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BY
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Refining the idea used in [24] and employing very careful computation,
the present paper shows that for 0 < p ≤ ∞ and k ≥ 1, there exists a
function f ∈ Ck

[−1,1], with f (k)(x) ≥ 0 for x ∈ [0, 1] and f (k)(x) ≤ 0 for
x ∈ [−1, 0], such that

lim sup
n→∞

e
(k)
n (f)p

ωk+2+[1/p](f, n−1)p
= +∞ ,

where e
(k)
n (f)p is the best approximation of degree n to f in Lp by poly-

nomials which are comonotone with f , that is, polynomials P so that
P (k)(x)f (k)(x) ≥ 0 for all x ∈ [−1, 1]. This theorem, which is a particu-
lar case of a more general one, gives a complete solution to the converse
result in comonotone approximation in Lp space for 1 < p ≤ ∞.

1. Introduction. Denote by CN
[−1,1] the class of real functions which

have N continuous derivatives on the interval [−1, 1], C[−1,1] = L∞[−1,1] =
C0

[−1,1], C∞[−1,1] the class of infinitely differentiable real functions on [−1, 1].
Let Lp

[a,b] be the space of pth power integrable real functions on [a, b], Πn

the class of algebraic polynomials of degree at most n, and

∆k = {f : ∆k
hf(x) ≥ 0, x ∈ [−1, 1− kh], h > 0} ,

where

∆k
hf(x) =

k∑
j=0

(−1)k−j

(
k

j

)
f(x + jh) .

Define

∆
k

= {f : sgn(x)∆k
hf(x) ≥ 0, x ∈ [−1, 1] \ {0}, x + kh ∈ [−1, 1]} .
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For f ∈ C[−1,1], let

‖f‖ = ‖f‖L∞[−1,1]
= max
−1≤x≤1

|f(x)| ,

and for f ∈ Lp
[a,b] and 0 < p < ∞,

‖f‖Lp

[a,b]
=

( b∫
a

|f(x)|p dx
)1/p

.

As usual, let En(f)p denote the best approximation to f ∈ Lp
[−1,1] in Lp

by algebraic polynomials of degree n; moreover, set En(f) = En(f)∞ and

ωm(f, t)p = sup{‖∆m
h f(x)‖Lp

[−1,1−mh]
: 0 < h ≤ t} ,

ωm(f, t) = ωm(f, t)∞ .

For f ∈ Lp
[−1,1] ∩∆k, let

E(k)
n (f)p = min{‖f − P‖Lp

[−1,1]
: P ∈ Πn ∩∆k} ,

E(k)
n (f) = E(k)

n (f)∞ ,

and for f ∈ Lp
[−1,1] ∩∆

k
,

e(k)
n (f)p = min{‖f − P‖Lp

[−1,1]
: P ∈ Πn ∩∆

k} ,

e(k)
n (f) = e(k)

n (f)∞ .

Presently, coapproximation of functions by algebraic polynomials is one
of the most active and interesting fields in approximation theory, and many
scholars focus especially on Jackson type estimates. In monotone approxi-
mation, G. G. Lorentz and K. Zeller [12] showed that for f ∈ C[−1,1] ∩∆1,

E(1)
n (f) ≤ Cω1(f, n−1) ,

and R. A. DeVore [3] proved that for f ∈ C[−1,1] ∩∆1,

E(1)
n (f) ≤ Cω2(f, n−1) .

In the case that f ∈ Ck
[−1,1], G. G. Lorentz [11] and R. A. DeVore [4]

showed that for k ≥ 1,

E(1)
n (f) ≤ C(k)n−kω1(f (k), n−1) .

There are corresponding results due to R. K. Beatson [1] and A. S. Shve-
dov [21], [22] in convex approximation for ω1(f, t) and ω2(f, t). A. S. Shve-
dov also investigated monotone and convex approximations in Lp space; his
result states that for f ∈ Lp

[−1,1] ∩∆k, k = 1, 2 and 1 ≤ p ≤ ∞,

E(k)
n (f)p ≤ Cω2(f, n−1)p .
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The above estimate also holds for general k ≥ 1, which was established
recently by X. M. Yu and Y. P. Ma [27].

