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0. Introduction. This paper presents conditions for the existence and
uniqueness of solutions for multipoint boundary value problems of the form
(0.1) = f(t,x), x=(x1,...,75),

(0.2) zs(t1) =am, z;(1)=05, x.(t2) =0y

(jzl?""n7 j#m7p7 m#p)
where f : [t1,t2] x R" — R, 7 € [t1,t2], s,m,r,p € {1,...,n}, n > 3,
and a = (aq,...,a,) € R™. Specifically, we present conditions where some
restriction on the signs of the entries in the Jacobian matrix of f plays a
role.

In [8] the author has given such a criterion for a certain class of two-point
boundary value problems for Eq. (0.1). The first results of this nature were
established by Garner [5, 6] and Garner and Burton [7]. Their theorems
only concern the situation when (0.1) is linear and (s, m,r,p) = (1,1,n,n).
Results in the same spirit, with an nth-order (n > 3) differential equation
in place of (0.1), have been obtained in [4] for linear cases and in [1, 2,
9] for nonlinear cases. The principal result of the present paper is Theo-
rem 3.1, which generalizes the theorems in [5-7]. One can also derive as
applications of this theorem various results which, in some cases, improve
the theorems in [1, 2, 4, 9]. These applications are presented in the last
section.

1. Notation and definitions. We shall assume that all matrices
introduced in this paper are real n x n matrices. For a matrix A = (a;;) the
matrix diag(aii,...,an,) will be denoted by diag A. The symbol A° will
denote the matrix A —diag A. The set of all matrices A = (\;;) with entries
of the form

)\ij:)\i)\j7 i,jzl,...,n,
where \; = £1, ¢ = 1,...,n, will be denoted by A. It is clear that A
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consists of exactly 27! different symmetric matrices having all entries equal
to 1 or —1.

DEFINITION 1.1. Let A be a matrix in A and let J C R. A matrix
A = (a;j(t)), t € J, belongs to the class D} (J) if

)\ijaij(t)ZO OIIJ, i,j:L...,n,
and A is in D (J) if —A € D} (J). The class D} (J) was used in [8].
DEFINITION 1.2. Let A € A and J C R. A matrix U € D} (J)

(U € D, (J)) is said to be a minor-matriz of a family F C D} (J) (resp.
F cD,(J)) if for each F € F

Xijfij(t) > Nijuii(t) onJ, i,j=1,...,n,
where F' = (f;;) and U = (u;;). If

Xijfii(t) < Xijuii(t) onJ, i,j=1,...,n,
for each F' € F, then U is said to be a major-matriz of F.

It is clear that for every F C Df(J) (F C D;(J)) the matrix with all
entries zero is the trivial minor-matrix (resp. major-matrix) of F.

DEFINITION 1.3. A matrix U = (u;(t)), t € J, is said to be upper
(lower) irreducible on J with respect to a pair of indices (s,m), s # m
(sth row and mth column) if there exist a finite sequence ko, k1, ..., kj—1
of indices in {1,...,n} and a nondecreasing (resp. nonincreasing) sequence
&1,...,&—1 of points in J such that

Ukykysr (§q41) #0  forg=0,1,...,1 -2,
kg #kyp1 forq=0,1,....,01-2, ko=s, k_1=m.

Clearly it is sufficient to consider | < n.
U is irreducible on J with respect to (s,m), s # m, if U is upper and
lower irreducible on J with respect to (s, m).

We note here that if there exists tg € J such that the constant matrix
U(to) is irreducible in the classical sense then U is irreducible on J with
respect to each pair of indices.

The interval J = [t1,t2] will be fixed throughout this paper. For 7 € J,
set J; = [t1,7] and Jo = [7,t2]. Moreover, we denote by C; (i = 1,2) the
class of all continuous n-vector functions on J; (i = 1,2).

2. Preliminary estimates. This section will be devoted to a variety of
estimates concerning partial derivatives (with respect to the initial values)
of solutions of (0.1). As will be seen these estimates play an essential role.

In the sequel we make the following assumptions with regard to (0.1).
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(A) Both f = (fi1,..., fn) and its Jacobian matrix f, = (fi;), where
fij = 0fi/0x;, 1,7 =1,...,n, are continuous on J x R™.
(B) All solutions of all initial value problems for (0.1) extend to J.

