqkq+1ukqkq+1(τq+1) exp
τq∫

τq+1

fkqkq (w, x(w)) dw
)

dτl−1

for every (t, α) ∈ J1 × Rn. Hence, by (2.2) we have

(2.6) λsmxsm(t; τ, α) ≥
t∫

τ

dτ1

τ1∫
τ

dτ2 . . .

τl−2∫
τ

((
exp

τl−1∫
τ

bmm(w) dw
)

×
l−2∏
q=0

λkqkq+1ukqkq+1(τq+1) exp
τq∫

τq+1

bkqkq (w) dw
)
dτl−1

for every (t, α) ∈ J1×Rn. Therefore (2.5) holds on J1×Rn with ηsm defined
by the right-hand side of (2.6). The fact that ηsm(t) > 0 for t ∈ J1 follows
from Definition 1.3 and the properties of the exponential function. This
proves the corollary.

Note that the proof does not require the validity of (2.2) for all k ∈
{1, . . . , n}. The following remark substantiates this observation.

R e m a r k. The assertion of Corollary 2.2(i) remains true if (2.2) only
holds for k = k0, k1, . . . , kl−1, where the sequence k0, k1, . . . , kl−1 occurs in
the conditions of Definition 1.3. A similar comment is also valid for part (ii)
of Corollary 2.2.

3. The main results. This section is concerned with conditions suf-
ficient to ensure the uniqueness and existence of solutions of the problem
(0.1), (0.2). They are natural extensions of some of the results in [5–7].

In the subsequent discussion let Mn
0 = {(s,m, r, p) : s,m, r, p ∈ {1, . . .

. . . , n}, and m < p}.
The main result of this paper reads as follows.

Theorem 3.1. Let f : J ×Rn → Rn satisfy conditions (A) and (B), and
let (s,m, r, p) ∈ Mn

0 and t1 < τ < t2. Assume that
(C−

1 ) there exists Λ1 = (λ(1)
ij ) ∈ ∆ such that {f◦x(t, z(t)) : z ∈ C1} ⊂

D−
Λ1

(J1);
(C−

2 ) if s 6= m then {f◦x(t, z(t)) : z ∈ C1} has a major-matrix which is
upper irreducible on J1 with respect to (s,m);

(C−
3 ) {diag fx(t, z(t)) : z ∈ C1} is uniformly upper bounded on J1;

(C+
1 ) there exists Λ2 = (λ(2)

ij ) ∈ ∆ such that {f◦x(t, z(t)) : z ∈ C2} ⊂
D+

Λ2
(J2);
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(C+
2 ) if r 6= p then {f◦x(t, z(t)) : z ∈ C2} has a major-matrix which is

lower irreducible on J2 with respect to (r, p);
(C+

3 ) {diag fx(t, z(t)) : z ∈ C2} is uniformly lower bounded on J2.

Then, if

(3.1) λ(1)
smλ(2)

rp = −λ(1)
sp λ(2)

rm ,

the boundary value problem (0.1), (0.2) has a unique solution for each α =
(α1, . . . , αn) ∈ Rn.

The idea of the proof is the following. Fix α = (α1, . . . , αn) ∈ Rn. With
each (u, v) ∈ R2 we associate a vector αmp(u, v) ∈ Rn as follows:

αmp(u, v) = (α1, . . . , αm−1, u, αm+1, . . . , αp−1, v, αp+1, . . . , αn) .

To prove Theorem 3.1 we will show that the system of equations

xs(t1; τ, αmp(u, v)) = αm , xr(t2; τ, αmp(u, v)) = αp

where xs and xr are the sth and rth coordinates of the solution x(t) =
x(t; τ, αmp(u, v)) of (0.1), has exactly one solution (u, v).

For this we require the following result.