Concerning the comonotone case, X. M. Yu [26] considers the problem
in which one approximates a continuous function f with a finite number of
changes of monotonicity on [−1, 1] by a polynomial comonotone with it, and
shows that such an approximation still has the Jackson type estimates for
ω2(f, n−1).

Other relevant materials can be found in [2], [5], [7], [9], [10], [15]–[20]
and [25].

On the other hand, there are several converse results. G. G. Lorentz and
K. L. Zeller [13] showed that there exists a function f ∈ C[−1,1] ∩∆k such
that for k ≥ 1,

lim sup
n→∞

E(k)
n (f)/En(f) = +∞ .

A. S. Shvedov [22] proved that for any given A, k and n ≥ k + 1, there
exists a function fn,k ∈ Ck

[−1,1] ∩∆k such that

E(k)
n (fn,k)p ≥ Aωk+2(fn,k, (k + 2)−1)p, 0 < p ≤ ∞ .

Although Shvedov’s result shows that the Jackson type estimate

E(k)
n (f) ≤ C(k)ωk+2(f, n−1)

cannot hold for all continuous functions, is it possible that it holds for any
particular f ∈ C[−1,1] ?

Using a result from [6] or [28], we can prove that for any fixed n and k,
Shvedov’s example fn,k satisfies

Em(fn,k) ≥ Cm−k ,

while since f
(k−1)
n,k ∈ Lip 1 we get

lim sup
m→∞

E(1)
m (fn,k)/Em(fn,k) < +∞ .

This discussion leads to the following problem:

Problem 1. Does there exist a function f ∈ C[−1,1] ∩∆k for k ≥ 1 such
that

lim sup
n→∞

E(k)
n (f)/ωk+2(f, n−1) = +∞?

In comonotone case one can ask a weak form of that:

Problem 2. Does there exist a function f ∈ C[−1,1] ∩∆
k

for k ≥ 1 such
that

lim sup
n→∞

e(k)
n (f)/ωk+2(f, n−1) = +∞?
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They appear not to be easy questions. In X. Wu and S. P. Zhou [23],
we showed a weaker result, which asserts that there exists a function f ∈
Ck

[−1,1] ∩∆k such that

lim sup
n→∞

E(k)
n (f)/ω2k+1(f, n−1) = +∞

for k ≥ 2 and

lim sup
n→∞

E(1)
n (f)/ω4(f, n−1) = +∞

for k = 1, while in [24] by using a new idea we constructed a counterexample
f ∈ Ck

[−1,1] ∩∆k such that for k ≥ 1,

lim sup
n→∞

E(k)
n (f)/ωk+3(f, n−1) = +∞ .

We are still unable to give a complete answer to Problem 1. However, by
refining the basic idea used in [24] and employing very careful computation,
the present paper will show a positive answer to Problem 2. Indeed, we will
consider Problem 2 in general Lp spaces.

Theorem 1. Let 0 < p ≤ ∞ and k ≥ 1. Then there exists a function
f ∈ Ck

[−1,1] ∩∆
k

such that

lim sup
n→∞

e(k)
n (f)p/ωk+2+[1/p](f, n−1)p = +∞ .

Theorem 1 follows as a particular case from the following more general
result.

Let f ∈ Lp
[−1,1] with f (k)(0) = 0. Write

ẽ (k)
n (f)p = min{‖f − P‖Lp

[−1,1]
: P ∈ Πn with P (k)(0) = 0} ,

and

kp =
{

k, 0 < p < ∞,
k − 1, p = ∞.

Theorem 2. Let 0 < p ≤ ∞, k ≥ 1 and 0 ≤ m ≤ kp. Then there exists
a function f ∈ Ck

[−1,1] ∩∆
k

such that

lim sup
n→∞

ẽ
(k)
n (f)p

n−mωk−m+2+[1/p](f (m), n−1)p
= +∞ .