It is well known that if the right-hand side of (0.1) is as stated above
then for each initial condition z(7) = a, where (7,a) € J x R™, (0.1) has a
unique solution x defined on the whole of J. That solution will be denoted
by z(t) = z(t;7,a). It is also well known that the solution z(¢;7,«) is
continuously differentiable with respect to the initial values (7, ) € J x R™.

Fix (1,a) € J x R™. The linear differential system v’ = f,.(¢,z(t))y, t €
J, is called the variational equation along x(t) = z(t; 7, ). It is known that
the matrix X (¢;7,a) = (2;5(¢; 7, @), where x;; = 0x;/0cj, i,j = 1,...,n,
is the fundamental matrix solution of this equation.

Combining these comments with Lemma 2.2 and Corollary 2.1 of [8], we
infer the following result.

LEMMA 2.1. Let A € A and 7 € J. If the family {f2(t,2(t)) : z € Ca} is
contained in D} (Ja), then so is {X(t;7,a) : « € R"}. More precisely, for
each a € R™ the following estimates hold on Js:

(21) )\ij.%'ij(t; T, Oé) > 52‘]’ exp ff“(w,:v(w)) dw

T

t T1 Ti—2 Ti-1
+ f dry f dry ... f <<exp f fi(w, z(w)) dw)
-2 Tq
< [T Msivss Fiaiair o a(rggn))exp [ figi, (w, x(w)) dw) dri—
q=0 Tg+1

t
> 05 €xp ffii(w,x(w))dw (to=1t), 4,j=1,...,n,

where x(t) = z(t; 7, ) and ig,i1,...,0—1 are arbitrary indices in {1,...,n}
such that 1o = %, 1j—1 = j, iq # ig+1 for ¢ = 0,1,...,1 — 2, and d;; is the
Kronecker delta.

The fundamental matrix solution X is also defined to the left of 7. A
result parallel to Lemma 2.1, concerning the fundamental matrix solution to
the left of 7, is useful in later applications. We state it as a lemma, omitting
its proof.

LEMMA 2.2. Let A € A and T € J. If the family {f2(t,2(t)) : z € C1}
is contained in Dy (J1), then {X(t;7,a) : a € R"} is contained in D (Jy),
and for each o € R™ the estimate (2.1) holds on J;.
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Remark. The assumptions of Lemmas 2.1 and 2.2 yield that the ith
coordinate f; of f is quasi-monotone with respect to x;, for i,j =1,...,n,
i # j. Precisely, f; is nondecreasing (nonincreasing) with respect to z; if
Aij =1 (resp. —1).

COROLLARY 2.1. (i) In addition to the hypotheses of Lemma 2.2 assume

that for some k € {1,...,n} there exists a function by continuous on Ji
such that

(2.2) Jirk(t,2(t) < bri(t) on Jy for every z € Cy .

Then

(2.3) ek Tk (67 0) > nee(t)  on Jp X R™,

where Nk 15 a continuous positive function on Ji.
(ii) In addition to the hypotheses of Lemma 2.1 assume that for some

ke {1,...,n} there exists a function cg continuous on Jo such that
(2.4) fer(t,z(t) > cxr(t)  on Jy for every z € Cy.
Then

MekTrk(t7,0) > ok(t)  on Jo x R™,
where ok 1S a continuous positive function on Jo.
Proof. This is an immediate consequence of (2.1) with i = j = k.

COROLLARY 2.2. (i) Let the hypotheses of Lemma 2.2 be satisfied. As-
sume that the family {f2(t, z(t)) : z € C1} has a major-matriz which is upper
irreducible on Jy with respect to a pair of indices (s,m), s # m. In addition,
assume that the family {diag f.(t,z(t)) : z € C1} is uniformly upper bounded
on Jy, i.e., (2.2) holds for k=1,...,n. Then

(2.5) AsmTsm (E;T,0) > Nsm(t)  on Jp x R™,

where Negm 15 a continuous positive function on Jy.

(ii) Let the hypotheses of Lemma 2.1 be satisfied. Assume that the family
{f2(t,2(t)) : z € Ca} has a minor-matriz which is lower irreducible on Jo
with respect to a pair of indices (r,p), r # p. In addition, assume that the
family {diag f.(t,2(t)) : z € Ca} is uniformly lower bounded on Ja, i.e., (2.4)
holds for k =1,...,n. Then

ArpZrp (BT, 00) > 0pp(t)  on Jo X R™,
where orp 15 a continuous positive function on Js.