Lemma 3.1. Consider the system of equations

(3.2) φ1(u, v) = a1 , φ2(u, v) = a2 ,

where the functions φ1 and φ2 have continuous partial derivatives throughout
R2. Assume that there exist constants ε1 6= 0, ε2 6= 0 and δ1 > 0, δ2 > 0
such that the following conditions hold on R2:

(3.3) ε1
∂φ1

∂u
≥ δ1 , ε2

∂φ2

∂v
≥ δ2 , ε1ε2

∂φ1

∂v

∂φ2

∂u
≤ 0 .

Then for each pair (a1, a2) of real numbers the system (3.2) has a unique
solution (u, v).

P r o o f. This lemma can be established by repeating the arguments used
in the proof of [3, Theorem 8.1(ii)] with appropriate changes.

R e m a r k. It is clear that the assertion of Lemma 3.1 also holds if (3.3)
is replaced by

ε1
∂φ1

∂v
≥ δ1 , ε2

∂φ2

∂u
≥ δ2 , ε1ε2

∂φ1

∂u

∂φ2

∂v
≤ 0 .

We are now ready to give the proof of Theorem 3.1.

P r o o f o f T h e o r e m 3.1. In view of Lemma 3.1 it is enough to
show that (3.3) holds with φ1 and φ2 replaced by xs(t1; τ, αmp(u, v)) and
xr(t2; τ, αmp(u, v)), respectively. Thus it suffices to verify that

ε1xsm(t1; τ, αmp(u, v)) ≥ δ1 , ε2xrp(t2; τ, αmp(u, v)) ≥ δ1 ,(3.4)
ε1ε2xsp(t1; τ, αmp(u, v))xrm(t2; τ, αmp(u, v)) ≤ 0(3.5)
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on R2, where δ1, δ2 > 0.
By (C−

1 ) the hypotheses of Lemma 2.2 hold with Λ = Λ1. Consequently,
choosing (i, j) equal to (s, p) and using (2.1) we deduce that

(3.6) λ(1)
sp xsp(t1; τ, αmp(u, v)) ≥ 0 on R2 .

By (C−
1 ) and (C−

3 ) the hypotheses of Corollary 2.1(i) hold with Λ = Λ1.
On the other hand, by (C−

1 )–(C−
3 ) the hypotheses of Corollary 2.2(i) hold

with Λ as above. Therefore the estimate

(3.7) λ(1)
smxsm(t1; τ, αmp(u, v)) ≥ ηsm(t1) > 0 on R2

follows from (2.3) if s = m and from (2.5) if s 6= m.
Further, using (C+

1 )–(C+
3 ) in place of (C−

1 )–(C−
3 ) and employing Corol-

laries 2.1(ii) and 2.2(ii), we conclude that

λ(2)
rmxrm(t2; τ, αmp(u, v)) ≥ 0 on R2 ,(3.8)

λ(2)
rp xrp(t2; τ, αmp(u, v)) ≥ %rp(t2) > 0 on R2 .(3.9)

Put ε1 = λ
(1)
sm and ε2 = λ

(2)
rp . So, by (3.7) and (3.9) the inequalities in

(3.4) hold with

δ1 = ηsm(t1) > 0 , δ2 = %rp(t2) > 0 .

Finally, (3.5) follows from the definition of ε1 and ε2, the estimates (3.6),
(3.8) and the condition (3.1). The proof is therefore complete.

R e m a r k. The conclusion of Theorem 3.1 remains true if the condition
(C−

3 ) is weakened to (2.2) with k = s provided s = m, or to the conditions
mentioned in the Remark to Corollary 2.2(i) provided s 6= m. A similar
comment is valid for (C+

3 ).

R e m a r k. The assertion of Theorem 3.1 holds if the pairs (s,m) in (C−
2 )

and (r, p) in (C+
2 ) are replaced by (s, p) and (r, m) respectively. Indeed, we

then repeat the argument with Lemma 3.1 replaced by the Remark following
it.

We conclude this section with some special cases of (0.1), (0.2). We start
with a linear differential equation

(3.10) x′ = A(t)x + g(t) ,

where A is an n× n matrix and g is an n-vector function continuous on J .
An application of Theorem 3.1 to (3.10) gives the following result.