Corollary. Let 0 < p ≤ ∞, k ≥ 1 and 0 ≤ m ≤ kp. Then there exists
a function f ∈ Ck

[−1,1] ∩∆
k

such that

lim sup
n→∞

ẽ
(k)
n (f)p

n−mEn(f (m))p
= +∞ .
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Throughout the paper, we will use C(x) to denote a positive constant
depending only upon x in case 1 ≤ p ≤ ∞ or depending only upon x and p
in case 0 < p < 1, which is different, in general, in different relations.

2. Proof of Theorem 2

Lemma 1 (1). Suppose that a > 0, α(x) = a2/(x2 − a2), gk(x, a) =
xkeα(x)+1, x ∈ (−a, a). Then

|g(k)
k (x, a)− k!| ≤ C(k)a−2x2, |x| < a .

P r o o f. This lemma is evidently true for a/2 ≤ |x| < a. Now suppose
|x| < a/2. Write

g
(k)
k (x, a) = k!eα(x)+1 + e

k∑
j=1

k!
j!

(
k

j

)
xj dj

dxj
eα(x)

= k!
(

1 +
x2

x2 − a2
+ O

((
x2

x2 − a2

)2))
+ e

k∑
j=1

k!
j!

(
k

j

)
xj dj

dxj
eα(x) .

We verify that ∣∣∣∣ d

dx
eα(x)

∣∣∣∣ ≤ C|x|a−2 ,

and by substituting y = x/a, we have∣∣∣∣ dj

dxj
eα(x)

∣∣∣∣ = a−j

∣∣∣∣ dj

dyj
exp

(
1

y2 − 1

)∣∣∣∣ ≤ C(k)a−j , 2 ≤ j ≤ k .

The proof is completed by combining the above results.

Lemma 2. Under the same notations as in Lemma 1, we have for 0 ≤
m ≤ k,

|g(m)
k (x, a)| = O(ak−m), x ∈ [−a, a] .

P r o o f. The argument is quite straightforward.

P r o o f o f T h e o r e m 2. We begin with the construction of a sequence
of functions {fn} such that for sufficiently large n ≥ N0,

fn ∈ C∞[−1,1] ∩∆
k
,

(1) This is Lemma 1 in [24]. We give the proof to make the paper self-contained.
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and for 0 ≤ m ≤ k,

(1)
∥∥∥∥f (m)

n (x)− (k + 1)!
(k −m + 1)!

xk−m+1 +
k!

(k −m)!
ε1+σ

n xk−m

∥∥∥∥
Lp

[−1,1]

= O(εk−m+1+σ+1/p
n ) ,

(2) ‖f (m)
n ‖ = O(1) ,

where (2)

εn = n−1−θ/2, θ = 1 + [1/p]− 1/p, σ =
θ

2(2 + θ)
.

In fact, let

gk(x, εn, σ) = ε1+σ
n gk(x, εn) + xk+1 − ε1+σ

n xk, x ∈ (−εn, εn) .

Then
g
(k)
k (x, εn, σ) = ε1+σ

n (g(k)
k (x, εn)− k!) + (k + 1)!x .

By Lemma 1,

g
(k)
k (x, εn, σ) ≥ (k + 1)!x−O(εσ

nx) for x ∈ [0, εn),

g
(k)
k (x, εn, σ) ≤ (k + 1)!x + O(εσ

nx) for x ∈ (−εn, 0),

that is, for sufficiently large n ≥ N0,

g
(k)
k (x, εn, σ) ≥ 0 for x ∈ [0, εn),

g
(k)
k (x, εn, σ) ≤ 0 for x ∈ (−εn, 0).

Put

fn(x) =
{

xk+1 − ε1+σ
n xk, |x| ≥ εn,

gk(x, εn, σ), |x| < εn.