Proof. We only prove (i), the proof of (ii) being quite similar.
Let U = (u;5) € D, (J1) be an upper irreducible (with respect to (s,m))
major-matrix of {f2(¢,2(t)) : z € C1}. Then it is easy to deduce from (2.1)
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with (¢,7) = (s,m) and from Definitions 1.2 and 1.3 that

Ti—2 Ti—1

AsmTsm (67, 00) > ftdﬁ ]‘Id’TQ... f ((exp f fmm(w,x(w))dw)

T

-2 Tq
X H Akykgs1 Whkykyr (Tg41) €XP f Jroky (W, z(w)) dw) dr—1
q=0 Tg+1

for every (t,a) € J; x R™. Hence, by (2.2) we have

Ti—2 Ti—1

(2.6)  Asmxsm(t;7,0) > fdﬁ deg... f ((exp f bmm(w)dw>

T

-2 Tq
X H )\quq+luquq+1 (Tq+1)exp f bquq (w) dw)dn,l
q=0 Ta+1

for every (t,a) € J1 xR". Therefore (2.5) holds on J; x R" with 7, defined
by the right-hand side of (2.6). The fact that 1., (t) > 0 for t € J; follows
from Definition 1.3 and the properties of the exponential function. This
proves the corollary.

Note that the proof does not require the validity of (2.2) for all k €
{1,...,n}. The following remark substantiates this observation.

Remark. The assertion of Corollary 2.2(i) remains true if (2.2) only
holds for k = kg, k1,..., k;_1, where the sequence kg, k1,...,k;_1 occurs in
the conditions of Definition 1.3. A similar comment is also valid for part (ii)
of Corollary 2.2.

3. The main results. This section is concerned with conditions suf-
ficient to ensure the uniqueness and existence of solutions of the problem
(0.1), (0.2). They are natural extensions of some of the results in [5-7].

In the subsequent discussion let M} = {(s,m,r,p) : s,m,r,p € {1,...
...,n}, and m < p}.

The main result of this paper reads as follows.

THEOREM 3.1. Let f : J x R" — R" satisfy conditions (A) and (B), and
let (s,m,r,p) € M and t1 < T < ty. Assume that

(Cy) there exists Ay = (AZ(;)) € A such that {f2(t,2(t)) : z € C1} C
Dy, (J1);

(C3) if s # m then {fo(t,2(t)) : z € C1} has a major-matriz which is
upper irreducible on Jy with respect to (s,m);

(C3) {diag f4(t,2(t)) : z € C1} is uniformly upper bounded on Jy;

(CT) there exists Ay = ()\532)) € A such that {f2(t,2(t)) : z € Co} C
D}, (J2);
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(CT) if r # p then {f2(t,2(t)) : 2 € C2} has a major-matriz which is
lower irreducible on Jo with respect to (r,p);

(CT) {diag f.(t,2(t)) : 2 € Ca} is uniformly lower bounded on Jo.
Then, if
(3.1) AWN@) — )\(1))\(2)

sm”\rp rm
the boundary value problem (0.1), (0.2) has a unique solution for each o =
(a1,...,ap) € R™

The idea of the proof is the following. Fix oo = (av,...,a,) € R™. With
each (u,v) € R? we associate a vector ay,,(u,v) € R™ as follows:

Amp (U, V) = (1,00 O 1, Uy Q15 -, O 1, Uy Qg 1, - -5 Qi)
To prove Theorem 3.1 we will show that the system of equations
Ts(t1; Ty Qmp (U, V) =, T (E25 T, A (U, v)) =
where s and z, are the sth and rth coordinates of the solution z(t) =

x(t; 7, amp(u, v)) of (0.1), has exactly one solution (u,v).
For this we require the following result.

LeEMMA 3.1. Consider the system of equations
(3.2) ¢1(u,v) =ar,  ¢2(u,v) = az,
where the functions ¢1 and ¢o have continuous partial derivatives throughout

R2. Assume that there exist constants €1 # 0, €5 # 0 and 6; > 0, do > 0
such that the following conditions hold on RZ:

01 ¢

6¢1 6¢2
. > 2 >
(3 3) €1 ou (51 5 81} 52 ,

1528787
Then for each pair (a1,az2) of real numbers the system (3.2) has a unique
solution (u,v).

0.

Proof. This lemma can be established by repeating the arguments used
in the proof of [3, Theorem 8.1(ii)] with appropriate changes.