Corollary 3.1. Let A be an n × n matrix continuous on J , and let
(s,m, r, p) ∈ Mn

0 and τ ∈ J . Suppose further that

(CL−
1 ) there exists Λ1 ∈ ∆ such that A◦ ∈ D−

Λ1
(J1);

(CL−
2 ) if s 6= m, then A◦ is upper irreducible on J1 with respect to (s,m);

(CL+
1 ) there exists Λ2 ∈ ∆ such that A◦ ∈ D+

Λ2
(J2);



260 M. GEWERT

(CL+
2 ) if r 6= p, then A◦ is lower irreducible on J2 with respect to (r, p).

Then if condition (3.1) holds, the problem (3.10), (0, 2) has a unique solution
for each α = (α1, . . . , αn) ∈ Rn.

In the papers [5–7] the problem (3.10), (0.2) was studied for (s,m, r, p) =
(1, 1, n, n), i.e., when the boundary condition (0.2) has the form

(3.11) x1(t1) = α1 , xj(τ) = αj (j = 2, . . . , n− 1) , xn(t2) = αn .

The results of the above-mentioned papers can be obtained as special
cases of Corollary 3.1. This is illustrated by the following example.

Example 3.1 ([5, Theorem 1]). Assume that the entries aij , i, j = 1, . . .
. . . , n, of A satisfy the following conditions.

(a1) aij(t) = 0 on J for i, j = 1, . . . , n, i ≥ j, except an1(t);

(b1) ain(t), alk(t)
{
≤ 0 , t ∈ J1 ,
≥ 0 , t ∈ J2 ,

if i and l + k are even,

and an1(t) ≥ 0, ain(t) ≥ 0, alk(t) ≥ 0 on J if i and l + k are odd, for
l = 1, . . . , n− 2 and k = 2, . . . , n− 1.

Then for each α = (α1, . . . , αn) ∈ Rn there exists a unique solution of
(3.10), (3.11).

Indeed, we note that for the boundary condition (3.11) the hypotheses
(CL−

2 ) and (CL+
2 ) are vacuous. On the other hand, it is straightforward

to verify that (a1), (b1) imply (CL−
1 ), (CL+

1 ) with Λ1 and Λ2 defined by
the vectors λ(1) = (1,−1, . . . , (−1)n,−1) ∈ Rn and λ(2) = (1, . . . , 1) ∈ Rn,
respectively. Moreover, (3.1) holds, too. As the hypotheses of Corollary 3.1
are satisfied, the desired results follows.

The above example demonstrates that Corollary 3.1 is an improvement
on [5, Theorem 1]. In a similar way it is easy to verify that Corollary 3.1
improves [6, Theorem 2; 7, Theorem 2].

We conclude this section with some facts concerning two-point boundary
value problems as special cases of (0.1), (0.2). In particular, if τ = t2 then
(0.2) just reduces to the two-point boundary condition of the form

(3.12) xs(t1) = αm , xj(t2) = αj (j = 1, . . . , n, j 6= m) ,

where s,m ∈ {1, . . . , n}. On the other hand, if τ = t1 then (0.2) reduces to

(3.13) xj(t1) = αj , xr(t2) = αp (j = 1, . . . , n, j 6= p) ,

where r, p ∈ {1, . . . , n}. A detailed analysis of the proof of Theorem 3.1
gives the following result for the problems (0.1), (3.12) and (0.1), (3.13).

Corollary 3.2. (i) Let f : J×Rn → Rn satisfy conditions (A) and (B)
and let s,m ∈ {1, . . . , n}. Assume that conditions (C−

1 )–(C−
3 ) hold. Then
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for each α = (α1, . . . , αn) ∈ Rn there exists a unique solution of the problem
(0.1), (3.12).

(ii) Let f : J × Rn → Rn satisfy conditions (A) and (B) and let r, p ∈
{1, . . . , n}. Assume that conditions (C+

1 )–(C+
3 ) hold. Then for each α =

(α1, . . . , αn) ∈ Rn there exists a unique solution of the problem (0.1), (3.13).