Then it is not difficult to verify (2) and that fn ∈ C∞[−1,1] ∩∆
k
. Finally, (1)

can be deduced by applying Lemma 2.
Let

Fl(x) =
l∑

j=1

n
−θ/8
j fnj (x), Ql(x) = ql(x) + n

−θ/8
l (xk+1 − ε1+σ

nl
xk) ,

where ql(x) is the algebraic polynomial of best approximation of degree nl to
Fl−1(x), and {nl} is a subsequence of natural numbers chosen by induction:
Set n1 = N0,

nl+1 = 2(n8(k+2+[1/p])/θ
l + [‖F (M0)

l ‖](3)

+ [‖F (k+3)
l ‖] + [‖F (k+2+[1/p])

l ‖1/δ] + 1)

(2) Note that 0 < θ ≤ 1 for each 0 < p ≤ ∞.
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for l = 1, 2, . . . , where [x] is the greatest integer not exceeding x,

M0 = [(1 + θ/2)(k + 1 + σ + 1/p)] + 2,

δ = 1 +
[
1
p

]
− 1

p
− 15θ

16
=

1
16

+
1
16

[
1
p

]
− 1

16p
.

It is not difficult to see that

(4) ‖Fl−1 − ql‖ = O(‖F (M0)
l−1 ‖n−M0

l ) .

By Lemma 1 and a theorem on simultaneous approximation to continuous
functions and their derivatives from D. Leviatan [8],

(5) |q(k)
l (0)| = |F (k)

l−1(0)− q
(k)
l (0)| = O(‖F (k+3)

l−1 ‖n−3
l ) .

From the expression

Fl(x)−Ql(x) = Fl−1(x)− ql(x) + n
−θ/8
l (fnl

(x)− xk+1 + ε1+σ
nl

xk) ,

noticing that

‖fnl
(x)− xk+1 + ε1+σ

nl
xk‖Lp

[−1,1]
=

∥∥∥∥eε1+σ
nl

xk exp
(

ε2
nl

x2 − ε2
nl

)∥∥∥∥
Lp

[−εnl
,εnl

]

∼ εk+1+σ+1/p
nl

,
together with (3), (4), we have

‖Fl −Ql‖Lp

[−1,1]
∼ n

−θ/8
l ‖fnl

− xk+1 + ε1+σ
nl

xk‖Lp

[−1,1]
(6)

∼ n
−θ/8
l εk+1+σ+1/p

nl
.

On the other hand, we see

Q
(k)
l (0) = q

(k)
l (0)− k!n−θ/8

l ε1+σ
nl

;
thus

(7) |Q(k)
l (0)| ≥ C(k)n−θ/8

l ε1+σ
nl

= C(k)n−1−7θ/8
l

follows from (3) and (5).
Now (6) and (7) imply that

(8) ε−k−1/p
nl

‖Fl −Ql‖Lp

[−1,1]
≤ C(k)|Q(k)

l (0)| .

By a Nikol’skĭı type inequality for trigonometric polynomials (3) (see
P. G. Nevai [14, Theorem 1 and the formula in line 11, p. 240] for the
case 0 < p < 1), for any r ∈ Πnl

with r(k)(0) = 0, we have

|Q(k)
l (0)| = |Q(k)

l (0)− r(k)(0)| ≤ C(k)nk+1/p
l ‖Ql − r‖Lp

[−1,1]
(9)

≤ C(k)nk+1/p
l (‖Ql − Fl‖Lp

[−1,1]
+ ‖Fl − r‖Lp

[−1,1]
)

(3) We can apply it to algebraic polynomials in our case simply by making a change
of variable.
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for 1 ≤ p ≤ ∞, and

|Q(k)
l (0)|p = |Q(k)

l (0)− r(k)(0)|p ≤ C(k)nkp+1
l ‖Ql − r‖p

Lp

[−1,1]
(9′)

≤ C(k)nkp+1
l (‖Ql − Fl‖p

Lp

[−1,1]
+ ‖Fl − r‖p

Lp

[−1,1]
)

for 0 < p < 1. Combining (6), (8), (9) and (9′), for l large enough, we get

‖Fl − r‖Lp

[−1,1]
≥ C(k)n−k−1/p

l ε−k−1/p
nl

‖Fl −Ql‖Lp

[−1,1]
(10)

≥ C(k)n−k−1/p−θ/8
l ε1+σ

nl
= Ckn−k−1−α

l ,

where

α =
1
p

+
7θ

8
=

7
8

+
7
8

[
1
p

]
+

1
8p

< 1 +
[
1
p

]
.