Remark. It is clear that the assertion of Lemma 3.1 also holds if (3.3)
is replaced by

9¢

D055, ae200

12250 Do =
We are now ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. In view of Lemma 3.1 it is enough to
show that (3.3) holds with ¢; and ¢2 replaced by x4(t1;7, amp(u,v)) and
xr(t2; T, amp(u, v)), respectively. Thus it suffices to verify that

(3.4)  e1xsm(t1; Ty amp(u,v)) > 01, e2mrp(te; Ty amp(u,v)) > I,

(3.5) £1692%5p (113 Ty A (U V) Ty (E25 T, Qi (1, v)) < 0
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on R?, where 47,85 > 0.
By (C;) the hypotheses of Lemma 2.2 hold with A = A;. Consequently,
choosing (i, 7) equal to (s,p) and using (2.1) we deduce that

(3.6) )\Sj)xsp(tl; T, Qmp(u,v)) >0 on R?.

By (C7) and (C3) the hypotheses of Corollary 2.1(i) hold with A = A;.
On the other hand, by (C7])-(C3) the hypotheses of Corollary 2.2(i) hold
with A as above. Therefore the estimate
(3.7) AW 2 g (£15 7, Qo (U, ) > N (t1) >0 on R?
follows from (2.3) if s = m and from (2.5) if s # m.

Further, using (C])—(C3) in place of (C7)—(C3 ) and employing Corol-
laries 2.1(ii) and 2.2(ii), we conclude that
(3.8) A2 2y (ta; Ty Qmp(u,v)) >0 on R?,

(3.9) )\7(ﬂ2p):crp(t2;7, Qmp(1,0)) > 0rp(t2) >0 on R?.

Put &; = A and £ = )\%). So, by (3.7) and (3.9) the inequalities in
(3.4) hold with
51 :nsm(tl) >O, 52 :Qrp(tg) > 0.
Finally, (3.5) follows from the definition of £; and &3, the estimates (3.6),
(3.8) and the condition (3.1). The proof is therefore complete.

Remark. The conclusion of Theorem 3.1 remains true if the condition
(C3) is weakened to (2.2) with k = s provided s = m, or to the conditions
mentioned in the Remark to Corollary 2.2(i) provided s # m. A similar
comment is valid for (C7).

Remark. The assertion of Theorem 3.1 holds if the pairs (s,m) in (C3 )
and (r,p) in (CJ) are replaced by (s, p) and (r,m) respectively. Indeed, we
then repeat the argument with Lemma 3.1 replaced by the Remark following
it.

We conclude this section with some special cases of (0.1), (0.2). We start
with a linear differential equation

(3.10) = At)r + g(t),
where A is an n X n matrix and ¢ is an n-vector function continuous on J.

An application of Theorem 3.1 to (3.10) gives the following result.

COROLLARY 3.1. Let A be an n X n matrix continuous on J, and let
(s,m,r,p) € M} and T € J. Suppose further that

(CLy) there exists Ay € A such that A° € D (J1);

(CLy) if s # m, then A° is upper irreducible on Jy with respect to (s,m);

(CLT) there exists Ay € A such that A° € D;L(JQ);
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(CLY) if r # p, then A° is lower irreducible on Jy with respect to (r,p).

Then if condition (3.1) holds, the problem (3.10), (0,2) has a unique solution
for each a = (a, ..., ap) € R™.

In the papers [5-7] the problem (3.10), (0.2) was studied for (s, m,r,p) =
(1,1,n,n), i.e., when the boundary condition (0.2) has the form

(3.11)  zi(t1) =a1, zi(t)=«a; ((=2,....n—1), z,(t2) =an.

The results of the above-mentioned papers can be obtained as special
cases of Corollary 3.1. This is illustrated by the following example.

EXAMPLE 3.1 ([5, Theorem 1]). Assume that the entries a;5,4,j =1,...
...,n, of A satisfy the following conditions.

(a1) a;j(t) =0on J fori,j =1,...,n, 1> j, except ani(t);

<
(b1) ain(t), alk(t){ N 8’ i g jl " if i and [ + k are even,
=Y, 2,

and an1(t) > 0, ain(t) > 0, aix(t) > 0 on J if ¢ and [ + k are odd, for
l=1,....n—2and k=2,...,n— 1.

Then for each a = (aq,...,a,) € R™ there exists a unique solution of
(3.10), (3.11).