R e m a r k. In the special case of two-point boundary value problems
of the form (0.1), (3.12) and (0.1), (3.13), Corollary 3.2 is a refinement of
Theorem 4.1 in [9].

4. Applications of the main theorem. In the rest of this paper
we shall analyse the result of the previous section in the case that (0.1) is
replaced by an nth order differential equation of the form

(4.1) x(n) = g(t, x, x′, . . . , x(n−1))

and consequently, the condition (0.2) by

(4.2) x(s−1)(t1) = αm , x(j−1)(τ) = αj , x(r−1)(t2) = αp

(j = 1, . . . , n, j 6= m, p, m 6= p) ,

where s,m, r, p ∈ {1, . . . , n}.
Corresponding to hypotheses (A) and (B) it will be assumed that

g(t, x1, . . . , xn) satisfies the following conditions:

(A′) g and its partial derivatives ∂g/∂xi, i = 1, . . . , n, are continuous on
J × Rn.

(B′) All solutions of all initial value problems for (4.1) extend to J .

We say that a quadruple (s,m, r, p) belongs to the class:

(i) Mn
1 if (s,m, r, p) ∈ Mn

0 , m + p is odd and either s ≤ m and r ≤ p,
or s ≤ p and r ≤ m;

(ii) Mn
2 if (s,m, r, p) ∈ Mn

1 and p < n.

We can derive some concrete results about the existence and uniqueness
of solutions to the problem (4.1), (4.2) as an application of Theorem 3.1.

Theorem 4.1. Let the function g in (4.1) satisfy (A′) and (B′) and let
t1 < τ < t2. Assume that

(CE−
1 ) (−1)n−i∂g(t, z(t))/∂xi ≤ 0 on J1, i = 1, . . . , n − 1, for every

z ∈ C1;
(CE+

1 ) ∂g(t, z(t))/∂xi ≥ 0 on J2, i = 1, . . . , n− 1, for every z ∈ C2.

Then for each α = (α1, . . . , αn) ∈ Rn and (s,m, r, p) ∈ Mn
2 there exists a

unique solution of (4.1), (4.2).

P r o o f. Fix (s,m, r, p) ∈ Mn
2 . The problem (4.1), (4.2) is equivalent to

(0.1), (0.2) with f(t, x1, . . . , xn) = (x2, . . . , xn, g(t, x1, . . . , xn)). To conclude
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the proof it suffices to verify the assumptions of Theorem 3.1.
First of all note that for the Jacobian matrix fx(t, x) of f = (f1, . . . , fn)

defined as above we have ∂fi/∂xi+1 = 1, i = 1, . . . , n−1, ∂fn/∂xi = ∂g/∂xi,
i = 1, . . . , n, and the other entries are zero.

Let Λ1 be the matrix determined by the n-vector λ
(1)
1 = (1,−1, . . .

. . . , (−1)n+1) and let Λ2 be the same as in Example 3.1. Conditions (C−
1 ),

(C+
1 ) of Theorem 3.1 are then immediate consequences of assumptions

(CE−
1 ), (CE+

1 ), respectively.
Let U = (uij) denote the matrix such that ui,i+1 = 1 for i = 1, . . . , n− 1

and uij = 0 otherwise. It is easy to see that U ∈ D−
Λ1

(J1) ∩ D+
Λ2

(J2). Next,
the definition of U together with (CE−

1 ) and (CE+
1 ) implies that U is a

major-matrix of {f◦x(t, z(t)) : z ∈ C1} and a minor-matrix of {f◦x(t, z(t)) :
z ∈ C2}. Moreover, note that U is irreducible on J1 and J2 with respect to
each pair of indices (i, j) with j > i. This together with the definition of
Mn

1 (⊃ Mn
2 ) and the second remark to Theorem 3.1 implies that conditions

(C−
2 ) and (C+

2 ) of Theorem 3.1 hold.
Now, it is easy to verify that the conditions mentioned in the Remark

after Theorem 3.1 (replacing (C−
3 ) and (C+

3 )) hold, since (s,m, r, p) ∈ Mn
2 .