Define

f(x) =
∞∑

j=1

n
−θ/8
j fnj (x) .

It is clear that f ∈ Ck
[−1,1] ∩∆

k
. For any r ∈ Πnl

with r(k)(0) = 0,

‖f − r‖Lp

[−1,1]
≥ ‖Fl − r‖Lp

[−1,1]
− 2

∥∥∥ ∞∑
j=l+1

n
−θ/8
j fnj

∥∥∥
for 1 ≤ p ≤ ∞, and

‖f − r‖p
Lp

[−1,1]
≥ ‖Fl − r‖p

Lp

[−1,1]
− 2

∥∥∥ ∞∑
j=l+1

n
−θ/8
j fnj

∥∥∥p

for 0 < p < 1. In any case, applying (10) we have

‖f − r‖Lp

[−1,1]
≥ C(k)(n−k−1−α

l − n
−θ/8
l+1 ) ≥ C(k)(n−k−1−α

l − n
−k−2−[1/p]
l ) ,

thus

(11) ẽ (k)
nl

(f)p ≥ C(k)n−k−1−α
l .

At the same time, in view of Lemma 2 and (3), (6), when 1 ≤ p ≤ ∞,

(12) ωk−m+2+[1/p](f (m), n−1
l )p ≤ ‖F (k+2+[1/p])

l−1 ‖n−k+m−2−[1/p]
l

+ n−θ/8ωk−m+2+[1/p]

(
f (m)

nl
(x)− (k + 1)!

(k −m + 1)!
xk−m+1

+
k!

(k −m)!
ε1+σ

nl
xk−m, n−1

l

)
+ O

( ∞∑
j=l+1

n
−θ/8
j

)
= O(n−k+m−1−β

l ) + O(n−θ/8
l εk−m+1+σ+1/p

nl
) + O(n−k−2−[1/p]

l ) ,

where β = 1/p + 15θ/16.
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In a similar way we deal with the case 0 < p < 1 and get the same result.
Take

M∗
n = min{n−k+m−1/pε−k+m−1/p

n , nθ/16} .

Then from (11) and (12) for sufficiently large l it follows that

ẽ (k)
nl

(f)p/ωk−m+2+[1/p](f (m), n−1
l )p ≥ C(k)M∗

nl
nm

l .

3. Remark. Let ∆k(r), r ≥ 0, denote the class of functions such that
∆k

hf(x) changes its sign exactly r times on the interval [−1, 1 − kh] for
sufficiently small h > 0. For f ∈ Lp

[−1,1] ∩∆k(r), let

E(k)
n (f, r)p = min{‖f − P‖Lp

[−1,1]
} ,

where the minimum is taken over all polynomials P ∈ Πn which are kth
comonotone with f , that is, ∆k

hf(x)∆k
hP (x) ≥ 0 for all x ∈ [−1, 1− kh] and

sufficiently small h > 0.

Problem 3. Let 0 < p ≤ ∞, r ≥ 0. Does there exist a function f ∈
Ck

[−1,1] ∩∆k(r) for k ≥ 1 such that

lim sup
n→∞

E(k)
n (f, r)p/ωk+2(f, n−1)p = +∞?

We can also ask a weak form of this question:

Problem 4. Let 0 < p ≤ ∞, r ≥ 0. Does there exist a function f ∈
Ck

[−1,1] ∩∆k(r) for k ≥ 1 such that

lim sup
n→∞

E(k)
n (f, r)p/ωk+2+[1/p](f, n−1)p = +∞?

When r = 0, p = ∞, the above questions become Problem 1 we men-
tioned in the introduction. The present paper has given a positive answer to
Problem 4 in case r = 1. Since the method used in this paper cannot be eas-
ily applied to general cases, the above questions require further investigation
for r ≥ 2.
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