Indeed, we note that for the boundary condition (3.11) the hypotheses
(CLy) and (CLF) are vacuous. On the other hand, it is straightforward
to verify that (a;), (by) imply (CL{), (CL{) with A; and A, defined by
the vectors A1) = (1,-1,...,(=1)",—1) € R” and A® = (1,...,1) € R",
respectively. Moreover, (3.1) holds, too. As the hypotheses of Corollary 3.1
are satisfied, the desired results follows.

The above example demonstrates that Corollary 3.1 is an improvement
on [5, Theorem 1]. In a similar way it is easy to verify that Corollary 3.1
improves [6, Theorem 2; 7, Theorem 2].

We conclude this section with some facts concerning two-point boundary
value problems as special cases of (0.1), (0.2). In particular, if 7 = t5 then
(0.2) just reduces to the two-point boundary condition of the form

(3.12) zs(t) =am, zj(te)=qa; ((G=1,...,n, j#m),
where s,m € {1,...,n}. On the other hand, if 7 = ¢; then (0.2) reduces to
(3.13) zj(t1) =a;, z(t2)=0a, (Y=1,...,n, j#D),

where r,p € {1,...,n}. A detailed analysis of the proof of Theorem 3.1
gives the following result for the problems (0.1), (3.12) and (0.1), (3.13).

COROLLARY 3.2. (i) Let f : JxR™ — R"™ satisfy conditions (A) and (B)
and let s,m € {1,...,n}. Assume that conditions (C; )~(C3) hold. Then
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for each a = (a, ..., ap) € R™ there exists a unique solution of the problem
(0.1), (3.12).

(ii) Let f : J x R™ — R™ satisfy conditions (A) and (B) and let r,p €
{1,...,n}. Assume that conditions (C{)}-(C3) hold. Then for each a =
(a1,...,an) € R™ there exists a unique solution of the problem (0.1), (3.13).

Remark. In the special case of two-point boundary value problems
of the form (0.1), (3.12) and (0.1), (3.13), Corollary 3.2 is a refinement of
Theorem 4.1 in [9].

4. Applications of the main theorem. In the rest of this paper
we shall analyse the result of the previous section in the case that (0.1) is
replaced by an nth order differential equation of the form

(4.1) ™ = g(t,z,2', ... ™Y

and consequently, the condition (0.2) by

4.2) 2Vt =am, 29V V@) =q;, 20 V() =aq
(G=1,...,n, j#m,p, m#p),

where s,m,r,p € {1,...,n}.

Corresponding to hypotheses (A) and (B) it will be assumed that
g(t,z1,...,x,) satisfies the following conditions:

(A’) g and its partial derivatives dg/dx;, i = 1,...,n, are continuous on
J x R™,

(B’) All solutions of all initial value problems for (4.1) extend to J.
We say that a quadruple (s, m,r,p) belongs to the class:
(i) M if (s,m,r,p) € M§, m + p is odd and either s < m and r < p,
or s <pandr <m;
(ii) M% if (s,m,r,p) € M]* and p < n.
We can derive some concrete results about the existence and uniqueness

of solutions to the problem (4.1), (4.2) as an application of Theorem 3.1.

THEOREM 4.1. Let the function g in (4.1) satisfy (A’) and (B") and let
th < T <ty. Assume that

(CE7) (=1)""%9g(t,2(t))/0x; < 0 on J1, i = 1,...,n — 1, for every
z € Cy;

(CEY) 0g(t,2(t))/0x; >0 on Jy, i =1,...,n— 1, for every z € Cs.
Then for each o = (o, ...,a,) € R™ and (s,m,r,p) € M3 there exists a
unique solution of (4.1),(4.2).

Proof. Fix (s,m,r,p) € M3. The problem (4.1), (4.2) is equivalent to
(0.1), (0.2) with f(t,z1,...,2n) = (x2,...,2Zn,g(t,x1,...,2,)). To conclude
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the proof it suffices to verify the assumptions of Theorem 3.1.

First of all note that for the Jacobian matrix f.(t,x) of f = (f1,..., fn)
defined as above we have 0f; /0x;41 = 1,i=1,...,n—1, 0f,/0x; = 0g/0x;,
t=1,...,n, and the other entries are zero.

Let A; be the matrix determined by the m-vector )\51) = (1,-1,...