Finally, we note that Λ1 and Λ2 satisfy (3.1) since by assumption m + p
is odd. Hence the assertion of the theorem is a consequence of Theorem 3.1.
The proof is complete.

Theorem 4.2. Let the hypotheses of Theorem 4.1 be satisfied. In addi-
tion, assume that

(CE−
2 ) ∂g(t, z(t))/∂xn ≤ bn(t) on J1 for every z ∈ C1, where bn is a

function continuous on J1;
(CE+

2 ) ∂g(t, z(t))/∂xn ≥ cn(t) on J2 for every z ∈ C2, where cn is a
function continuous on J2.

Then for each α = (α1, . . . , αn) ∈ Rn and (s,m, r, p) ∈ Mn
1 there exists

a unique solution of (4.1), (4.2).

P r o o f. The proof can be carried out along the same lines as for The-
orem 4.1. Here assumptions (C−

3 ) and (C+
3 ) follow from (CE−

2 ) and (CE+
2 )

respectively.

R e m a r k. The results of this part of the present section are related to
some results found in [1, 2, 4, 9]. In particular, [4, Theorem 2] follows from
Theorem 4.2. On the other hand, for g satisfying condition (A′), Theorem 4.2
generalizes and improves [1, Theorem 3.5], [2, Theorem 4.1] and [9, Theo-
rems 4.6–4.8]. Moreover, Theorem 4.1 is a generalization of [9, Theorem 3.3].

Theorem 4.3. Let the hypotheses of Theorem 4.2 be satisfied. In addi-
tion, assume that
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(CE−
3 ) (−1)n−1∂g(t, z(t))/∂x1 ≤ b1(t) on J1 for every z ∈ C1, where

b1 ≤ 0 is a nontrivial function continuous on J1;
(CE+

3 ) ∂g(t, z(t))/∂x1 ≥ c1(t) on J2 for every z ∈ C2, where c1 ≥ 0 is a
nontrivial function continuous on J2.

Then for each α = (α1, . . . , αn) ∈ Rn and (s,m, r, p) ∈ Mn
0 there exists

a unique solution of (4.1), (4.2).

P r o o f. Let U be as in the proof of Theorem 4.1. Put U1(t) = U on J1

(U2(t) = U on J2), except the (n, 1) entry which equals b1 (resp. c1).
The above definition together with (CE−

3 ) (resp. (CE+
3 )) implies that

U1 is a major-matrix of the family {f◦x(t, z(t)) : z ∈ C1} (resp. U2 is a
minor-matrix of {f◦x(t, z(t)) : z ∈ C2}) defined in the proof of Theorem 4.1.
Moreover, U1 (resp. U2) is irreducible on J1 (resp. J2) with respect to each
pair of indices (i, j), i 6= j.

Therefore the proof of the theorem can be carried out along the same
lines as for Theorem 4.1, but with U1 on J1 and U2 on J2 instead of U .

We close this paper with a simple example considered in [1, 2].

Example 4.1. Consider the third-order problems of the type

x′′′ = tx + x′ + x′′ (= g(t, x, x′, x′′)) ,(4.3)
x(t1) = α2 , x(0) = α1 , x(t2) = α3 .(4.4)

It is easy to verify that the function g(t, x1, x2, x3) in (4.3) satisfies the
assumptions of Theorem 4.2 for n = 3 and an arbitrary interval J = [t1, t2]
(t1 < 0 < t2). Moreover, the condition (4.4) is determined by the quadruple
(1, 2, 1, 3) ∈ M3

1 . Therefore a straightforward application of Theorem 4.2
ensures the existence and uniqueness of the solution of (4.3), (4.4).

Note that from the results in [1, 2] it only follows that the problem (4.3),
(4.4) has a unique solution provided that the length of J satisfies a certain
estimate.
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