.o, (=1)"*1) and let Ay be the same as in Example 3.1. Conditions (C7 ),
(C7) of Theorem 3.1 are then immediate consequences of assumptions
(CE]), (CE]), respectively.

Let U = (u;5) denote the matrix such that u; ;41 =1fori=1,...,n—1
and u;; = 0 otherwise. It is easy to see that U € Dy (J1) N D (Jz). Next,
the definition of U together with (CE]) and (CE{) implies that U is a
major-matrix of {f2(¢,2(t)) : z € C1} and a minor-matrix of {f2(¢t, z(t)) :
z € C2}. Moreover, note that U is irreducible on J; and Jo with respect to
each pair of indices (4,j) with j > i¢. This together with the definition of
M7 (D M%) and the second remark to Theorem 3.1 implies that conditions
(C3) and (C3) of Theorem 3.1 hold.

Now, it is easy to verify that the conditions mentioned in the Remark
after Theorem 3.1 (replacing (C3) and (C3)) hold, since (s, m,r,p) € M5.

Finally, we note that A; and Aj satisfy (3.1) since by assumption m + p
is odd. Hence the assertion of the theorem is a consequence of Theorem 3.1.
The proof is complete.

THEOREM 4.2. Let the hypotheses of Theorem 4.1 be satisfied. In addi-
tion, assume that

(CEy) 0g(t,2(t))/0x, < b,(t) on Jy for every z € Cy, where by, is a
function continuous on Ji;

(CES) 0g(t,2(t))/0x, > cu(t) on Jo for every z € Ca, where ¢, is a
function continuous on J.

Then for each a = (aq,...,ay) € R™ and (s,m,r,p) € M{" there exists
a unique solution of (4.1),(4.2).

Proof. The proof can be carried out along the same lines as for The-
orem 4.1. Here assumptions (C3) and (C7) follow from (CE; ) and (CEj7)
respectively.

Remark. The results of this part of the present section are related to
some results found in [1, 2, 4, 9]. In particular, [4, Theorem 2] follows from
Theorem 4.2. On the other hand, for g satisfying condition (A’), Theorem 4.2
generalizes and improves [1, Theorem 3.5, [2, Theorem 4.1] and [9, Theo-
rems 4.6—4.8]. Moreover, Theorem 4.1 is a generalization of [9, Theorem 3.3].

THEOREM 4.3. Let the hypotheses of Theorem 4.2 be satisfied. In addi-
tion, assume that
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(CE3) (—=1)""1ag(t, 2(t))/0z1 < bi(t) on Jy for every z € Cy, where
b1 < 0 is a nontrivial function continuous on J;

(CEJ) 9g(t, 2(t))/0z1 > c1(t) on Jo for every z € Co, where ¢y >0 is a
nontrivial function continuous on Js.

Then for each o = (o, ..., o) € R™ and (s,m,r,p) € My there ezists
a unique solution of (4.1),(4.2).

Proof. Let U be as in the proof of Theorem 4.1. Put U;(¢t) = U on Jy
(Us(t) = U on Js), except the (n, 1) entry which equals by (resp. ¢1).

The above definition together with (CE;) (resp. (CEZ)) implies that
U; is a major-matrix of the family {f2(¢,2(¢)) : z € C1} (resp. Uz is a
minor-matrix of {f2(¢, 2(t)) : z € C2}) defined in the proof of Theorem 4.1.
Moreover, Uy (resp. Us) is irreducible on J; (resp. J2) with respect to each
pair of indices (i,7), i # j.

Therefore the proof of the theorem can be carried out along the same
lines as for Theorem 4.1, but with U; on J; and Uy on J> instead of U.

We close this paper with a simple example considered in [1, 2].
ExAaMPLE 4.1. Consider the third-order problems of the type
(4.3) " =te+2 +2" (=g(t,x 2 2")),
(4.4) z(ty)) =z, x(0)=a, x(t2)=as.

It is easy to verify that the function g(¢,z1,x2,x3) in (4.3) satisfies the
assumptions of Theorem 4.2 for n = 3 and an arbitrary interval J = [tq, t5]
(t1 < 0 < ta). Moreover, the condition (4.4) is determined by the quadruple
(1,2,1,3) € M3. Therefore a straightforward application of Theorem 4.2
ensures the existence and uniqueness of the solution of (4.3), (4.4).

Note that from the results in [1, 2] it only follows that the problem (4.3),
(4.4) has a unique solution provided that the length of J satisfies a certain
estimate.
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